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Most proteins perform their biological function by interacting with themselves or other molecules. Thus,
one may obtain biological insights into protein functions, disease prevalence, and therapy development
by identifying protein–protein interactions (PPI). However, finding the interacting and non-interacting
protein pairs through experimental approaches is labour-intensive and time-consuming, owing to the
variety of proteins. Hence, protein–protein interaction and protein–ligand binding problems have drawn
attention in the fields of bioinformatics and computer-aided drug discovery. Deep learning methods
paved the way for scientists to predict the 3-D structure of proteins from genomes, predict the functions
and attributes of a protein, and modify and design new proteins to provide desired functions. This review
focuses on recent deep learning methods applied to problems including predicting protein functions, pro-
tein–protein interaction and their sites, protein–ligand binding, and protein design.
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1. Introduction

Proteins are organic molecules abundant in living systems and
conduct a wide range of unique functions such as transport, stor-
age, membrane composition, and enzymatic action [1], among
others. Proteins may interact with DNA, RNA, ligands, and other
proteins to carry out cellular and biological functions [2]. The latter
occurs by physical interaction between two or more proteins [3,4].
These interactions ought to comply with two conditions: first, the
interaction must be by design, i.e. the result of a specific biomolec-
ular event; second, the interaction has evolved to serve a certain
non-generic function [3–5]. Thus, one may obtain biological
insights into protein functions, disease prevalence, and therapy
development by identifying interaction amongst protein pairs [6–
8]. Hence, protein–protein interaction (PPI) and protein–ligand
binding problems have drawn attention in bioinformatics and
computer-aided drug discovery [7,9,10]. Computational methods
paved the way for scientists to predict the 3-D structures of pro-
teins from genomes and, hence, to predict their functions and attri-
butes, allowing them to modify proteins and design new ones to
target desired functions. However, experimental validation bench-
marking remains challenging [11].

Protein–protein interactions compose complexes to conduct
numerous biological processes and functions such as metabolic
cycles, signal transduction, DNA transcription and replication,
catalysis, and immune response [12–18]. The activities of cells
and their functions are affected by abnormalities in protein inter-
actions, leading to numerous diseases such as cancer and chronic
degenerative diseases [19]. Comprehensive identification of PPIs
can help to decode the molecular mechanisms of the specific bio-
logical functions involved [19]. The proximity of proteins in PPI
is of paramount importance for specific functionality. Despite sig-
nificant efforts in molecular biology and genomics, the functions
of most proteins are not yet established [20–22]. It has been
demonstrated by Jansen et al. [23] that the interaction between
known and unknown functional proteins can significantly con-
tribute toward deciphering many protein functions. Therefore, pre-
dicting PPIs has become a crucial challenge in the field of
bioinformatics [19].

PPIs may help in decoding the functionality of unannotated pro-
teins [19,24]. Therefore, many experimental studies have been
conducted to identify PPI, among which the yeast two–hybrid
[25–27], mass spectrometry [28–32], protein microarrays [33–
36] are often used [37,38]. However, these approaches are labori-
ous and time-consuming, which makes them difficult to employ
for all protein pairs [9,39,40]. Moreover, the validity of the exper-
imental techniques is highly dependent on how well one imple-
ments the assay protocols in target organisms [41]. Therefore,
one may use computational methods as pre-treatment in advance
of the experimental methods, aiming to reduce false-positive and
false-negative results [24,41,42].

A protein comprises a unique linear sequence of amino acids
called its primary structure, which determines the folded shape
or conformation. The local secondary structure elements, such as
strands, helices, and random coils, are created as a result of inter-
actions between the protein backbone, the side-chains, and the
environment and extended to the ultimate 3-D structure of the
protein [43]. The large number of possible configurations of the
peptide backbone, and the desirable chemical bonding geometry
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and interactions, make the problem of modelling protein struc-
tures challenging [17]. This paper reviews recent advances in deep
learning methods developed and/or applied to problems, including
predicting protein functions, protein–protein interactions and their
sites, protein–ligand binding, and protein design.

This review is structured as follows. We first outline protein
structure architectures in Section 2. Next, we describe protein
shapes in Section 3. Then, we present some of the main resources
for protein structures and sequences in Section 4. Section 5 briefly
explains some of the most commonly used deep learning methods,
and Section 6 provides an overview of PPI prediction. Section 6.2
and Section 6.3 discuss structure-based PPI prediction methods
and their computational solutions, respectively. Sequence-based
PPI prediction methods and their associated computational solu-
tions are described in Section 6.4 and Section 6.5. Section 7 reviews
deep learning methods addressing protein design problem and
Section 8 concludes the review.

2. Protein Structure

Proteins are a broad class of biomolecules forming more than
50% of the dry weight of cells [44]. Their diverse functionality
and abundance determine the function and structure of cells, with
each protein being an agent performing a specific biological role
[44]. Genes are the basic physical and functional units of inheri-
tance and act as instructions to create the proteins that are the
agents of biological function. In fact, a unique protein structure is
encoded by each gene in cellular DNA, which leads to numerous
possible structures [1]. The uniqueness of proteins originates in
the amino acid sequences and the bonds that hold them together.

The interaction between proteins is mainly non-covalent [43]
except for covalent disulfide bonds (formed by the coupling of
two thiol (–SH) groups), between the cysteine amino acid residues
of the interacting partner proteins. Hydrogen bonding between
proteins in a specific PPI is the most important type of non-
covalent interaction.

The main and side-chain atoms of the different amino acid resi-
dues are involved in the hydrogen bonding between interacting
protein partners. The ion pairs, which form mainly between an
acidic and a basic amino acid in the proteins, form the second most
important non-covalent interaction between protein partners [45].
The stability of protein structures is also affected by long-range
interactions. The impact of short, medium and long-range interac-
tions on various structural classes of proteins are discussed in [46–
48].

As stated in [47], the all-a protein class, i.e., the proteins whose
secondary structure is completely formed by a-helices apart from a
few b-sheets on the edges[49], are governed by medium-range
interactions. In contrast, long-range interactions dominate in
all-b proteins, in which the secondary structure is mainly com-
posed of b-sheets aside from some a-helices on the edges [49].

The primary to quaternary protein structures are examined in
more detail in the following sections.

2.1. Primary structure

The primary structure, as shown in Fig. 1, is a unique, linear,
amino acid sequence that forms the backbone of protein.
Intramolecular bonding and folding of the linear amino acid chain



Fig. 1. primary structure.

Fig. 2. Amino acids.
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eventually establish the protein’s three-dimensional shape. The
sequence of protein is determined by the gene encoding it, so
changing the gene’s DNA sequence may alter the protein’s amino
acid sequence and, thus, the protein’s overall structure and
function.

Amino acids, the building blocks of proteins, are small organic
molecules composed of a central carbon atom, called the a-
carbon, attached to an amino group (-NH2), a carboxyl group (-
COOH), and a hydrogen atom [50]. The carboxyl group is typically
deprotonated and carries a negative charge at physiological pH
(7.2–7.4) [51], whereas the amino group is typically protonated
and shows a positive charge. The identity of each amino acid
depends on its R group, which is an atom or group attached to
the central atom. For example, the R group of glycine, as shown
in Fig. 2 is a hydrogen atom, while the R group of alanine is a
methyl group (-CH3). Fig. 2 illustrates the twenty common amino
acids, each of which has a unique side chain. The side chains gov-
ern each acid’s chemical behaviour, e.g. whether it is acidic, basic,
polar, or nonpolar. Nonpolar amino acids contain aliphatic (hydro-
carbon) chains, while polar neutral amino acids contain a hydroxyl
(-OH), sulfur, or amide in the R group. Polar acidic amino acids
have a carboxylic acid group in the side chain, in addition to the
Table 1
Physicochemical properties of 20 amino acids. Column (a) steric parameters (graph shape
probability [58]; (f) hydrophobicity [59]; (g) hydrophilicity [59]; (h) side-chain residue size
area; (NCN) net charge number [52].

Amino acid Symbol a b c d e

Alanine A 1.28 1.00 6.11 0.42 0.23
Cysteine C 1.77 2.43 6.35 0.17 0.41
Aspartate D 1.60 2.78 2.95 0.25 0.20
Glutamate E 1.56 3.78 3.09 0.42 0.21
Phenylalanine F 2.94 5.89 5.67 0.30 0.38
Glycine G 0.00 0.00 6.07 0.13 0.15
Histidine H 2.99 4.66 7.69 0.27 0.30
Isoleucine I 4.19 4.00 6.04 0.30 0.45
Lysine K 1.89 4.77 9.99 0.32 0.27
Leucine L 2.59 4.00 6.04 0.39 0.31
Methionine M 2.35 4.43 5.71 0.38 0.32
Asparagine N 1.60 2.95 6.52 0.21 0.22
Proline P 2.67 2.72 6.80 0.13 0.34
Glutamine Q 1.56 3.95 5.65 0.36 0.25
Arginine R 2.34 6.13 10.74 0.36 0.25
Serine S 1.31 1.60 5.70 0.20 0.28
Threonine T 3.03 2.60 5.60 0.21 0.36
Valine V 3.67 3.00 6.02 0.27 0.49
Tryptophan W 3.21 8.08 5.94 0.32 0.42
Tyrosine Y 2.94 6.47 5.66 0.25 0.41
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one in the backbone. Polar basic amino acids contain an amine
group (which may be neutral or charged) in the side chain, in addi-
tion to that in the backbone.

The physicochemical properties of 20 common amino acids are
reported in Table 1. SASA represents the solvent-accessible surface
area, and the side-chain net charge number is given by NCN [52].
These properties help determine the feasibility of protein’s interac-
index) [54,57]; (b) volume; (c) isoelectric point; (d) helix probability [58]; (e) sheet
[52,54,60]; (i) polarity [52]; (j) polarizability [52]); (SASA) solvent-accessible surface

f g h i j SASA NCN

0.62 �0.50 27.50 8.10 0.046 1.181 0.007187
0.29 �1.00 44.60 5.50 0.128 1.461 �0.03661
�0.90 3.00 40.00 13.00 0.105 1.587 �0.02382
�0.74 3.00 62.00 12.30 0.151 1.862 0.006802
1.19 �2.50 115.50 5.20 0.29 2.228 0.037552
0.48 0.00 0.00 9.00 0.00 0.881 0.179052
�0.40 �0.50 79.00 10.40 0.23 2.025 �0.01069
1.38 �1.80 93.50 5.20 0.186 1.81 0.021631
�1.50 3.00 100.00 11.30 0.219 2.258 0.017708
1.06 �1.80 93.50 4.90 0.186 1.931 0.051672
0.64 �1.30 94.10 5.70 0.221 2.034 0.002683
�0.78 2.00 58.70 11.60 0.134 1.655 0.005392
0.12 0.00 41.90 8.00 0.131 1.468 0.23953
�0.85 0.20 80.70 10.50 0.18 1.932 0.049211
�2.53 3.00 105.00 10.50 0.291 2.56 0.043587
�0.18 0.30 29.30 9.20 0.062 1.298 0.004627
�0.05 �0.40 51.30 8.60 0.108 1.525 0.003352
1.08 �1.50 71.50 5.90 0.14 1.645 0.057004
0.81 �3.40 145.50 5.40 0.409 2.663 0.037977
0.26 �2.30 117.30 6.20 0.298 2.368 0.023599



Table 2
The nonstandard amino acids [65–67].

Name Symbol Abbr

Aspartic acid or Asparagine B Asx
Leucine or Isoleucine J Xle

Pyrrolysine O Pyl
Selenocysteine U Sec

Glutamic acid or Glutamine Z Glx
unknown amino acid X Unk

Table 3
amino acids classified by side chain properties.

Charge Positive H, K, R
Negative D, E
Neutral A, C, N, P, Q, S, F, G, I, L, M, T, V, W

Polarity Polar Y
Nonpolar C, D, E, H, K, N, Q, R, S, T

Aromaticity Aliphatic A, F, G, I, L, M, P, V, W
Aromatic I, L, V
Neutral F, H, W, Y

Size Small A, C, D, E, Q, R, S, G, K, M, N, P, T
Medium A, G, P, S
Large D, N, T
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tion [52]. The physicochemical attributes of amino acids, such as
hydropathy [53], isoelectric, the pH at which the molecule carries
Table 4
Databases for PPI prediction

Type Database Description

Protein–Protein
Interactions STRING [109] Functional associations between pro

proteins from 14094 organisms; 20
IntAct [116] Contains manually curated datasets

species) and annotations of experim
Biogrid [111] Contains 2,467,140 protein and gen

interactions and 1,128,339 PTMs fro
DIP [112] Experimentally determined PPI data

proteins, PPIs and experimental tec
Negatome 2.0 [108] Contains 21,795 interactions, with s

from literature and analysing protei

MINT [114] Experimentally curated PPI database
from 607 different species.

HPRD [115] Consists of 41,327 PPIs, 93,710 PTM
112,158 Protein Expressions.

BIND [113] PPIs collected from of humans, yeas

Protein sequences UniProt [106] A collection of protein sequence and
UniProtKB, UniParc, UniRef and Pro
reviewed (Swiss-Prot)—manually an
(TrEMBL)—computationally analyse

SWISS-MODEL [107] A web-based integrated service pro
homology modelling. The repository
MODEL for UniProtKB targets, as we
mapping to UniProtKB.

PIR [119] Integrated protein resources, includ
annotations by integrating more tha

Higher-level
structures

RCSB PDB [110] Information about the 3-D structure
assemblies. 191144 structures, 5734
nucleic acid-containing Structures

SCOP [122] Classification of known proteins and
structural and evolutionary relation
this dataset contains 72,448 non-re
protein structures.

Genomic
information

CGD [124] A resource for genomic sequence da
Candida albicans and related species
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no net charge [54,55], and charge, play crucial roles in identifying
the interaction between protein sequences [56].

Beyond the common amino acids shown in Table 1, there are
also nonstandard amino acids [61]. These are also known as
biosynthetic amino acids, and require complex synthetic and
translational mechanisms that differ from the canonical enzymatic
system used for the 20 standard amino acids [62]) namely, pyrro-
lysine [63] and selenocysteine [64]. These nonstandard amino
acids are presented in Table 2. Sometimes it is not possible to dif-
ferentiate two closely related amino acids. Therefore, we have the
indeterminate residues in protein sequences as represented by
symbols B, J, Z and X.

One way to classify amino acids is based on the side chains, as
shown in Table 3 [68,69], in which case.

Multiple amino acids are linked together by peptide bonds,
forming a long chain called the polypeptide. The order of the amino
acids determines the polypeptide’s functionality. Polypeptides are
classified by the number of amino acid units in the chain. Each
amino acid is linked covalently to its neighbours by peptide bonds,
in a dehydration synthesis (condensation) reaction. Each protein is
composed of one or more polypeptide chains. During protein syn-
thesis, the carboxyl group (-COOH) of the amino acid at the end of
the growing polypeptide chain reacts with the amino group of an
incoming amino acid, forging a peptide bond and releasing a water
molecule. Peptide bonds connect the carbon of the carboxyl group
of one amino acid to the nitrogen of the amino group of the next, as
shown in Fig. 3.
Last
update

URL

tein pairs, which contains 67,592,464
,052,394,042 interactions.

2021 https://string-db.org/

(topical), interactomes (for 16 different
ental evidence.

2021 https://www.ebi.ac.uk/
intact/home

etic interactions, 29,417 chemical
m major model organism species.

2020 http://www.thebiogrid.
org/

base including biological information of
hniques for identifying interactions.

2020 https://dip.doe-mbi.ucla.
edu/dip/Main.cgi

cores of zero and one, using text mining
n complexes from PDB.

2014 http://mips.helmholtz-
muenchen.de/proj/ppi/
negatome/

that includes approximately 117001 PPIs 2012 https://mint.bio.
uniroma2.it/

s, 22,490 Subcellular Localizations and 2010 http://www.hprd.org

ts, nematodes, etc. 2005 http://download.
baderlab.org/
BINDTranslation

functional information, including
teomes. UniProtKB contains 567,483
notated, and 231,354,261 unreviewed
d, protein sequences.

2020 http://www.uniprot.org

viding information for protein structure
contains 2,217,470 models from SWISS-
ll as 180,107 structures from PDB with

2020 https://
swissmodel.expasy.org/

ing protein sequences and high-quality
n 90 biological databases.

2022 http://pir.georgetown.
edu/

of proteins, nucleic acids, and complex
9 human sequence structures, and 14406

2021 https://www.rcsb.org/

a comprehensive description of the
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Fig. 4. secondary structure.
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Polypeptide chains are directional, i.e. its ends are chemically
distinct from one another. The end with a free amino group is
called the amino terminus or N-terminus, while the other end
has a free carboxyl group, and is known as the carboxyl terminus
or C-terminus (see Fig. 3).

Most of the side chains are nonpolar, several are positively or
negatively charged, some are polar but not charged. These features,
and their consequent bonds, are responsible for protein structure
and functionality by maintaining the protein in a specific shape
or conformation. The polar side chains can form hydrogen bonds,
while the charged side chains can form ionic bonds. Hydrophobic
side chains interact via van der Waals interactions [1]. Conse-
quently, protein folding is directed by the side-chain interactions,
the sequence and the location of amino acids in that protein. The
order of the acids, i.e. the primary structure, determines which
bond types can form at each location along the polypeptide, and
thus governs the protein’s tertiary structures [70].

2.2. Secondary structure

Secondary structures result from interactions between parts of
the polypeptide chain. The most common folding patterns are a-
helices and b-pleated sheets [44].

In an a-helix, the hydrogen bonding occurs between the car-
bonyl group (C = O) of one amino acid and the hydrogen atom of
the amino acid four places further along the chain. This bonding
pattern draws the polypeptide chain into a helix, with each turn
of containing 3.6 amino acids. The R groups stick outwards from
the a-helix, and are free to interact. In a b-pleated sheet, segments
of a polypeptide chain align next to each other, making a sheet
structure coupled by hydrogen bonds between carbonyl and amino
groups of backbone, while the R groups extend above and below
the plane of the sheet.

The strands of a b-pleated sheet may be parallel (i.e. their N-
and C-termini match up), or anti-parallel (i.e. the N-terminus of
one strand alongside the C-terminus of the next). In certain cases,
the amino acids are not found in a-helices or b-pleated sheets. For
instance, proline is known as a ”helix breaker” owing to its unusual
R group, which bonds to the amino group to form a ring creating a
bend in the chain that prevents helix formation. Proline is gener-
ally found in bends, unstructured regions between secondary
structures. Proteins can contain a-helices, b-pleated sheets or both,
or may form neither type.
Fig. 3. peptide bond formation. The N-terminus is
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2.3. Tertiary structure

The tertiary structure, as shown in Fig. 5, is formed as the
polypeptide chains of protein molecules fold into a more compact
shape with a low surface-to-volume ratio.. The tertiary structure
results mainly from electrostatic forces between the R groups.
For instance, oppositely charged R groups bond ionically, while
similarly charged R groups repel one another. Similarly, polar R
groups may form hydrogen bonds and other dipole–dipole
interactions.

A cluster of amino acids with nonpolar, hydrophobic R groups
on the inside of the protein leaves the hydrophilic amino acids
on the outside to interact with nearby water molecules.

The tertiary structure can also be produced by disulfide bonds.
Disulfide bonds are covalent and hence keep parts of the polypep-
tide firmly attached to each other [44]. A synthesis of a tertiary
structure is portrayed in Fig. 6.
2.4. Quaternary structure

Many proteins comprise two or more polypeptide chains that
interact to form a stable folded structure, known as a subunit of
on the left, and the C-terminus is on the right.



Fig. 5. tertiary structure [70].

Fig. 6. myoglobin illustrates a type of tertiary structure consisting of ahelices
connected by loop segments. Fig. 7. aspartate transcarbamoylase is an enzyme at the beginning of the pathway

for pyrimidine synthesis, presents a remarkable example of quaternary structure.
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the protein. The amino acid sequences of each subunit can either
be identical (as in tobacco mosaic virus protein), similar (as in
the a and b chains of hemoglobin), or entirely different (as in
aspartate transcarbamoylase see Fig. 7). Subunit arrangement
establishes the protein’s quaternary structure.

In the following section, protein shapes are discussed.
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3. Protein Shapes

Proteins may be classified on shape and solubility into three
global classes: fibrous (Fig. 8), globular (Fig. 9), or membrane
(Fig. 10).

In general, fibrous proteins have relatively simple, regular linear
structures, and often provide cells with structural functions.



Fig. 8. a small part of collagen separated by chains.

Fig. 9. haemoglobin, a globular protein.

Fig. 10. bacteriorhodopsin, a membrane protein.
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Fibrous proteins are usually insoluble in water and dilute salt solu-
tions. A well-known example of such proteins is collagen, abun-
dant in all animals [71]. As illustrated in Fig. 8, collagen is
composed of three chains, each containing 1400 amino acids,
twisted together into a triple helix. Glycine appears in every third
position along each chain, and, due to its small size, it perfectly fits
inside the helix. Proline and hydroxyproline [72] fill numerous
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positions on a chain. There are numerous types of collagen, all
comprising a long stretch of triple helix attached to different ends.

On the other hand, globular proteins are nearly spherical, as
shown in Fig. 9 and very soluble in aqueous solutions. Examples
include haemoglobin, in the red blood cells, that binds to oxygen.

Membrane proteins have hydrophobic side chains directed out-
wards, and interact with the nonpolar phase within membranes.
Therefore, membrane proteins are insoluble in aqueous solutions
but can be solubilised in solutions of detergents. Bacteriorhodopsin
(Fig. 10) represents an example of such proteins which is made by
halophilic (salt-loving) bacteria. This protein pumps protons across
cell membranes, powered by sunlight [44].

PPI prediction and protein design may benefit from classifying
deformable protein shapes. A novel classification method for pro-
tein shapes, based on their macromolecular surfaces, is introduced
in [73]. They proposed a novel description, based on bifractional
Fokker–Planck and Dirac–Kähler equations for deformable shapes.

3.1. Protein folding

Over the past two decades, considerable efforts have been made
in the protein design field, which has further expanded due to the
evolution of computational methods and machine learning algo-
rithms. Some of the successful examples include novel folds in pro-
tein design [74,75], enzymes [76,77], antibodies [78–80], vaccines
[78,81], ligand-binding proteins [82,83], protein assemblies [84–
88], and membrane proteins [89–91]. Some of the most recent
comprehensive reviews in this field are presented in [92–95]. Gen-
erally, the backbone structure of a target protein forms the input
for computational protein design. An optimal sequence can be gen-
erated using computational sampling methods, seeking potential
folding into the desired structure for experimental validation.

A vital component of the solution process involves the scoring
function, which can distinguish folds that are or are not physically
compatible with a given amino acid sequence [96]. One approach
to defining the scoring function considers van der Waals and elec-
trostatic energy along with knowledge-based terms such as back-
bone dihedral preference statistics about protein structures
[97,98], and side-chain rotamers [99]. There is a gap between auto-
mated protein design and current approaches, which mostly
depend on human experience. This is due to restrictions on artifi-
cially created sequences which must comply with various factors
such as in silico folding free-energy landscape [100,101] and shape
complementarity [87].

Despite the rapidly growing number of known protein struc-
tures, the number of unique protein folds is converging, suggesting
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that statistical learning based on existing structures leads to pro-
gress in design methods [102–104]. This statistical potential
enables machine learning, especially deep-learning neural net-
works, to be used for accurate prediction and feature extraction
[105].

Some of the commonly used resources for the structure of pro-
teins and sequence are discussed in the following section.
4. PPI Databases

There are several known PPI databases, such as Uniprot[106],
SWISS-MODEL [107], Negatome 2.0 [108], STRING [109], RCSB
PDB [110], BioGRID [111], DIP [112], BIND [113], MINT [114], HPRD
[115] and IntAct [116]. However, among these databases, some are
not currently being maintained, such as BIND and HPRD, and are
thus rarely used [117]. STRING, IntAct and MINT provide interac-
tion scores from different sources to indicate their reliability. The
Negatome 2.0 dataset comprises the manually curated interacting
protein pairs from literature and analysed protein complexes from
PDB, with scores of zero and one to indicate non-interacting and
interacting pairs [108].

Computational methods often use the proteins’ biological infor-
mation, including protein sequences and protein structures. The
biological characteristics and high-level structure of proteins are
affected significantly by their primary structure. Therefore, one
Fig. 12. LSTM a

Fig. 11. Autoencoder architecture.
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may use the knowledge extracted from protein sequences to esti-
mate the interaction likelihood between protein pairs [118]. Pro-
tein sequences can be obtained from the STRING [109], PDB
[110], UniProt [106], PIR [119], SWISS-MODEL [107], and TrEMBL
[120] databases. Information on higher-level protein structures
can be acquired from PDB [121] and SCOP [122]. Dandekar et al.
have asserted that proteins encoded by conserved gene pairs phys-
ically interact [123]. That basis is used, in genomic-based compu-
tational methods, for prediction. Genomic information can be
found in The Candida Genome Database (CGD) [124].

In the following section, some of deep learning methods are
briefly explained.

5. Deep Learning Models

Autoencoders, as illustrated in Fig. 11, are a type of unsuper-
vised feedforward neural network reconstructing the output from
the high-dimensional and possibly correlated input feature space.
[125]. It consists of two parts, the encoder and the decoder. The
encoder maps the input data into a low-dimensional and uncorre-
lated features space, called the latent layer, while the decoder
reconstructs the input data from the latent layer. Autoencoders
remove redundancies and correlations while extracting highly
informative features [126,127].

Recurrent neural networks (RNNs) can capture contextual infor-
mation when mapping input to output sequences. However, RNNs
often suffer from vanishing gradients, limiting the context range
they can access [128,129]. To address this problem, long-short
term memory (LSTM) architecture was introduced [130], as illus-
trated in Fig. 12.

The LSTM architecture consists of recurrently connected mem-
ory blocks and corresponding control gates, the forget gate f t , the
input gate it , and the output gate ot , which update and control
the cell states [131]. The input and forget gates control current net-
work memory and the flow of new information. Specifically, as
new information flows into the network, the forget gate manages
the information that needs to be removed from cell states, while
the input gate controls the information that needs to be stored in
cell states. Finally, the output gate determines the encoded infor-
mation that needs to be forwarded as the input for the next step.

f t ¼ r Wf � ht�1; xt½ � þ bf

� � ð1aÞ
ht ¼ ot � tanh Stð Þ ð1bÞ
where r is the sigmoid activation function, W is the weight matrix,
b is the bias vector, and � is the point-wise product. The initial
operation is performed by the forget gate f t , Eq. 1a, which determi-
nes whether the information should be kept or removed. The LSTM
rchitecture.



Fig. 13. convolutional neural network architecture. The input is the feature matrices of two proteins. The output predicts the interaction score between two proteins.
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architecture contains a hidden state ht , Eq. 1b that is formed by
sequential information.

it ¼ r Wi � ht�1; xt½ � þ bið Þ ð2aÞbSt ¼ r Wc � ht�1; xt½ � þ bcð Þ ð2bÞ

The next step involves storing the new input information in the cell
state via the input gate it , Eq. 2a. Therefore, the cell state can be

modified through candidate values bSt , Eq. 2b, and Eq. 3a. Finally,
the LSTM determines the output of each unit as Eq. 3b.

St ¼ f t � St�1 þ it � bSt ð3aÞ
ot ¼ r Wo � ht�1; xt½ � þ boð Þ ð3bÞ

Despite the many advantages of LSTM, it is a computationally
demanding architecture and slow to train.

The convolutional neural network (CNN) architecture is illus-
trated in Fig. 13. Its input is a matrix of the encoded representation
of two proteins stacked in two columns. In this example, the CNN
architecture comprises three 2-D convolutional layers and three
dense layers. The convolutional and max-pooling layers reduce
the size of the input tensor. The dropout layers are used to reduce
overfitting and improve generalisation error [132]. The flatten
layer reduces the dimensionality of the input. In addition, three
densely connected layers reduce the features to the desired size.
Finally, the output is obtained from a densely connected layer with
the softmax activation function, classifying interactions into inter-
acting and noninteracting pairs.

Most data used in deep learning can be readily represented in
Euclidean space [133], where the convolution operation is properly
defined [134]. However, when data cannot be represented on a reg-
Fig. 14. graph convolutional network
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ular grid due to the complex nature of their correlations [135,136],
standard convolution cannot be directly applied to non-Euclidean
geometries, limiting the applicability of CNNs [137,138].

However, the convolution theorem states that [137] convolution
may be evaluated using Fourier transform. The Fourier transform is
first performed for both the input and the filter. Then, both transfor-
mations are multiplied by the Hadamard product. Finally, the
inverse Fourier transform of the Hadamard product is evaluated. If
the Fourier transform is defined correctly, the convolution theorem
remains valid under non-Euclidean geometry [137,134], allowing
the application of CNNs to non-Euclidean geometries [138]. The
spectral graph convolution in the non-Euclidean domain can be
obtained by applying the Fourier transform graph and convolution
theorem to both the input signal and the convolving filter [139].

Graph convolution extracts underlying local information by col-
lecting node information in the local neighbourhood. Localisation
can be achieved by expressing the filters in terms of Chebyshev
polynomials of the first kind [140,141]. Fig. 14 illustrates a graph
convolutional network (GCN) with stacked layers to extract
multi-scale substructure features [138]. The propagation rule for
the multi-layer GCN is given by:

f lþ1
i ¼ r

Xp
j¼1

UbGi;jU
Tf li

 !
; i ¼ 1; � � � ; q; j ¼ 1; � � � ;p ð4Þ

Where r is the nonlinear activation function (l) and Ĝ ¼ diag gh kð Þð Þ.
The number of features is denoted by (q), and the number of assets
is denoted by (p).

Locality is assumed for all nodes in GCN. As the size of the
neighbourhood increases, algorithmic time and space complexity
also increase [142]. This issue violates the purpose of using deep
architecture for PPI prediction.
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models. While few studies have addressed this issue (e.g., skip
connection-based models), how to construct a deep architecture
that can better adaptively exploit deeper structural graph patterns
is still an open challenge [136].

Generative models aim to model the underlying distribution of
the data, enabling the generation of new samples with comparable
properties to those on which the model was trained [143,144].
Numerous generative models have been developed on the basis
of deep neural networks, such as Variational Autoencoder (VAE)
[145–147], Generative adversarial Network (GAN) [148], and deep
autoregressive models [149–151].

In their original form, GAN algorithms are composed of two
components, namely, generator and discriminator, with the gener-
ator producing synthetic data while the discriminator evaluates
the discrepancy between the generated data and the real data.
Each network attempts to improve its performance until an equi-
librium is reached, where the discriminator is unable to detect
the fake samples and the generator fails to produce better samples
[148,152–154].

As illustrated in Fig. 15, given a data distribution, x � px; x 2 X,
the generator learns the distribution pG which maps the latent
Fig. 16. variational autoe

Fig. 15. GAN architecture.
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variable drawn from a prior distribution z � pz; z 2 Z to the sam-
ple space as G : Z ! X, while the discriminator is trained to distin-
guish between fake and real samples via a score D : X ! R [148].

The VAE architecture, as shown in Fig. 16, is a class of generative
models based on variational Bayesian inference with multivariate
prior distribution [155–157], initially introduced in [145]. The
VAEs comprise two linked models that are individually parame-
terised, namely the encoder or recognition model and the decoder
or generative model. Unlike autoencoders, in which the encoder
compresses the input features into real-valued latent features,
the encoder in a VAE stochastically maps the observed variables’
x-space to a probabilistic latent z-space (latent variable) [158].

Fractionally strided convolutions, also known as transposed
convolutions, perform a reverse spatial transformation by switch-
ing the forward and backward pass [159]. Fractionally strided con-
volutions may allow for recovering the shape of the initial feature
map but do not guarantee retrieving the input itself [159]. This
allows the network to learn its own spatial downsampling and
upsampling. An extension of the 2-D GAN framework, called condi-
tional GAN, has been proposed in [160] that applies conditions on
class labels for both the generator and the discriminator networks.
Multimodal data generation is better represented using conditional
GANs.

Both generator and discriminator are trained based on an addi-
tional information placed as condition y in the input layer, as
depicted in Fig. 17. The adversarial training framework allows for
flexible-joint hidden representations composed from input noise
pz zð Þ and y in the generator [160]. The fake samples are generated
as G x; zð Þ ¼ x�jy (x� is synthetic sample given y as a condition) aim-
ing to resemble real samples as well as possible. The discriminator
receives real samples with labels x; yð Þ and fake samples from gen-
erator x�jy; yð Þ. The discriminator outputs a single probability
through a sigmoid activation function (r) indicating its decision
on fake and real inputs.

The following section represents PPI prediction methods.
ncoder architecture.



Fig. 17. the conditional GAN architecture.
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6. PPI Prediction Methods

High-throughput experimental methods have produced PPIs at
an ever greater rate, but these acquired data are noisy with both
false positives and false negatives. For instance, mass spectrometry
methods may not be able to detect transient or weak interactions
[161–165]. The noise levels of different PPI-identifying technolo-
gies are studied in [161], showing that high-throughput methods
such as two–hybrid system, mass spectrometry, protein chip and
phage display have relatively high noise levels.

From a practical perspective, studying PPIs provides the founda-
tion for diagnostic and therapeutic medical applications, thus facil-
itating the design of novel drugs [117,166–168]. The development
of computational methods for the PPI prediction problem is moti-
vated by such shortcomings.

Recent advances in computational modelling methods have
brought about exceptional findings in protein design, including
enzymes [76,77,169], the development of new therapies
[170,171], biosensors [172], and small-molecule binders [82].
However, these methods are mainly suited to modifying naturally
found proteins [173]. On the other hand, creating proteins de novo
provides full control over their structure and function [92,174]. Hence,
a new objective is to discover new, non-native folds or structural ele-
ments as building blocks for novel proteins [173].

Computational protein design mainly aims to automate the fab-
rication of proteins with specific structural and functional proper-
ties [9,73]. This field has gained traction in the past two decades,
such as in the design of novel 3-D folds [74], protein complexes
[87], and enzymes [169]. Even though these methods have shown
great achievements, current approaches are unreliable as initial
designs frequently fail, entailing multiple trial-and-error cycles
[175,176]. Since these approaches are highly dependent on the
accuracy of complex energy functions for protein physics and the
performance of sampling algorithms for jointly exploring the pro-
tein sequence, it is difficult to determine the source of the poor
reliability [177–180]. Nevertheless, computational methods have
facilitated the generation of synthetic protein domains which
mimic natural folds using sequences unlike those in nature [181–
183].

Quick computational testing of many possible outcomes, poten-
tially narrowing the set of necessary experiments, would ulti-
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mately save time. Among the computational methods addressing
the PPI prediction problem, some use extracted features as inputs
to learn the model [184], while others extract new protein infor-
mation [185–187]. These methods are further explained in Sec-
tion 6.5. The information extracted from a tertiary structure of
proteins may be used to predict PPI. There exist several experimen-
tal techniques for determining a tertiary structure of proteins,
including X-ray crystallography and NMR spectroscopy [188]. It
is suggested in [189] that locations of protein–protein binding sites
are engraved in the proteins’ structures. Although experimentally
determined 3-D protein structures may facilitate the detection of
interaction sites and the understanding of protein functions, exper-
imental biological methods are laborious and time-consuming, and
consequently, the geometries of only a small fraction of known
proteins have been determined [189–194]. To address this short-
coming, various studies use deep learning to predict, from protein
structure and other protein features, potential PPI [185,186,195–
197]. Some of these methods are discussed further in Section 6.3.

6.1. PPI Site Prediction

Identifying PPI sites is crucial for understanding the mecha-
nisms of disease and for novel drug design. PPI binding sites consist
of amino acid residues forming chemical bonds with a part of
another molecule [40]. Identifying interaction domains in
sequences helps in understanding cell regulatory mechanisms,
locating drug targets and predicting protein functions [198]. Yuan
et al. have addressed PPI site prediction as a graph node classifica-
tion problem, modelling proteins as undirected graphs. They devel-
oped GraphPPIS [199] to predict PPI sites.

PPI site predictions are roughly categorised into three cate-
gories: protein–protein docking, structure-based, and sequence-
based methods. Docking methods aim to generate structures of
the resulting protein complex [200], as proposed in [201], by defin-
ing a scoring function for novel shape complementarity at the ini-
tial docking stage. Some of the recent sequence-based methods for
predicting protein–protein interaction sites include: attention-
based convolutional neural networks [197], simplified LSTM
[191], the DeepPPISP method which uses a combination of local
contextual and global sequence features [196], CNN with a residue
binding propensity to address data imbalance [202], and the DEL-
PHI method which comprises an ensemble structure as a combina-
tion of CNN and recurrent neural network (RNN) [203]. CNN and
LSTM architectures are illustrated in Fig. 13 and 12 respectively.

Structure-based methods for PPI prediction are addressed in the
next subsection.

6.2. Structure-based PPI Prediction

Proteins adopt complex 3-D structures to perform biological
functions via physical contact between effectors and regulators.
The effectors may be characterised as the molecules that activate
or suppress the regulator’s function and alter gene expression as
a result [204,205]. Therefore, predicting which residues are
involved in PPIs may help structure-based drug discovery, improve
the accuracy of protein–protein docking, and obtain richer annota-
tion of protein function [206,207]. A protein may interact with
multiple partners over different or overlapping sections of its sur-
face. These interactions may occur at different times or, when the
interaction site is large, simultaneously.

Structure-based methods exploit information such as similarity
in protein structure to predict PPIs [208]. For instance, two pro-
teins, A’ and B’, structured similarly to two interacting proteins A
and B, respectively, can be assumed also interact with each other
[209]. Structure-based techniques often employ empirical scoring
functions, physics-based methods, knowledge-based approaches,



Fig. 18. schematic illustration of PRISM algorithm as an example of template-based
docking method for PPI prediction [236] (a) If the template interface on comple-
mentary partners (IL and IR) are similar to any two targets surfaces (TL and TR),
these two targets may interact and create a protein complex. The black points
illustrate hot spot residues. (b) The algorithm flowchart includes the template data
set and the target data set. The surface of each partner of the template interface is
aligned with the target surfaces. If the matching threshold for hot spot residues
passes, the target proteins may form an interacting pair [236,224].
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or quantitative structure–activity relationship methods to deter-
mine both the binding affinities and structural orientations of PPIs
[210]. Protein–protein docking techniques can model the orienta-
tion of two interacting proteins and their binding affinity and iden-
tify key residues in PPIs [210].

Docking-based methods use the structures of individual pro-
teins to predict the structure of the complex. Generally, the only
information available is the structure of these individual proteins.
The docking method includes two steps. Firstly, the binding orien-
tations of two interacting proteins are identified. Secondly, the
binding free energy between the interacting proteins are estimated
[211,212]. A global search is conducted by holding the target pro-
tein (receptor) stationary while moving the ligand around it. After
modelling all possible orientations, the interactions between the
two proteins are determined [210]. The global search method
demands an unlimited number of translations and rotations, mak-
ing it a computationally expensive approach. To address this issue,
a fast Fourier transform (FFT) approximation has been used in
[213].

The local docking technique may improve solutions found by
the global docking approach. In the global docking scenario, the
sampling starts from a random point, whereas the local techniques
assume a known starting point (binding mode) and restrict the
sampling search around it [214,215]. The ZDOCK server is among
the commonly adopted docking resources which employ FFT-
based global search [216]. RosettaDock is a local protein–protein
docking algorithm based on a Monte Carlo search. It allows for
user-defined initial poses or random orientation of the two pro-
teins. RosettaDock aims to find the system with the lowest energy,
initially through a low-resolution optimisation, followed by a high-
resolution refinement [217]. Finally, the docking score is estimated
by an all-atom energy function [218–220]. The structural features
and physicochemical properties are used for showing the models
of unknown PPIs. MEGADOCK is a template-free docking methods
[221] identify the most promising interactions from a large set of
potential interaction sites by assessing the unbound protein com-
ponents. This method investigates a protein docking approach
based on the tertiary structures of the target proteins and physic-
ochemical properties. The docking calculation is accelerated using
a novel scoring function called the real Pairwise Shape Comple-
mentarity (rPSC) score. Although docking methods have proven
successful for some proteins, they fail to deliver the same perfor-
mance for proteins that sustain conformational changes during
interaction [222].

Homologous proteins, i.e. proteins exhibiting similarity through
common ancestors sequences [223], are apt to adopt the same
binding interfaces [224]. However, the PPI interfaces may be struc-
turally similar, even though their global structures differ [225].
Template-based docking techniques predict PPIs by comparing a
protein—protein complex under examination against templates,
i.e. other, experimentally determined, protein–protein complex
structures [168,211,226–229]. In general, these techniques operate
in five steps i) developing the template library, (ii) selecting the
target set, (iii) searching for the similarities between target and
template, (iv) refinement and (v) scoring. Developing the template
library is the most crucial step. In the last decade, the number of
experimentally determined structures has grown exponentially,
thus improving the performance of template-based techniques
[210].

The search for similarity between target and template is per-
formed globally and locally, and can be conducted through
sequence alignment [230], structural alignment, and threading
[231–234]. Alignments can be obtained from sequences, struc-
tures, or feature information from both sequences and structures.
The structure framework in the aligned regions of the template
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with the highest alignment score is selected as the basis of the tar-
get protein structure [222,235] (See Fig. 18).

The next subsection will review computational methods pre-
dicting PPI using protein 3-D structure.
6.3. Structure-based PPI Prediction Using Computational Methods

In order to address the high-dimensionality problem of protein
structure, several dimensional reduction techniques have been
applied, such as random forests [237] and the support vector
machine (SVM) and its derivatives [238,239]. Northey et al. intro-
duced a multi-layer perception network (MLP)-based method
called IntPred [240] to predict interaction by splitting proteins into
a group of patches that integrates 3-D structural information into a
feature set.

In recent years, many graph convolutional network (GCN) vari-
ants (see Fig. 14) [134,241] have been successfully employed in a
variety of tasks with graph-structured data [242], such as protein
solubility prediction [243], genomic analysis [244] and drug dis-
covery [245]. A GCN-based approach is proposed in [246] to
acquire positional information in PPIs. Their representation
method combines the information from the amino acid sequence
and the protein positions. In order to determine the amino acids
of an interacting protein interface, Fout et al. integrated 3-D struc-
tures into a GCN [247]. To accurately predict interactions between
query proteins entirely from 3-D structural data, Baranwal et al.
proposed a GCN-based mutual attention classifier called Struc-
t2Graph [248]. The generative model proposed in [177] is a
graph-based model which captures the joint distribution of the full
protein sequence, which is founded on long-range interactions
resulting from the protein structure. A multimodal approach based
on LSTM is proposed in [187], which predicts PPI by integrating
structural and sequential information about proteins into the input
feature set.

The advantages and disadvantages of these methods are listed
in Table 5. Moreover, Table 6 lists the datasets used by each
method.



Table 5
Summary of advantages and disadvantages of structure-based deep learning methods for PPI prediction.

Framework Description Advantage Disadvantage

GCN-based [2017]
[247]

This study proposed a pairwise classification architecture
in which
one or more graph convolution layers process the
neighbourhood of a residue in each protein.
Then, the representation of two residues is paired and
passed through a dense layer for classification.
This study analysed several GCN-based methods,
concluding that neighbourhood-based convolution
methods outperform
diffusion-based convolution and SVM-based methods.

The proposed convolution operators and
obtained features may be helpful for other
applications,
including protein function, catalytic and
other functional residues,
and protein interactions with DNA and RNA.

The accuracy of this approach is
examined based on
a limited number of labelled
training examples.

IntPred [2018]
[240]

This method uses a random forest to predict protein–
protein interface sites at
both the surface patch and residue levels.

The performance of a binary classifier can be
evaluated using different measurements,
such as the Matthews’ correlation coefficient
(MCC),
sensitivity, precision, and specificity [240].
IntPred outperformed the methods ProMate
[189],
PIER [249], PINUP [250], and
meta-PPISP [251], but not SPPIDER [252],
based on MCC.

The performance of this method
depends on the application.
For instance, IntPred was better
suited to cases in which
false positives are less well
tolerated than false negatives.

Graph-based
generative

model [2019]
[177]

This method uses a graph transformer model for
designing protein sequences given
graph representations of 3-D protein structures,
leveraging the spatial locality of dependencies in
molecular structures.

This method uses a self-attention
mechanism to capture higher-order,
interaction-based dependencies between
sequence and structure.
The graph-based model offers computational
efficiency due to the representation of
long-range sequence dependencies by
short-range sequence dependencies in 3-D
space [253–255].
Additionally, they achieved linear computa-
tional scaling concerning
the sequence length and representational
flexibility for
coarse and fine-grained structure descrip-
tions.

The evaluation dataset only
contained chains up to a length of
500,
limiting the applicability of this
approach.

Struct2Graph
[2020]
[248]

In this method, graph embeddings of each protein are
obtained using an assigned GCN.
Next, relevant geometric features associated with
query protein pairs are extracted using a mutual attention
network.
Finally, a feedforward neural network performs a binary
classification
between interacting and noninteracting pairs.

Struct2Graph only uses 3-D structural
information to predict the PPI.
They have reported state-of-the-art
performance on both balanced and
unbalanced datasets.

Limited availability of 3-D
structural information
may restrict the applicability of this
method.

LSTM-based [2020]
[187]

The proposed method integrates the 3-D structure and
sequence-based information of proteins to predict PPIs.
The 3-D coordinate information, hydropathy index,
isoelectric point, and amino acid charges of each protein
are fed into a pre-trained ResNet50 model to extract
features from these attributes.
A stacked autoencoder obtains the compact form of
encoded proteins using autocovariance and conjoint triad.
The structural features from ResNet50 are passed through
LSTM and
concatenated with features from the stacked
autoencoder.
The merged features are then fed into the classifier to
predict protein pair labels.

This method performs well despite being
trained on a low number of instances.

Limited availability of 3-D
structural information
may restrict the applicability of this
method.
Additionally, LSTM models are
computationally demanding and
slow.
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The sequence-based methods for PPI prediction are reviewed in
the next section.
6.4. Sequence-based PPI Prediction

Traditional methods often analyse protein sequences based on
multiple sequence alignments. This leads to a simple inference of
functional and structural constraints from sequence data [265].
While protein design and engineering have benefited from evolu-
tionary information of alignments [266–268], adding distant pro-
teins will induce large and unreliable alignments [269],
restricting the diversity of sequences.
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Unlike docking and structure-based methods, sequence-based
methods do not require structural data and instead leverage the
abundance of existing protein sequence data from sequencing
technology, especially since the introduction of metagenomics
[106,270,271]. One may predict PPIs from amino acid sequence
similarity in the known interactions, depending on interactions
already identified in one species to infer interaction in different
species [24,272]. The sequence-based method hence focuses on
primary structure, disregarding the protein’s 3-D shape [273].

In domain-based technique, specific sequences in the protein
structure are represented by conserved domains. Conserved
Domains may be defined by local multiple sequence alignments,
including a wide range of organisms to display sequence regions



Table 6
Datasets of structure-based methods.

Framework Data Processing

GCN-based [2017]
[247]

Version 5 of the docking benchmark dataset was used by this study [256],
comprising a selected subset of structures generated from X-ray crystallography or nuclear magnetic resonance experiments and
containing the atomic coordinates of each amino acid residue in the protein from the Protein Data Bank (PDB).
Proteins with 29 to 1,979 residues are included. Since proteins may change their shape upon binding, the features are computed from
the unbound form of the protein in the complex.
The labels are acquired from the structure of the proteins in the complex.

IntPred [2018]
[240]

The training dataset comprised 58,397 biological units from protein, interfaces, structures and assemblies (PISA),
including transient and obligate interfaces [257]. Structures with a resolution below 3 A� or Rfactor above 30%,
Viral capsids, NMR entries and proteins with fewer than 30 amino acids are removed.
Any structure with more than one chain is retained, resulting in 25,876 structures constructed from 87,738 chains.
The chains were clustered at 25% sequence similarity using PISCES [258] to remove redundancy.
The final training set contained 4,345 chains. For the test set, no clustering was performed, resulting in 4,204 chains.
The NOXclass [259] is used to construct a dataset of obligate and transient interfaces.
This method predicts protein interactions as either obligate or non-obligate (transient) with or without crystal packing contacts.

Graph-based generative
model [2019]

[177]

The dataset was obtained from the CATH (version.4.2) [260]. The training, validation, and testing sets
were divided into 80/10/10 sets by randomly assigning their CATH topology classifications (CAT code).
The resulting dataset included 18,024 chains in the training set, 608 in the validation set, and 1,120 in the test set, with zero CAT
overlap.

Struct2Graph [2020]
[248]

The database was generated based only on direct/physical protein interactions. Therefore, IntAct [116] and STRING [261] were selected,
and only concordant matches between these two databases were chosen as true interactions.
The organisms included in this dataset were S.cerevisiae, H.sapiens, E.coli, C.elegans, and S. aureus, resulting in 427,503 pairs from
IntAct and 852,327 pairs from STRING.
Only ”direct association/interactions” from IntAct and ”binding” from STRING were regarded as physical interactions.
Only extracting concordant, physical interaction data reduced the interactions to 12,676 pairs for IntAct and 446,548 pairs for STRING.
Negative PPI was retrieved from [262].
Structure information for this method was acquired from PDB files, which reduced the total number of pairs to 117,933 (5,580 positive
and 112,353 negative).
All proteins were matched with PDB files using UniProt accession numbers (UniProt Acc) and mapped PDB files [263].
Finally, PDB files were curated based on the length of their chain ID and the highest resolution within each PDB file, resulting in 5,580
negative pairs for a balanced dataset.

LSTM-based [2020]
[187]

This study used two PPI datasets, Pan’s PPI dataset [264] and S. cerevisiae PPI data obtained from
the Database of Interacting Proteins (DIP; version 20160731; see Stacked Autoencoder (SAE) and DeepPPI for further details).
Structure information was only available for 10,359 protein sequences in the Pan’s PPI dataset and 1,308 proteins in the S. cerevisiae
PPI dataset.
Therefore, Pan’s PPI dataset contained 25,493 pairs (18,025 positive and 7468 negative), while the S. cerevisiae PPI dataset contained
4,314 positive and 6,265 negative pairs.
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containing the same, or comparable, patterns of amino acids [274].
This idea can be used to predict the subcellular location of the pro-
tein and the class and subclass of the enzyme, to find functional
interactions, and to identify the membrane protein [275]. Compu-
tational approaches have been developed to predict PPIs based on
the information this technique provides [275]. A domain-based
method to estimate the interaction map of E.coli, for example, is
developed in [276]. Another domain-based method is introduced
by Kim et al. [277] which estimates the probability of the interac-
tion between interacted domains. Using the relevant vector
machine (RVR) and domain features with support vector regression
(SVR), Kamada et al. identified PPIs [278]. DomainGA is a multi-
parameter optimisation approach which is developed to predict
the score of PPI [279].

The ortholog-based techniques also use similarities between
amino acid sequences [210]. The annotations to a functionally
determined protein sequence are transferred to similar parts of a
target sequence. This work relies on databases of annotated pro-
teins to construct the homologous model of the studied protein
[280]. Significant sequence similarities may be shared among mul-
tiple proteins from an organism in systems in diverse organisms.
Thus, if a significant similarity is found between an input protein
and an annotated protein (with known functions), the input pro-
tein may be hypothesised to possess similar properties or func-
tions. In order to identify these functions, paralog and ortholog
approaches are employed. Orthologs are homologous genes that
evolved by vertical descent from a single ancestral gene; In con-
trast, paralogs evolved by duplication [223,281]. For instance, the
orthologs of two interacting proteins, A and B, can interact simi-
larly in different species [210].
5329
Computational methods predicting PPI using protein sequence
are addressed in the next subsection.

6.5. Sequence-based PPI Prediction Using Computational Methods

The Interface Weighted RAPtor (iWRAP) integrates a boosting
classifier with a novel linear programming formulation for inter-
face alignment to predict interacting proteins encoded by the
entire yeast genome. The interface profiles are constructed using
SCOPPI [282], based on the sequence and structural similarity of
the interface [283]. The Universal In Silico Predictor of Protein–
protein Interactions (UNISPPI) uses the primary structure to clas-
sify protein pairs as interacting or non-interacting [284]. A
matrix-based representation of protein sequence coupled with
the SVM algorithm is proposed in [285], using the order of primary
structure and its dipeptide information. The sequence-based meth-
ods may be split into two distinctive techniques: domain-based
and ortholog-based [273]. PPI prediction is conducted based on
sequences in [286] by defining units of three adjacent amino acids
and measuring the frequency of those units in a protein sequence.
Other methods such as amino acid index distribution [287], con-
joint triad method (CT) [286] and autocovariance (AC) [288] are
developed to extract features such as locations of amino acids, fre-
quencies and physicochemical properties, with the aim of repre-
senting a protein sequence.

An SVM based approach, ACT-SVM, is developed in [289] to
extract features from protein sequences as the input vector for
the classifier. A sequence-based human PPI prediction is developed
in [18] based on a Stacked autoencoder (SAE). Another sequence-
based PPI prediction approach is introduced in [165] called D-



Table 7
Summary of advantages and disadvantages of sequence-based Deep Learning methods regarding PPI prediction.

Framework Description Advantage Disadvantage

SVM-conjoint triad
[2007]
[286]

Each protein sequence was represented in this study
by a vector of amino acid features.
The model was developed based on a support vector
machine (SVM) integrated with a kernel function and
a conjoint triad feature for describing amino acids.
This method mapped different types of PPI networks
using only sequence information,
which could be applied to explore networks for any
newly discovered protein with unknown biological
relationships.
They suggested that methods without local
environments for amino acids are often unreliable, so
a conjoint triad method was used.

The 20 standard amino acids were
clustered into several classes based on
their dipoles and side chain volumes to
achieve dimensionality reduction of the
vector space.
This method might predict PPI
networks created by pairwise PPIs.

The limited available information on
protein pairs restricts the applicability of
this method.
Additionally, it mainly considers the
properties of two nearby amino acids,
overlooking long-range interactions.

SVM-autocovariance
[2008]
[288]

This method combined a new feature representation
using autocovariance (AC) and a support vector
machine (SVM).
AC considers the interactions between more distant
amino acids in the protein sequence, specifically
long-range interactions.
This is an improvement over the method proposed in
[286].
This model was evaluated using an independent
dataset of 11,474 yeast PPIs.

The conjoint triad (CT) method only
considered the attributes of an amino
acid and
its two neighbouring amino acids [286],
while long-range interactions are ac-
counted for by the AC method.
In this study, AC variables represented
information on interactions between
one amino acid and its 30 neighbouring
amino acids in the protein sequence.

The model achieved a low prediction
accuracy of 58:42% in a negative dataset
created
using the Prcp method [286].

UNISPPI [2013]
[284]

This method used a decision tree model, predicting
PPIs using only 20 amino acid frequency
combinations from
interacting and noninteracting proteins as learning
features.
This study indicated that asparagine, cysteine, and
isoleucine frequencies are important features
for discerning between interacting and
noninteracting protein pairs.

This method was scalable due to using a
limited number of attributes.
Moreover, this method was based on
experimentally validated instances
from various species,
covering many species.

Instances with a classification score of
0.50 were classified as neither PPIs nor
non-PPIs,
limiting the applicability of this method.
Additionally, the obtained accuracy of
79:4% for interacting and
72:6% for noninteracting pairs are
relatively low.

SVM-based method
[2015]
[285]

PPI prediction was addressed by integrating a
support vector machine (SVM) and
a novel matrix-based representation of the sequence
order and dipeptide information of the primary
protein sequence,
extracting more information than amino acid
dipeptide composition.
The SVM classified the interaction between protein
pairs using these feature vectors.

This method extracts more information
hidden in protein primary sequences
than
amino acid dipeptide composition.

SVM algorithms performed relatively
poorly with noisy data and are unsuitable
for
large datasets since training time may
increase significantly [303].
Moreover, finding a proper kernel func-
tion was difficult.

DeepPPI [2017]
[292]

The DeepPPI method used a deep neural network
architecture network for each protein to
extract high-level discriminative features from
common protein descriptors.
The interaction between two proteins was
determined using the one-hot encoding label.
This method comprises two different architectures:
DeepPPI-Sep, which uses two separate networks as
input for each protein, and
DeepPPI-Con, which directly links two proteins in a
single network.

This method can capture informative
features of protein pairs by a layer-wise
abstraction.
In addition, DeepPPI can automatically
learn an internal distributed feature
representation from the data.

The accuracy of DeepPPI for All Human/
Yeast dataset are relatively low,
and the accuracy of methods proposed in
[304] exceeds that of DeepPPI.

Stacked Autoencoder
(SAE) [2017]

[18]

This method used a stacked autoencoder to predict
PPI.
The feature extraction from protein sequences was
performed using autocovariance (AC) and the
conjoint triad (CT).

SAE can learn hidden interaction
features of protein sequences.

They used a synthetic negative
interaction dataset,
and the accuracy of this model for
negative interactions is relatively low.

DPPI [2018]
[298]

This method performed sequence-based PPI
prediction using a deep,
Siamese-like convolutional neural network combined
with random projection and data augmentation.
This method captured the composition information,
sequential order of amino acids,
and co-occurrence of interacting sequence motifs in a
protein pair.
Each protein was characterised as a probabilistic
sequence profile generated by PASI-BLAST.
The patterns in each sequence were identified using
the convolutional module, comprising multiple
layers.
The representations learned by the convolutional
module were projected to two different spaces using
the random projection module,
allowing DPPI to explore the combination of protein
motifs.

DPPI addresses interactions for both
homodimeric and heterodimeric
proteins.
Moreover, this method could model
binding affinities.

This method yields lower PPI prediction
accuracy on the S.cerevisiae core dataset
from
PIPR based on 5-fold cross-validation
compared to PIPR [299] and DeepTrio
[302].
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Table 7 (continued)

Framework Description Advantage Disadvantage

PIPR [2019]
[299]

This study proposed an end-to-end framework for PPI
prediction based on amino acid sequences using a
deep residual recurrent convolutional neural network
in the Siamese architecture.
This method leveraged an automatic multi-granular
feature selection to capture local significant and
sequential features from protein sequences.

The Siamese-based learning
architecture captured the mutual
influence of protein pairs and
allowed for generalising to address
different PPI prediction tasks without
needing predefined features.

RCNN was built using bidirectional gated
recurrent units (bidirectional-GRU).
However, GRUs suffer from slow
convergence and low learning efficiency
[305].

S-VGAE [2020]
[300]

This model proposed a signed variational graph
autoencoder (S-VGAE) that combined sequence
information and graph structure.
In this method, the PPI network was regarded as an
undirected graph.
This framework comprised three parts. First, coding
the raw protein sequences.
Second, the S-VGAE model extracted vector
embedding for each protein with sequence
information and graph structure.
Finally, a simple three-layer softmax classifier. This
model was inspired by the variational graph
autoencoder (VGAE) [306] that
uses latent variables to learn interpretable represen-
tations for undirected graphs.

In this method, the cost function was
modified only to consider highly
confident interactions,
making it more robust to noise.

This model used the conjoint triad (CT)
method [286] to encode amino acids.
However, CT does not account for long-
range interactions in the protein se-
quence.

ACT-SVM [2020]
[289]

This method performed feature extraction on the
protein sequence to obtain a vector,
composition, and transition descriptor and integrated
them into a vector.
Then, the feature vector was fed into the SVM
classifier.
The performance of this method was evaluated using
5-fold, 8-fold, and 10-fold cross-validation on H.
pylori and human datasets.

They have observed that SVM method
outperforms K-Nearest Neighbour
(KNN), ANN, RFM,
Naive Bayes, Logistic Regression, s for
the H. pylori protein pairs.

Finding the proper kernel and
hyperparameters was challenging,
and training time for SVM classifiers
increases with dataset size [307].

D-SCRIPT [2021]
[165]

Deep sequence contact residue interaction prediction
transfer (D-script) is an interpretable deep learning
method
generating structurally informative features given
protein sequences using a pre-trained language
model from [290].
This method used projection modules to reduce the
dimension of features, including the residue-contact
map of the protein.
Finally, the interaction probability was predicted
based on the contact maps.

D-SCRIPT generalised to new species
considering the sparsity of training data
for most model organisms
(i.e., it was relatively accurate for cross-
species PPI prediction).

Despite its performance for cross-species
PPI prediction, D-SCRIPT underperformed
on within-species evaluations.
The training dataset only included
proteins with 50–800 amino acids,
limiting the applicability of this method.

SPNet [2021]
[9]

The Siamese pyramid network (SPNet) architecture
used self-binding and folding amino acid sequences
to
predict the binding probability for two proteins based
solely on their amino acid sequences.
Subsequent screening through potential candidates
was performed based on binding probabilities.

This architecture consisted of a
multilevel pyramid feature structure
encompassing various PPI mechanisms
to reduce gradient explosion and
disappearance,
a multilevel Siamese neural network
with an attention mechanism,
and a multilevel, trainable binding
probability prediction network.

BiLSTM-RF [2021]
[291]

The BiLSTM-RF model extracted features of protein
pairs in the human database.
BiLSTM comprises forward and backwards LSTMs and
is capable of bidirectional encoding
(i.e., encoding front-to-back and back-to-front
information).
A random forest classifier (RF) was built with 100
trees and used a voting strategy to integrate these
results to predict the interaction.

BiLSTM extracted the sequence and
position of the biological information in
the protein sequence.

LSTM models are computationally
demanding and slow.
Moreover, a large number of trees in the
random forest leads to a longer training
time.

Heterogeneous
Network [2021]

[296]

PPI prediction was performed using a computational
sequence and network representation learning-based
model.
Local features were extracted from the protein
sequence using the k-mer method (k = 3),
while global features were extracted from the
heterogeneous network.
The latter captured network structure and obtained
potential linked information.
This method integrated local features with global
features to represent protein nodes.

The protein node contained protein
attribute and
network structure information by
integrating local and global features.

Model accuracy is relatively low
compared to other deep learning methods
such as DPPI [298].

(continued on next page)
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Table 7 (continued)

Framework Description Advantage Disadvantage

OR-RCNN [2021]
[301]

This method was called ordinal regression and
recurrent convolutional neural network (OR-RCNN),
which predicted PPIs based on their confidence score.
The architecture comprised two recurrent
convolutional neural networks (RCNNs) encoders,
which shared the same parameters,
to extract robust local features and sequential
information from protein pairs.
Then, one novel embedding vector was obtained by
element-wise multiplication of the two embedding
vectors from RCNNs.
The second part of the architecture performed an
ordinal regression model via multiple sub-classifiers
that
use the ordinal information behind the confidence
score.
Finally, the confidence score determined the
existence of PPI with a threshold.

This method offered better accuracy
compared to some existing models,
such as autocovariance [288] and
composition transition distribution
(CTD) descriptor [308]
for feature description, and random
forest (RF) [309],
extreme gradient boosting (XGBoost)
[310],
and support vector machine (SVM)
[311] for the prediction.

The RCNN was built using bidirectional
gated recurrent units (bidirectional-GRU).
However, GRUs suffer from slow
convergence and low learning efficiency
[305].

DeepTrio [2022]
[302]

The DeepTrio method used a deep-learning
framework based on a mask multiscale CNN
architecture that
performed binary PPI prediction by capturing
multiscale contextual information of protein
sequences using multiple parallel filters.
This method used a single-protein class, allowing it to
distinguish relative and intrinsic properties.
This method was also made available as an online
tool to address cross-platform usage and
dependency-related issues.

DeepTrio is available both online and
offline.

DeepTrio yields lower PPI prediction
accuracy on the S.cerevisiae core dataset
from
PIPR based on 5-fold cross-validation
compared to PIPR [299].
DeepTrio achieves lower PPI prediction
accuracy on the S.cerevisiae core dataset
from
DeepFE-PPI based on 5-fold cross-valida-
tion compared to DeepFE-PPI [312].
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SCRIPT (Deep Sequence Contact Residue Interaction Prediction
Transfer), which models protein structure using a pre-trained lan-
guage model from [290]. A novel deep learning approach called
Siamese Pyramid Network (SPNet) architecture is proposed in
[9], which predicts the binding probability of two proteins based
on their amino acid sequences. This method is employed to dis-
cover the proteins that potentially bind with the 2019-nCov spike,
in order to find future vaccines.

Learning protein pair representation is tackled by deep learning
methods such as BiLSTM-RF, which uses LSTM to extract the fea-
tures of protein pair sequences and a random forest classifier
[291], and DeepPPI [292] that uses a separate network for each
protein and learns high-level features from raw protein features.
The EnsDNN approach extracts the interaction information of pro-
teins from amino acid sequences, using AC descriptor [293], local
descriptor (LD) [294,295] and multi-scale continuous and discon-
tinuous local descriptor (MCD) [15,237]. A heterogeneous network
for PPI prediction is presented in [296] which uses the concatena-
tion of local and global features to present protein node. The local
features are extracted from protein sequence by the k-mer method
(k = 3)1, while the global features are extracted from the heteroge-
neous network, and heterogeneous networks by LINE (Large-scale
Information Network Embedding), respectively, and random forests
to classify and predict potential protein pairs.

DPPI [298] performs sequence-based PPI prediction using a deep,
Siamese-like convolutional neural network combined with random
projection and data augmentation. This method captures the com-
position information, sequential order of amino acids, and co-
occurrence of interacting sequencemotifs in a protein pair. The PIPR
method [299] predicts PPI by integrating a deep residual recurrent
convolutional neural network (residual-RCNN) in the Siamese archi-
tecture, leveraging both robust local features and contextualised
information on the protein sequence. The signed variational graph
auto-encoder (S-VGAE) graph-based method [300] considers the
PPI network as an undirected graph, combining sequence informa-
1 k-mers are the substrings with length k within a biological sequence [297]
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tion and graph structure to predict PPI. A deep learning method
called OR-RCNN is developed to predict PPI [301], which is com-
posed of two recurrent convolutional neural networks (RCNNs) to
extract local features and sequential information from the protein
pairs and ordinal regression to construct multiple sub-classifiers.
The sequence-based PPI prediction approach DeepTrio [302] uses
mask multiple parallel convolutional neural networks.

Table 7 represents further analysis of the sequence-based meth-
ods. Additionally, the datasets of each of these methods are
reported in Table 8.

Some of the methods addressing protein design problems,
including protein function, sequence, and structure, are discussed
in the following section.

7. Protein Design

Most protein design problems require profound knowledge and
subjective expertise to analyse obstacles and obtain optimal design
strategy. However, with the emergence of deep neural networks,
computational capacity and the available historical data, new com-
putational methods have shown advantageous in many cases, such
as RNNs’ successful application in generating SMILES (Simplified
Molecular Input Line Entry System) sequences for de novo drug dis-
covery [328,329] and optimising the RNN output to obtain specific
properties through transfer learning and fine-tuning on desired
sequences [330]. Recently, numerous studies have been conducted
on predicting protein properties and generating new molecules and
DNA sequences. These include, for example, graph neural networks
for molecule representation [331–334], prediction of amino acid
sequence for a particular structure using deep neural networks
[104], using GAN to generate DNA sequence [335], and structure pre-
diction methods using neural networks [180,336,337].

7.1. Protein Function

In several instances, functional folded proteins have been
acquired from random-sequence libraries; however, this process



Table 8
Datasets of sequence-based methods.

Framework Data Processing

SVM-conjoint triad [2007]
[286]

A dataset comprising 16,443 nonredundant entries of experimentally verified PPI was extracted from
the Human Protein Reference Database (HPRD; version 2005–0913; www.hprd.org).
These interactions are primarily based on individual in vivo (e.g., coimmunoprecipitation) or in vitro (e.g., GST pull-down) experiments
[286].
The negative dataset was created by excluding pairs that appeared in the positive dataset.
For example, if AB and IJ are interacting pairs, AI, AJ, BI, and BJ may be noninteracting pairs.
Additional conditions were applied, including an equal number of negative and positive pairs (16,443 in this study) and
harmonious contributions of proteins forming the negative set.
Therefore, the training set is equally distributed, comprising 32,486 protein pairs.
The test set contained another 400 protein pairs. Both positive and negative pairs were randomly selected.

SVM-autocovariance [2008]
[288]

The PPI data was extracted from the S. cerevisiae core subset of the Database of Interacting Proteins
(DIP; version.20070219) [112], containing 5,966 interaction pairs.
The expression profile reliability (EPR) and paralogous verification method (PVM) were used to test the reliability of this core subset
[313].
By removing proteins with fewer than 50 amino acids, 5,943 protein pairs formed the final positive data set.
The CD-HIT program was used to obtain a nonredundant subset with a sequence identity of 40%.
The negative dataset was created using the Psub method, assuming that proteins located in different subcellular localisations do not
interact.
The subcellular location information was extracted from Swiss-Prot (http://www.expasy.org/sprot/).
This method excluded proteins without subcellular localisation information and those marked as ’putative’ or ’hypothetical’,
while proteins localised to the cytoplasm, nucleus, endoplasmic reticulum, Golgi apparatus, lysosome, and mitochondrion remained.
The noninteracting pairs were generated by pairing proteins from one subset with those from the other.
This strategy must satisfy the following conditions: (1) The DIP yeast interacting pairs do not include any noninteracting pairs,
(2) there is an equal number of negative and positive pairs, and (3) the negative set should have a harmonious contribution.

SVM-based [2015]
[285]

This method was evaluated using S. cerevisiae and H. pylori PPI datasets.
The former was obtained from the S. cerevisiae core subset of the Database of Interacting Proteins (DIP).
The non-redundant and negative pairs were obtained according to Guo et al. [288].
Therefore, the PPI dataset included 11,188 interacting and noninteracting pairs.
The H. pylori dataset contained 2,916 protein pairs (1,458 interacting and 1,458 noninteracting) following [314].

DeepPPI [2017]
[292]

The dataset evaluating the DeepPPI comprised 11,188 negative and positive protein pairs from S. cerevisiae obtained from
the Database of Interacting Proteins (DIP; version 20160731), 1,458 interacting and 1,458 noninteracting pairs from H.pylori,
3,899 interacting and 4,262 noninteracting pairs from humans, 4,013 interacting pairs from C.elegans, 6,954 interacting pairs from E. coli,
1,412 interacting pairs from H. sapiens, 313 interacting pairs from M. musculus, and
one additional H. pylori data set of 1,420 interacting pairs used in [315].
The negative dataset was created by pairing proteins from one subcellular location information extracted from
Swiss-Prot (http://www.expasy. org/sprot/) with proteins from other locations.

Stacked Autoencoder (SAE)
[2017]
[18]

Pan’s PPI dataset was acquired from [264], comprising 36,630 positive PPIs from the human protein reference database (HPRD, version
2007).
Negative PPIs were generated by pairing proteins discovered in different subcellular locations from the Swiss-Prot database (version
57.3).
After removing proteins with fewer than 50 amino acid residues, 2,184 unique proteins from six subcellular locations (cytoplasm,
nucleus, endoplasmic reticulum,
Golgi apparatus, lysosome, and mitochondrion) remained.
The addition of negative pairs from the Negatome dataset [108] provided 36,480 total negative pairs.
Protein pairs with nonstandard amino acids such as U and X were removed, resulting in a benchmark dataset of 36,545 positive and
36,323 negative pairs.
The pre-training set contained 33,052 positive and 32,816 negative pairs, while 7,000 randomly selected pairs (3,493 positive and 3,507
negative) formed the test set.
Pre-training and testing used 10-fold cross-validation.
The external test sets used in this study included the 2010 version of the HPRD dataset, the 2010 HPRD NR dataset, the DIP dataset, and
the HIPPIE dataset.

DPPI [2018]
[298]

This study used human and yeast datasets from [316].
The human PPI dataset was created by taking the 10% top-scoring interactions from the Hippie database v1.2 [317].
The yeast PPI dataset was retrieved from DIP database [318].
Negative pairs were generated by randomly sampling from all proteins, where a 10:1 negative-to-positive ratio was considered [316].
Additionally, data redundancy regarding sequence similarity in PPI (>40%) was removed following the strategy of [316].
Finally, a 10-fold cross-validation was performed.

PIPR [2019]
[299]

Guo’s dataset [288] comprised 2,497 proteins forming 11,188 PPI pairs, half representing positive pairs and half representing negative
pairs.
Interaction pairs for H. sapiens were obtained from the STRING database (version 10.5) [319].
Three thousand randomly selected proteins and 8,000 proteins that shared < 40% sequence identity formed two subsets.
Finally, protein binding affinity data were obtained from the SKEMPI dataset [320],
comprising 3,047 binding affinity changes after mutation of protein subunits within a protein complex for use in the affinity estimation
task.

ACT-SVM [2020]
[289]

Following [321] a nonredundant dataset including H. pylori and human PPI was created.
The H. pylori dataset comprised 1,458 interacting and 1,457 noninteracting protein pairs,
while the human dataset comprised 3,899 interacting and 4,262 noninteracting protein pairs.

S-VGAE [2020]
[300]

This study used data from the human protein reference database (HPRD) and the
Database of Interacting Protein (DIP) for humans, Drosophila, E.coli, and C.elegans.

(continued on next page)
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Table 8 (continued)

Framework Data Processing

D-SCRIPT [2021]
[165]

This study used a dataset from the STRING database (version 11) [261].
The positive pairs were limited to interactions associated with a positive experimental-evidence score.
Only proteins containing 50–800 amino acids were retained.
Additionally, proteins meeting the 40% similarity threshold were clustered using CD-HIT [322,323],
removing redundant PPI from the dataset and preventing the model from memorising interactions based only on sequence similarity.
Negative pairs were generated by randomly pairing proteins from the nonredundant set with a 10:1 negative-to-positive ratio [316].
The human PPI dataset comprised 47,932 positive and 479,320 negative protein interactions.
Training and validation sets comprised 80% (38,345) and 20% (9,587) of pairs, respectively.

SPNet [2021]
[9]

This study used the dataset of [324] comprising all the amino acids retrieved from
the UniProt repository on 18 June 2019 and all proteins from the H. sapiens.
The dataset comprised 16,210 unique proteins with a maximum length of 1,166 amino acids creating 104,262 total pairs.
The training and validation sets contained 91,036 and 12,506 pairs, respectively, of which 33,318 and 6,094 pairs belonged to binding
proteins
(i.e., proteins with the potential to construct either transient or long-lived complexes).
Two test sets were used in this study. Test-460 was a balanced strict set with 230 true positive and 230 true negative instances.
Test-720 contained 260 true positive and 460 true negative instances.
A 24-bin one-hot indicator represented each of the 20 standard amino acids and two stop codons,
with the last two bins representing unknown or ambiguous amino acids.

BiLSTM-RF [2021]
[291]

A nonredundant human dataset was retrieved from the DIP database.
Sequences were clustered using the CD-HIT tool based on sequence similarity to remove redundancy and
establish a nonredundant human PPI dataset [325,321].
This dataset included 4,262 interacting protein pairs and 3,899 noninteracting protein pairs.

Heterogeneous Network
[2021]
[296]

The 20 amino acids are divided into four groups based on their side chain polarity [286]:
Ala, Val, Leu, Ile, Met, Phe, Trp, and Pro; Gly, Ser, Thr, Cys, Asn, Gln, and Tyr; Arg, Lys, and His; Asp and Glu.
The protein sequences were simplified to a 4	 4	 4 dimensional vector using the 3-mer method.
Each vector dimension indicated the frequency of the amino acid sequence in the original protein sequence.
Each dimension was initialised at zero. With a sliding window of length three, the whole protein sequence was scanned in steps of one.
The amino acid sequence in the windowwas attached to the corresponding vector position in each step. Then, the vector was normalised.
Finally, the vector obtained using 3-mers was an attribute feature.

OR-RCNN [2021]
[301]

This study used datasets derived from the STRING database [319] for S. cerevisiae and H. sapiens.
Each interaction was associated with a confidence score between zero (for noninteracting) and one (for interacting with the highest
confidence).
The confidence score interval was separated into K sub-intervals of equal length, where K = 20, (0, 0.05), [0.05, 0.1),�, [0.95, 1).
The retrieved data was limited to protein sequences of length 50–2000. For S. cerevisiae, they randomly selected 5400 data points from
each sub-interval,
while H. sapiens included 5000 randomly selected data points for each sub-interval.
The training dataset contained 90% of the data in each sub-interval, and the testing dataset contained the remaining 10%.

DeepTrio [2022]
[302]

The training and testing datasets were obtained from the Biological General Repository for Interaction Datasets (BioGRID) [326] and
the Database of Interacting Proteins (DIP) [318,112].
The BioGRID database contains PPIs derived from multiple major species based on the criteria that
interacting pairs must be validated by at least two different experimental systems or published sources.
The S. cerevisiae and H. sapiens benchmark datasets from BioGRID were used for training.
Protein sequences were obtained from the UniProt [327] and restricted to lengths of 150–1,500 amino acids.
The S. cerevisiae dataset contained 255 pairs after removing proteins >1,500 amino acids.
The PIPR’s dataset [299] comprised 231 pairs after proteins longer than 2,000 amino acids were removed.
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is often laborious and limited in the types of protein they can
model [338–340,92].

Machine learning algorithms offer an alternative and possibly
complementary approach capable of using the information avail-
able in protein sequence and structure databases. The information
about the structural and biophysical constraints on the amino acid
sequence within functional proteins can be found in natural
sequence variation. However, these data are not labelled, which
presents a challenge for straightforward supervised learning tech-
niques. This is where generative modelling methods show promise
due to their capability to exploit these data unsupervised.

A GAN-based data augmentation approach, FFPred-GAN, has
been proposed in [341] to tackle the protein function prediction
problem by learning the distribution of protein amino acid
sequence-based biophysical features and producing high-quality
artificial protein feature samples. In the presence of auxiliary infor-
mation, generative models can conduct the generative process by
modelling the data distribution conditioned on the auxiliary vari-
ables. In particular, designing a protein may entail preserving a
special function while modifying a property such as stability or sol-
ubility. An example of these models is conditional GAN [160]. Such
a generative framework is proposed in [177], which learns a condi-
tional generative model for protein sequences by considering a cer-
tain target structure represented by a graph over the R-group of
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amino acids. A VAE-based method is developed in [342] to gener-
ate novel variants of bacterial luciferase, an enzyme that emits
light through the oxidation of flavin mononucleotide (FMNH2). A
combination of reinforcement learning and RNNs is proposed in
[343] to generate optimal molecules for biological activity.

7.2. Structure Design

Generative models for protein structures and modelling have
been studied in [177,344], among which [104,345,346] have
employed neural network-based models for sequences given their
3-D structure, modelling the amino acids independently from each
other. Deep generative models have enabled new and viable pro-
tein structures [347]. Predicting the missing segments of corrupted
protein structures can also be achieved using GAN, as represented
by [173], in which the training data is restricted to structural infor-
mation about the distances between adjacent a-carbons on the
protein backbone.

7.3. Sequence Design

In addition to developing structure-based models, deep genera-
tive models have gained considerable attention for analysing pro-
tein sequences in individual protein families [348–351]. Even
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though these approaches have proven effective, they require that a
large number of sequences from a particular family are already
available. This assumption cannot be met when designing novel
proteins that diverge significantly from natural sequences, owing
to an unbalanced dataset, non-interacting proteins [177]. Protein-
GAN [352] is a GAN-based method with a customized temporal
convolutional network [353] and self-attention mechanism [354]
that aims to learn vital long-range inter-residue interactions and
sequence motifs, as well as focusing on functional areas [355].

A conditional variational autoencoder (CVAE) model was devel-
oped in [356] to design protein sequences conditioned on a 1-D,
context-free, grammar-based specification for folding topology. In
[357,358], the conditional distributions of single amino acids are
modelled, considering the encompassing structure and sequence
context of the given protein, using convolutional neural networks.
The generative model proposed in [177] is a graph-based model
that captures the joint distribution of the full protein sequence,
established on long-range interactions resulting from the protein
3-D structure.

Building on several recent successful studies using deep learn-
ing methods in modelling protein sequences such as contact pre-
diction [359], prediction of secondary structure [360,361], and
prediction of the fitness effects of mutations [348], generative
modelling methods have begun to show potential for designing
new sequences [177,349,362,356,363,350,364,365]. A LSTM is used
in [366] as a generative approach in terms of amino acid sequences
and peptide de novo design.
8. Conclusion

In the last decade, advancements in deep learning algorithms
and GPUs as accelerators for high-performance computing have
facilitated resolving intricate problems [367] concerning protein–
protein and protein–ligand interaction, and drug discovery. This
review offers an outline of protein structures and how they interact
with other proteins, towards understanding their wide range of
functionalities. Additionally, we outlined several deep learning
methods and their applications to predicting protein–protein
interaction, new drug delivery methods, and the improvement of
existing solutions.

The available datasets for deep learning methods can be divided
into structure-based and sequence-based. However, there is more
sequential information available for proteins than there is 3-D
structural information, thus driving progress in the development
of sequence-based methods [368]. In fact, all the vital information
required to identify PPIs is encoded in the proteins’ amino acid
sequence [369]. Several studies have been conducted by combining
structural and sequential information.

Nevertheless, the viability of these techniques is yet to be veri-
fied experimentally. Continuing work is needed, such as analysing
the strengths and limitations of different methods and the possibil-
ities for incorporation into existing engineering operations. First
and foremost, representation of the proteins to the network is a
matter of importance [342]. This issue has been tackled using
graph-based representations to model protein sequences and their
3-D structures [177,365]. Additionally, we may bolster our limited
knowledge of protein folding mechanisms using deep reinforce-
ment learning methods, aiming to find possible trajectories from
extended protein chains to well-folded protein structures [355].

Following the Covid-19 pandemic and the dire need for rapid
and reliable methods to create vaccines, one may see the potential
of deep learning methods for solving such problems [370]. Addi-
tionally, a range of neurodegenerative diseases, infectious diseases,
and cancers are closely related to abnormal protein–protein inter-
actions [371–373]. Therefore, identifying protein–protein interac-
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tions using deep learning methods helps pave the way towards
developing new drugs and targeted therapeutic approaches
[8,14,374].
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