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The G protein-coupled receptor (GPCR) superfamily of integral proteins is the
largest family of signal transducers, comprised of ∼1000 members. Considering their
prevalence and functional importance, it’s not surprising that ∼60% of drugs target
GPCRs. Regardless, there exists a subset of the GPCR superfamily that is largely
uncharacterized and poorly understood; specifically, more than 140 GPCRs have
unknown endogenous ligands—the so-called orphan GPCRs. Orphan GPCRs offer
tremendous promise, as they may provide novel therapeutic targets that may be
more selective than currently known receptors, resulting in the potential reduction in
side effects. In addition, they may provide access to signal transduction pathways
currently unknown, allowing for new strategies in drug design. Regardless, orphan
GPCRs are an important area of inquiry, as they represent a large gap in our
understanding of signal transduction at the cellular level. Here, we focus on the
therapeutic potential of two recently deorphanized GPCRs: GPR35/CXCR8 and
GPR55. First, GPR35/CXCR8 has been observed in numerous tissues/organ systems,
including the gastrointestinal tract, liver, immune system, central nervous system,
and cardiovascular system. Not surprisingly, GPR35/CXCR8 has been implicated in
numerous pathologies involving these tissues/systems. While several endogenous
ligands have been identified, GPR35/CXCR8 has recently been observed to bind the
chemokine CXCL17. Second, GPR55 has been observed to be expressed in the central
nervous system, adrenal glands, gastrointestinal tract, lung, liver, uterus, bladder, kidney,
and bone, as well as, other tissues/organ systems. Likewise, it is not surprising that
GPR55 has been implicated in pathologies involving these tissues/systems. GPR55
was initially deorphanized as a cannabinoid receptor and this receptor does bind many
cannabinoid compounds. However, the GPR55 endogenous ligand has been found to
be a non-cannabinoid, lysophophatidylinositol (LPI) and subsequent high throughput
assays have identified other GPR55 ligands that are not cannabinoids and do not bind
to either the cannabinoid CB1 and CB2 receptors. Here, we review reports that suggest
that GPR35/CXCR8 and GPR55 may be promising therapeutic targets, with diverse
physiological roles.
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Introduction

The G protein-coupled receptor (GPCR) superfamily of
transmembrane-spanning proteins is composed of ∼1,000 mem-
bers (Lagerstrom and Schioth, 2008) and comprises ∼3% of the
human genome (Insel et al., 2007). Considering their ubiquity
and central importance to signal transduction, it is not surprising
that ∼60% of pharmaceuticals target GPCRs (McCusker et al.,
2007). Unfortunately, many of these therapies have numer-
ous side effects, due to a lack of receptor subtype selectivity
(Wang and Lewis, 2013) and/or a pathological interference with
physiological signaling (Kenakin, 2005).

However, the therapeutic potential of GPCRs is not even
close to being exhausted. While GPCRs are the most exploited
therapeutic target for drug design, more than 140 GPCRs
have unknown endogenous ligands (Levoye et al., 2006); these
comprise the so-called orphan receptors. Orphan GPCRs offer
tremendous promise, as they may provide novel therapeutic tar-
gets that may be more selective than currently known receptors,
resulting in the potential reduction in side effects. More gener-
ally, they may provide access to signal transduction pathways
currently unknown, allowing for new strategies in drug design.
Regardless of their therapeutic potential, orphan GPCRs are an
important area of inquiry, as they represent a large gap in our
understanding of signal transduction at the cellular level.

In this review, we focus on two recently deorphanized GPCRs:
GPR35/CXCR8 and GPR55. First, GPR35/CXCR8 has been
observed in numerous tissues/organ systems, including the gas-
trointestinal tract, liver, immune system, central nervous system,
and cardiovascular system. Not surprisingly, GPR35/CXCR8 has
been implicated in numerous pathologies involving these tis-
sues/systems. While several endogenous ligands have been iden-
tified (including kynurenic acid and 2-oleoyl lysophosphatidic
acid, GPR35/CXCR8 has recently been observed to bind (and
signal at nanomolar concentrations) the chemokine CXCL17
(Maravillas-Montero et al., 2015). Second, GPR55 has been
observed to be highly expressed in the central nervous sys-
tem, as well as adrenal glands, gastrointestinal tract, lung, liver,
uterus, bladder, kidney, as well as other tissues/organ systems.
Likewise, it is not surprising that GPR55 has been implicated
in pathologies involving these tissues/systems. GPR55 was ini-
tially deorphanized as a cannabinoid receptor. This receptor does
bind many cannabinoid compounds. Interestingly, while GPR55
binds multiple cannabinoid ligands, lysophophatidylinositol is
currently thought to be its endogenous ligand. However, the
GPR55 endogenous ligand has been found to be LPI and sub-
sequent high throughput assays have identified other GPR55
ligands that are not cannabinoids and do not bind to either the
cannabinoid CB1 and CB2 receptors. Here, we review reports
that suggest that GPR35/CXCR8 and GPR55 may be promising
therapeutic targets, with diverse physiological roles.

GPR35/CXCR8

GPR35/CXCR8, a recently deorphanized rhodopsin-like, Class
A GPCR (Maravillas-Montero et al., 2015), was discovered

by O’Dowd et al. (1998) during a human genomic DNA
screen (see Figure 1). In human, GPR35/CXCR8 is localized to
Chromosome 2q37.3 (Genbank accession #: AF027957; O’Dowd
et al., 1998). Currently, it is thought that GPR35/CXCR8 is
most homologous with the purinergic receptor GPR23/P2Y9
(∼32% overall sequence identity; O’Dowd et al., 1998), the
nicotinic acid receptor HM74 (∼30% overall sequence iden-
tity; O’Dowd et al., 1998), as well as GPR55 (∼27% overall
sequence identity; Sawzdargo et al., 1999). GPR35/CXCR8 was
originally reported to consists of 309 amino acids (O’Dowd et al.,
1998); however, in Okumura et al. (2004) a splice variant of
GPR35/CXCR8 was discovered (i.e., GPR35b) that has an N-
terminal expansion of 31 amino acids. GPR35b was discovered
from a cDNA library produced from human gastric cancer cells
(Okumura et al., 2004).

GPR35/CXCR8 Pharmacology

Early reports suggested that GPR35/CXCR8 may signal via Gi/o
proteins; specifically, promiscuous (e.g., Gα16) and chimeric G
proteins (e.g., Gqs5, Gqo5, Gqi9, etc.) were used to aid the detec-
tion of GPR35/CXCR8 signal transduction (Taniguchi et al., 2006;
Wang et al., 2006). The use of these chimeric G proteins enables
GPCRs that preferentially couple Gi/o (and/or Gs) to couple to
Gq; allowing receptor activation to be observed as changes in
intracellular (IC) [Ca2+] (Conklin et al., 1993; Milligan et al.,
1996; Coward et al., 1999). Using this methodology, kynurenic
acid (12) and zaprinast (2) (see Figures 2 and 4) were the first
agonists identified for GPR35/CXCR8 (Taniguchi et al., 2006;
Wang et al., 2006). It was also reported that kynurenic acid
(12) stimulated [35S]GTPγS binding in CHO cells expressing
human GPR35/CXCR8 and that this stimulation was blocked
by pretreatment of pertussis toxin, suggesting the involvement
of Gi/o proteins (Wang et al., 2006). Consistently, it has been
reported that kynurenic acid (12) and zaprinast (2) act as agonists
of heterologously expressed GPR35/CXCR8 in rat sympathetic

FIGURE 1 | Helix net representation of human GPR35/CXCR8 receptor
structure. The most highly conserved residue in each transmembrane helix
(among Class A GPCRs) is shown in red. Possible disulfide bridges are
indicated by double-headed arrows.
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FIGURE 2 | Synthetic GPR35/CXCR8 agonists and antagonists. These
compounds are among the best characterized synthetic compounds at
GPR35.

neurons with endogenous G proteins (Guo et al., 2008). The
authors reported that kynurenic acid (12) and zaprinast’s (2)
agonism of GPR35/CXCR8 resulted in the inhibition of N-type
calcium channels; this inhibition was blocked by pertussis toxin
pretreatment, again suggesting the involvement of Gi/o proteins
(Guo et al., 2008). Furthermore, it has been reported that ago-
nism of GPR35/CXCR8 by kynurenic acid (12) and zaprinast
(2) resulted in a signification reduction in interleukin (IL)-
4 release from α-galactosylceramide-activated human invariant
natural killer T (iNKT) cells, and that this reduction was abol-
ished by pre-treatment with pertussis toxin (Fallarini et al., 2010).
Interestingly, it has been reported that GPR35/CXCR8 may also
couple to Gα13 (Jenkins et al., 2010, 2011). Together, these results
suggest that GPR35/CXCR8 couples to Gα13 and Gi/o proteins.

It has also been reported that pamoic acid (1) (see Figure 2)
acts as an agonist of GPR35b (Zhao et al., 2010). Pamoic acid
(1) was discovered to be an agonist of GPR35b during a screen
of the Prestwick Chemical Library (Zhao et al., 2010). It was
observed that activation of mouse GPR35b by pamoic acid (1)
resulted in the recruitment of β-arrestin 2-green fluorescent pro-
tein and receptor internalization in U2OS cells (Zhao et al., 2010).
Agonism of GPR35b by pamoic acid (1) also resulted in the

activation of ERK1/2 (Zhao et al., 2010). Additionally, the pamoic
acid (1)-mediated recruitment of β-arrestin 2 and activation
of ERK1/2 was blocked by CID2745687 (3)—a GPR35/CXCR8
antagonist (see Figure 2; Zhao et al., 2010). The pamoic acid (1)-
mediated recruitment of β-arrestin 2 and activation of ERK1/2
was also blocked by pre-treatment with pertussis toxin (Zhao
et al., 2010). Coupling between GPR35/CXCR8 and β-arrestin
2 has also been observed by groups (Jenkins et al., 2010,
2011), who also employed a receptor-β-arrestin 2 interaction
assay to screen the Prestwick Chemical Library for human
and/or rat GPR35/CXCR8 agonists (Jenkins et al., 2010). It has
been reported that agonism of GPR35/CXCR8 reduces Ca2+
transients in mouse astrocytes (Berlinguer-Palmini et al., 2013).
Here, the authors observed that activation of GPR35/CXCR8
by kynurenic acid (12) reduced synaptic activity at CA3-CA1
synapses (Berlinguer-Palmini et al., 2013). Altogether, these
results suggest that, in addition to coupling to Gα13 and Gi/o
proteins, GPR35/CXCR8 activation may result in receptor cou-
pling to β-arrestin 2, receptor internalization, ERK1/2 activation,
as well as impacting Ca2+ transients and synaptic activity.

GPR35/CXCR8 Expression Profile and
Therapeutic Potential

GPR35/CXCR8 Gastrointestinal Tract and
Liver Expression/Therapeutic Potential
First, Northern blot analysis was used to observe GPR35/CXCR8
expression in rat small intestine (O’Dowd et al., 1998). As already
mentioned, GPR35b was also detected during a screen of a cDNA
library produced from human gastric cancer cells (Okumura
et al., 2004). Likewise, it has been reported that that human
GPR35/CXCR8 is most highly expressed in the small intestine
and is also highly expressed in the colon and stomach (Wang
et al., 2006; Imielinski et al., 2009). While it has been reported
thatmouse GPR35/CXCR8 ismost highly expressed in the spleen,
GPR35/CXCR8 expression has also been observed inmouse small
intestine, colon, and stomach (Wang et al., 2006). Analogously,
it has been reported that rat GPR35/CXCR8 is expressed in
rat stomach, small-intestine, and colon (Taniguchi et al., 2006).
Interestingly, GPR35/CXCR8 expression has also been observed
in HT-29, a human colon cancer cell line (Deng et al., 2011).
Finally, GPR35/CXCR8 expression has been observed in embry-
onic mouse rectum (Hilger et al., 2013).

Modest levels of GPR35/CXCR8 expression has also been
observed in both human, mouse, and rat liver (Taniguchi et al.,
2006;Wang et al., 2006). Consistently, GPR35/CXCR8 expression
has been observed in embryonic mouse liver (Hilger et al., 2013).
As described later, the modest level of GPR35CXCR8 expression
in liver does not necessarily preclude physiologically important
function.

Considering GPR35/CXCR8’s high levels of expression in
human small intestine, colon, and stomach, it’s not surprising
that many reports have implicated GPR35/CXCR8 in numerous
pathologies of the gastrointestinal tract. As already mentioned,
the splice variant GPR35b was discovered from a cDNA library
produced from human gastric cancer cells (Okumura et al., 2004);
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here, the authors reported results that suggest that GPR35b is
involved in the transformation of NIH3T3 cells. In addition, it
was reported that GPR35b’s expression was up-regulated in gas-
tric cancer tissues (Okumura et al., 2004). As already mentioned,
GPR35/CXCR8 expression has been observed in HT-29 cells (a
human colon cancer cell line; Deng et al., 2011). Together, these
results suggest that GPR35/CXCR8 may be an attractive target in
the development of new gastric cancer treatments.

GPR35/CXCR8 has also been implicated in early onset inflam-
matory bowel disease (IBD; Imielinski et al., 2009). Here, the
authors reported the results of a genome-wide association study
(GWAS), which identified a signification association between the
chromosome region 2q37 (containing GPR35/CXCR8) and early-
onset IBD (Imielinski et al., 2009). Interestingly, GPR35/CXCR8
has been implicated in both primary sclerosing cholangitis (PSC)
and ulcerative colitis (UC; Ellinghaus et al., 2013). Specifically,
the authors reported the results of a GWAS, which identified a
missense single nucleotide polymorphism (SNP), GPR35/CXCR8
rs3749171, that results in a shift from a threonine to a methio-
nine (T3.44(108)M, using Ballesteros–Weinstein nomenclature;
Ellinghaus et al., 2013). This polymorphism of GPR35/CXCR8
was associated with both PSC and UC (Ellinghaus et al., 2013).
The authors also reported that their structural modeling results
suggest that this polymorphism is located in transmembrane
helix (TMH) 3 (Ellinghaus et al., 2013); this may suggests that the
polymorphism impacts GPR35/CXCR8’s ability to activate.While
UC is a form of IBD, PSC is a hepatic disease, involving inflamma-
tion of bile ducts inside and outside of the liver. This association
between the GPR35/CXCR8 polymorphism and PCS may be sur-
prising, given the modest level of GPR35/CXCR8 expression in
liver. However, this association is more easily understood if one
considers that the most common comorbidity of PSC is IBD,
where 60–80% of PSC patients of Northern European descent
also reported IBD (Karlsen et al., 2010). This high degree of
comorbidity may suggests an indirect relationship between PSC
and GPR35/CXCR8 that is not yet fully understood. Recently,
the results of another GWAS and ImmunoChip single-nucleotide
polymorphism screening have been reported (Yang et al., 2015).
Here, the authors determined an association between polymor-
phisms at 2q37 (in a Korean patients) and Crohn’s disease (i.e., an
intractable IBD; Yang et al., 2015). Together, these reports suggest
that GPR35/CXCR8may be involved in IBD, for both Eastern and
Western populations. Encouragingly, GPR35/CXCR8’s therapeu-
tic potential to treat these pathologies is already being explored.
For example, it has been reported that the GPR35/CXCR8 agonist
1,4-dihydroxy-2-naphthoic acid [DHNA (5), see Figure 3] may
be effective in treating bowel inflammation (Okada et al., 2006).

GPR35/CXCR8 Innate Immune System
Expression/Therapeutic Potential
GPR35/CXCR8 has been reported to be expressed in numer-
ous types of immune cells/tissues. High levels of human
GPR35/CXCR8 expression has been observed in the spleen,
fetal spleen, peripheral leukocytes, and modest expression has
been observed in the thymus, monocytes, T cells, natural killer
cells, neutrophils, eosinophils, and dendritic cells (Wang et al.,
2006). In addition, human GPR35/CXCR8 expression has also

FIGURE 3 | Compounds that are used (or have the potential) to treat
asthma/inflammation. Cromoyln (4) and Nedocromil (7) are used in the
treatment of asthma/inflammatory states. Gallic acid (6) and wedelolactone (8)
have been reported to be potential anti-asthma/anti-inflammatory
compounds. DHNA (5) has been suggested that it may be useful in the
treatment of bowel inflammation.

been observed in peripheral monocytes (Barth et al., 2009), pri-
mary macrophages (Sparfel et al., 2010), as well as in mast
cells, basophils, and eosinophils (Yang et al., 2010). Human
GPR35/CXCR8 expression has also been observed in iNKT cells
(Fallarini et al., 2010). Finally, human GPR35/CXCR8 expression
has also been observed in CXCL17-responsive monocytes, and
the THP-1monocytoid cell line (Maravillas-Montero et al., 2015).

Considering GPR35/CXCR8’s high levels of expression in
immune cells, tissues, and organs, it’s not surprising that several
reports have implicated GPR35/CXCR8’s functional importance
to immune system function and pathologies. For example, it has
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been reported that GPR35/CXCR8 may participate in the firm
arrest/adhesion of leukocytes to vascular endothelium (Barth
et al., 2009). The authors, using a vascular flow model, reported
that kynurenic acid (12) (a GPR35/CXCR8 agonist, see Figure 4)
induced the firm arrest of monocytes to both fibronectin and
ICAM-1. The arrest of monocytes to fibronectin and ICAM-1
was reported to be mediated by β1- and β2-integrin, respectively
(Barth et al., 2009). The kynurenic acid (12) inducement of firm
arrest was significantly reduced by pre-treatment with pertussis
toxin; this observation suggests that this process is Gi/o-mediated,
consistent with the hypothesized involvement of GPR35/CXCR8.
Furthermore, the authors reported that the kynurenic acid (12)
inducement of firm arrest was also significantly reduced by
the use of short hairpin RNA silencing of GPR35/CXCR8. The
authors also reported that kynurenic acid (12) induced firm
adhesion of neutrophils to an ICAM-1 expressing monolayer and
induced neutrophil shedding of surface L-selectin. Altogether,
these results suggest that GPR35/CXCR8 may be an important
participant in leukocyte recruitment.

Additionally, GPR35/CXCR8 has been suggested to be an
important target in the treatment of asthma (Yang et al., 2010).
First, as already mentioned, GPR35/CXCR8 expression has been
observed in human mast cells (Yang et al., 2010). By binding

antigen-specific IgE antibodies at their surface, mast cells are
capable of responding to allergens (Kikuchi et al., 2002). Upon
IgE antibody-binding, mast cells release histamine (Kikuchi et al.,
2002). Thus, mass cell stabilizers bind the IgE receptor on plasma
membrane of mast cells (blocking the binding of IgE antibod-
ies), effectively preventing the release of histamine; one use
of these compounds is to treat asthma (MacGlashan, 2008).
Interestingly, the results of calcium flux and inositol phosphate
accumulation assays suggest that the asthma medications cro-
molyn disodium (4) and nedocromil sodium (7) (see Figure 3)
are agonists of GPR35/CXCR8 (Yang et al., 2010). The authors
also reported that GPR35/CXCR8 mRNA is upregulated upon
the introduction of IgE antibodies—suggesting GPR35/CXCR8
is involved in the mast cell allergen response (Yang et al.,
2010). It has also been reported that the anti-inflammatory com-
pounds, gallic acid (6) and wedelolactone (8) (see Figure 3),
are agonists of GPR35/CXCR8, in cells that endogenously
express GPR35/CXCR8 (e.g., HT-29 cells), as well as the engi-
neered U2OS cell line (Deng and Fang, 2012). Altogether, these
results suggest that GPR35/CXCR8 may be an important tar-
get in the development of novel asthma and anti-inflammatory
medications; for additional review of GPR35/CXCR8 and its
relationship to inflammation, see (MacKenzie et al., 2011).

FIGURE 4 | Compounds that have been reported to be endogenous agonists of GPR35/CXCR8.
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GPR35/CXCR8 Nervous System
Expression/Therapeutic Potential
GPR35/CXCR8 has been reported to be expressed within rat
and mouse nervous systems. High levels of GPR35/CXCR8
expression have been observed in rat dorsal root ganglion
(DRG; Taniguchi et al., 2006; Ohshiro et al., 2008), whereas
modest expression was observed in rat brain (general), cere-
brum, and spinal cord (Taniguchi et al., 2006). It has also
been reported that endogenously expressed GPR35/CXCR8 in
DRG are functional (Ohshiro et al., 2008). In cAMP assays,
both kynurenic acid (12) and zaprinast (2) appeared as ago-
nist at GPR35/CXCR8-expressing DRG and this agonism was
blocked by pre-treatment with pertussis toxin (Ohshiro et al.,
2008). Recently, GPR35/CXCR8 expression has been observed
in the CA1 field of rat hippocampus (Alkondon et al.,
2014). The authors also measured the frequency of sponta-
neous action potentials in rat hippocampal slices in the pres-
ence of several GPR35/CXCR8 agonists; reported results sug-
gest that the detected CA1 field GPR35/CXCR8 are func-
tional and serve to suppress neuronal activity (Alkondon et al.,
2014). Analogous to rat GPR35/CXCR8 expression, mouse
GPR35/CXCR8 expression has been observed in dorsal root
ganglia (Cosi et al., 2011; Berlinguer-Palmini et al., 2013),
spinal cord (Cosi et al., 2011), as well as in cultured astrocytes
(Berlinguer-Palmini et al., 2013) and glial cells (Cosi et al., 2011).
GPR35/CXCR8 expression has also been observed in embryonic
mouse corpus striatum mediale and hypothalamus (Hilger et al.,
2013).

Considering GPR35/CXCR8’s expression within the rat and
mouse nervous systems, it’s not surprising that many reports
have implicated GPR35/CXCR8 in mild mental retardation.
Specifically, the results of a GWAS suggests an associa-
tion between terminal deletions on chromosome 2q37.3 and
mild retardation/a phenotype that resembles Albright hered-
itary osteodystrophy (AHO)/pseudopseudohypoparathyroidism
(Shrimpton et al., 2004). The authors observed that patients with
AHO had a deletion of either the maternal or paternal chromo-
some 2q37.3 (i.e., the chromosomal location of GPR35/CXCR8).
However, as MacKenzie et al. (2011) have correctly mentioned,
these deletions were not directly mapped to GPR35/CXCR8,
but rather a 3Mb region; this region contains at least 30 other
genes that may contribute to the AHO phenotype. Shrimpton
et al. (2004) acknowledge this difficulty, but hypothesize that
the gene that encodes GPR35/CXCR8 is the most likely candi-
date within the 3 Mb region; this is because it is known that
classical AHO results from a deletion/mutation of the alpha sub-
unit of GNAS1 gene (chromosomal location: 20q13.2; Rao et al.,
1991). GNAS1 encodes for the alpha subunit of the Gs protein.
Therefore, Shrimpton et al. (2004) hypothesized that if muta-
tion/deletion of the Gs protein results in AHO, then perhaps
mutation/deletion of a GPCR (e.g., GPR35/CXCR8) that activates
Gs would also result in AHO. However, since Shrimpton et al.
(2004) report, several groups have reported that GPR35/CXCR8
couples to Gα13 and Gi/o proteins (as described earlier); to
our knowledge, there are no known agonists of GPR35/CXCR8
that induce activation of Gs. This observation certainly does
not rule out GPR35/CXCR8’s involvement in AHO, but it does

suggests that it is not through a GPR35/CXCR8-Gs mecha-
nism.

Additionally, it has been suggested that GPR35/CXCR8 may
be an attractive anti-nociception target. As already mentioned,
it has been reported that functional GPR35/CXCR8 is expressed
in rat nociceptive DRG neurons (Ohshiro et al., 2008). As
expected, these DRG neurons were reported to also expressed
TRPV1 receptors; DRG neurons that express TRPV1 receptors
have been reported to mediate hyperalgesia, neurogenic inflam-
mation, and neuropathic pain (Lawson, 2002). Interestingly, it
was also observed that GPR35/CXCR8 and TRPV1 co-localized
in rat DRG neurons (Ohshiro et al., 2008). Thus, based on
the observations that (1) GPR35/CXCR8 is expressed in rat
nociceptive DRG neurons, and (2) GPR35/CXCR8 co-localizes
with TRPV1 receptors in these DRG neurons, the authors
hypothesized that GPR35/CXCR8 may be involved nociception
(Ohshiro et al., 2008). Consistent with this hypothesis, it has
been reported that pamoic acid (1) (a GPR35/CXCR8 agonist,
see Figure 2) produced dose-dependent antinociception in mice
(Zhao et al., 2010). Specifically, using an abdominal constric-
tion test of visceral pain (in mice), the authors reported that a
dose of 40.5 mg/kg pamoic acid (1) resulted in 50% antinocicep-
tion, whereas a dose of 100 mg/kg pamoic acid (1) resulted in
essentially complete antinociception (Zhao et al., 2010). Other
groups have also reported that both kynurenic acid (12) and
zaprinast (2) (GPR35/CXCR8 agonists, see Figures 2 and 4) also
produce antinociception in mice (Cosi et al., 2011). Using an
acetic acid writhing test (in mice), the authors reported that
a dose of 100 mg/kg L-kynurenine [a metabolic precursor of
kynurenic acid (12), which more easily crosses the blood brain]
decreased the number of writhes by 29%, whereas a dose of
300 mg/kg reduced writhes by 58%. Consistent with its reported
superior in vitro efficacy (i.e., Ca2+ mobilization assays using a
Gαqi5 chimera) at both human and rat (Taniguchi et al., 2006;
Wang et al., 2006), zaprinast (2) administration resulted in anti-
nociception at lower doses than kynurenic acid (12) (Cosi et al.,
2011). The authors reported that a dose of 5 mg/kg zapri-
nast (2) decreased the number of writhes by 58% (Cosi et al.,
2011); interestingly, zaprinast-induced anti-nociception did not
appear dose-dependent at the doses tested (Cosi et al., 2011).
The authors also reported that administering the maximal effec-
tive doses of kynurenic acid (12) and zaprinast (2) concurrently
did not result in additional anti-nociception (i.e., the resultant
analgesia was not additive); this may suggests that kynurenic
acid (12) and zaprinast (2) are acting at the same target (i.e.,
GPR35/CXCR8) and have saturated available receptors (Cosi
et al., 2011).

Subsequently, an indirect relationship between GPR35
/CXCR8 and antinociception has been suggested. It has been
reported that Ret tyrosine kinase receptor (Ret) knockout mice
experienced cold and mechanical hyperalgesia (Franck et al.,
2011). Signaling via Ret is one of the mechanisms that impacts
the development of sensory neurons, and serves an important
role in regulating many ion channels and receptors (e.g., Nav1.8,
Nav1.9, ASIC2a, P2X3, TrpC3, TrpM8, TrpA1, delta opiod
receptor, MrgD, MrgA1, and MrgB4; Franck et al., 2011). The
authors investigated GPR35/CXCR8 regulation in Ret-knockout
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mice, due to its co-expression with TRPV1 (Ohshiro et al.,
2008); the authors observed that knocking out Ret resulted in
a complete loss of GPR35/CXCR8 expression (Franck et al.,
2011). Consequently, the authors hypothesized that Ret may
regulate cold and mechanical sensitivity/analgesia via mod-
ulation of GPR35/CXCR8 (Franck et al., 2011). While the
authors’ observations do not prove GPR35/CXCR8’s involve-
ment in nociception, they are consistent with prior reports
that also suggested a relationship between GPR35/CXCR8
and pain. These reports suggest that GPR35/CXCR8 may be
a promising anti-nociception target that warrants additional
inquiry.

GPR35/CXCR8 Cardiovascular System
Expression/Therapeutic Potential
GPR35/CXCR8 has been reported to be expressed within rat
and mouse cardiovascular systems. first, modest GPR35/CXCR8
expression has been observed in rat heart (Taniguchi et al.,
2006). Second, GPR35/CXCR8 expression has been observed
in neonatal mouse cardiac myocytes and HL-1 cardiomyocytes
(Ronkainen et al., 2014).

Despite the limited evidence of GPR35/CXCR8 cardiovascular
system expression, there are reports that suggest GPR35/CXCR8
may play a role in cardiovascular disease. First, a GWAS
(that employed 2 machine learning algorithms, Random Forest
and RuleFit) was used to identify a non-synonymous SNP
(GPR35/CXCR8 rs3749172), which results in a shift from a
serine to an arginine (S294R, on the C-terminus; Sun et al.,
2008). This polymorphism of GPR35/CXCR8was associated with
higher coronary artery calcification (CAC) burden (Sun et al.,
2008). CAC is measure of subclinical coronary atherosclerotic
calcified plaque (Sun et al., 2008) and has been used to pre-
dict coronary artery disease events, in both asymptomatic (Arad
et al., 2000) and symptomatic adults (Keelan et al., 2001). While
GPR35/CXCR8’s role in CAC is unclear, Sun et al. (2008) hypoth-
esized that this polymorphism (which results in C-terminus
residue switch) may alter receptor phosphorylation, ultimately
impacting receptor coupling with effector proteins (e.g., G pro-
teins, arrestins, etc.; Sun et al., 2008); this hypothesis has yet to be
tested.

It has also been suggested that there is a relationship between
GPR35/CXCR8 and heart disease (Min et al., 2010). Specifically,
the authors performed expression microarray analyses on 14
patients (12 heart failure patients and 2 healthy patients) and
constructed datasets to identify relationships between genes
expression levels and clinical parameters (e.g., pulmonary artery
pressure, left ventricular ejection fraction, and brain natriuretic
peptide mRNA level; Min et al., 2010). Interestingly, the authors
identified GPR35/CXCR8 as a highly expressed in heart fail-
ure patients (Min et al., 2010). The authors also reported that
GPR35/CXCR8 over-expression (in neonatal rat cardiomyocytes)
resulted in hypertrophy (Min et al., 2010). Lastly, the authors
reported that GPR35/CXCR8 knock-out mice were measured to
have a 37.5 mmHG increase in blood pressure as compared to
WT mice (Min et al., 2010).

Recently, it has been reported that GPR35/CXCR8 expres-
sion (in a mouse model of progressive cardiac hypertrophy)

is an early marker of heart failure and a marker for car-
diac hypoxia in acute myocardial infarction (MI; Ronkainen
et al., 2014). The authors observed that hypoxia increased
GPR35/CXCR8 expression in mouse neonatal mouse cardiomy-
ocytes and HL-1 cells. In the neonatal cardiomyocytes, this
increase in GPR35/CXCR8 expression was statistically signifi-
cant by 12 h (post hypoxia), and was continuing to increase at
48 h—the last time point measured. The authors also observed
that hypoxia increased GPR35/CXCR8 expression in embryonic
cardiomyocytes, suggesting that the increase in GPR35/CXCR8
expression is not developmentally regulated. Furthermore, the
authors reported that this increase in GPR35/CXCR8 expres-
sion did indeed result in a significant increase in GPR35/CXCR8
receptors at the cell surface. The authors also reported that
this hypoxia-induced increase in GPR35/CXCR8 expression is
mediated by hypoxia-inducible factor 1 (HIF-1; a member
of a family of transcription factors that respond to changes
in oxygen concentration). Overexpression of GPR35/CXCR8
(in GPR35/CXCR8-Venus-expressing neonatal mouse cardiomy-
ocytes) influenced cell morphology, resulting in pronounced
cellular ruffling and the formation of retraction fibers (how-
ever, cell size was not impacted; Ronkainen et al., 2014). In
addition, the authors observed that GPR35/CXCR8 expression
increased in mouse models of acute MI; to model acute MI,
the rodent’s left anterior descending (LAD) artery was ligated.
GPR35/CXCR8 expression was significantly increased 1 day after
the operation, but returned to SHAM-operated mice levels after
4 days (Ronkainen et al., 2014). The authors also measured
GPR35/CXCR8 expression in mouse models of pressure-load
induced cardiac hypertrophy; to model, the mice were sub-
jected to transversal aortic constriction (TAC). Here, the authors
observed that mouse GPR35/CXCR8 expression was signifi-
cantly increases 2 weeks after TAC operation, and remained
elevated at 4 weeks post TAC operation. Altogether, these
reports may suggest that GPR35/CXCR8 may be an impor-
tant target in the development of novel cardiovascular dis-
ease therapies and may act as an early marker of cardiac
pathologies.

Additional GPR35/CXCR8
Expression/Therapeutic Opportunities
GPR35/CXCR8 has also been reported to be expressed within
several additional tissues/organs, in which the therapeutic
potential has not yet been as thoroughly explored. For
example, GPR35/CXCR8 expression has been observed in
human and mouse adipose, kidney, lung, and pancreas (Wang
et al., 2006). In addition, GPR35/CXCR8 expression has
been observed in human skin (Yang et al., 2012). Mouse
GPR35/CXCR8 expression has been observed in embryonic
lung, as well as in genital tubercle and tooth bud (Hilger
et al., 2013). Finally, rat GPR35/CXCR8 expression was observed
in lung, as well as bladder, skeletal muscle, and uterus
(Taniguchi et al., 2006).

GPR35/CXCR8 has also been implicated in at least two
additional pathologies. First, the results of GWAS have iden-
tified GPR35/CXCR8 SNP that have been associated with dia-
betes (Horikawa et al., 2000; Vander Molen et al., 2005); for
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FIGURE 5 | Homology models of pamoic acid and zaprinast docked at
WT and R6.58(240)A. The view is from the lipid bilayer, toward TMH3-4;
pamoic acid is shown in blue; zaprinast is shown in orange; residues that
form a salt bridge/π interactions are shown in lavender; residues that form
hydrogen bonds are shown in yellow; residues that form van der Waals

interactions are shown in pink. (A) Pamoic acid docked in the human WT
GPR35/CXCR8 model; (B) Pamoic acid docked in the human R6.58(240)A
GPR35/CXCR8 model; (C) Zaprinast docked in the human WT
GPR35/CXCR8 model; (D) Zaprinast docked in the human R6.58(240)A
GPR35/CXCR8 model.

review, see (MacKenzie et al., 2011). Second, the results of
an array-based molecular karyotyping study identified three
possible de novo copy number variations (CNVs; chromoso-
mal regions 1q41, 2q37.3, and 8q24.3) that were present in 3
of 47 patients with either VATER/VACTERL association (41
patients) or VATER/VACTERL-phenotype (six patients; Hilger
et al., 2013). VATER/VACTERL association refers to the non-
random co-occurrence of at least three congenital anomalies:
vertebral defects, anorectal malformations, cardiac defects, tra-
cheoesophageal fistula with or without esophageal atresia, renal
malformations, and limb defects; VATER/VACTERL-phenotype
refers to the non-random co-occurrence of at least two of
these congenital anomalies (Hilger et al., 2013). The three pos-
sible de novo CNV aberrations were confirmed using qPCR
(Hilger et al., 2013). The authors used the Mouse Genome
Informatics database (consisting of expression and targeted dele-
tions data) to decide which genes (within the three chromo-
somal regions) to further characterize. GPR35/CXCR8 was one
of the genes selected for additional characterization, based on
its expression in mouse, genital tubercle, the mesonephros, and

rectum (Hilger et al., 2013). However, the authors reported
that GPR35/CXCR8 sequence analysis of 192 patients with
VATER/VACTERL association/phenotype did not identify any
disease-causing mutations. The authors suggest this may be
because the sequence analysis may have missed mutations in
non-protein-coding exons, or the promoter region; addition-
ally, the authors suggest that the number of patients sequenced
may have been too small to detect rare causal mutations.
Regardless, due to GPR35/CXCR8’s expression pattern in mice
(which aligns with VATER/VACTERL affected tissues/organs),
additional inquiry into GPR35/CXCR8’s involvement in this
pathology is warranted.

GPR35/CXCR8 Endogenous Ligands
and Deorphanization

As with many orphan GPCRs, there has been some controversy
as to what the endogenous ligand(s) is/are for GPR35/CXCR8.
The determination of GPR35/CXCR8’s endogenous ligands has
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been complicated by questions of species selectivity, concentra-
tion of specific ligands in various tissue types, as well as con-
cerns regarding assay bias. Here, we will briefly discuss the two
best-characterized endogenous ligands of GPR35/CXCR8 [e.g.,
kynurenic acid (12) and lysophosphatidic acid; see Figure 4], fol-
lowed by a discussion of more recently discovered endogenous
ligands.

Kynurenic acid (12), a metabolite of tryptophan, was the
first endogenous ligand discovered for GPR35/CXCR8 (Wang
et al., 2006). Numerous reports suggests that kynurenic acid
(12) induces GPR35/CXCR8 signaling via Gi/o and Gα13 pro-
teins (Wang et al., 2006; Guo et al., 2008; Fallarini et al., 2010;
Berlinguer-Palmini et al., 2013), as well as β-arrestin 2 and
ERK1/2 (Zhao et al., 2010; Jenkins et al., 2011). Interestingly,
kynurenic acid (12) is present in many tissues that express
GPR35/CXCR8 (e.g., brain, colon, intestine, kidney, lung, mus-
cle, pancreas, and spleen; MacKenzie et al., 2011). Thus, due to
its endogenous activation of GPR35/CXCR8, as well as being
present in many of the same tissues, kynurenic acid (12) has
been suggested to be ‘the’ endogenous ligand of GPR35/CXCR8.
However, at least two major concerns regarding this desig-
nation have been raised; first, micromolar concentrations of
kynurenic acid (12) are required to activate GPR35/CXCR8
(Wang et al., 2006), with some groups reporting almost no
response even at very high concentrations (Oka et al., 2010b).
Second, it has been reported that kynurenic acid (12) is 40–
100 fold more potent at rat than human (Barth et al., 2009;
Jenkins et al., 2011), potentially suggesting that kynurenic acid
(12) may be more likely to be the endogenous ligand of rat
GPR35/CXCR8. For additional review of kynurenic acid (12) and
GPR35/CXCR8, see (MacKenzie et al., 2011; Zhao and Abood,
2013).

The second reported endogenous ligand for GPR35/CXCR8
was 2-oleoyl lysophosphatidic acid [2-oleoyl LPA (13)]; Figure 4
(Oka et al., 2010b). 2-oleoyl LPA (13) has been reported to be
present in serum, plasma, and brain (Sugiura et al., 1999; Noguchi
et al., 2009). Despite a less obvious overlap between tissues that
express GPR35/CXCR8 and contain 2-oleoyl LPA (13), this lig-
and has been reported to activate human GPR35/CXCR8 with
high potency—unlike kynurenic acid (12) (Oka et al., 2010b).
However, both kynurenic acid (12) and 2-oleoyl LPA (13) (and
LPAs in general) are known to have numerous cellular effects,
as well as bind to many different targets (MacKenzie et al., 2011;
Zhao and Abood, 2013). This promiscuity may suggests that nei-
ther kynurenic acid (12) nor 2-oleoyl LPA (13) are ‘the’ endoge-
nous ligand for GPR35/CXCR8—rather, GPR35/CXCR8 more
likely binds several endogenous ligands and that this is highly
species/tissue dependent. For additional review of LPAs and
GPR35/CXCR8, see (MacKenzie et al., 2011; Zhao and Abood,
2013).

Consistent with this hypothesis, several other endogenous lig-
ands of GPR35/CXCR8 have been reported. First, several tyrosine
metabolites (including 5,6-dihydroxyindole-2-carboxylic acid
[DHICA (10)], 3,3′,5′-triiodothyronine [reverse T3 (16)], 3,3′,5-
triiodothyronine [T3 (17)], gentisatic acid (11), rosmarinic acid
(15), and 3-nitrotyrosine (14), see Figure 4) have been reported
to act as endogenous ligands of GPR35/CXCR8 (Deng et al.,

2012). Interestingly, all of these compounds [with the excep-
tion of 3-nitrotyrosine (14)] were reported to be more potent
at GPR35/CXCR8 than kynurenic acid (12) (Deng et al., 2012).
Second, the results of a 10,500-ligand PathHunter screen sug-
gest that guanosine-3′ ,5′-cyclic monophosphate [cGMP (9), see
Figure 4] may activate GPR35/CXCR8, though high micromolar
concentrations are required (Southern et al., 2013). Finally, it has
recently been reported that the mucosal chemokine CXCL17 acti-
vates GPR35/CXCR8 (Maravillas-Montero et al., 2015). CXCL17
was the last chemokine to be described (Pisabarro et al., 2006) and
currently is only known to signal via GPR35/CXCR8 (Maravillas-
Montero et al., 2015). The authors report that CXC17 activates
GPR35/CXCR8 at nanomolar concentrations (in calcium flux
assays)—making it significantly more potent at GPR35/CXCR8
than kynurenic acid (12) or LPA (Maravillas-Montero et al.,
2015). Given CXCL17’s apparent selectivity for GPR35/CXCR8,
its potency, and its presence in GPR35/CXCR8-expressing tis-
sues, the authors suggest GPR35 be named CXCR8 (Maravillas-
Montero et al., 2015). Here, we adopt this nomenclature; how-
ever, the importance of other GPR35/CXCR8 endogenous ligands
should not be disregarded.

GPR35/CXCR8 Structure and Modeling

Sequence Analysis and Motifs
Several Class A GPCRs have been crystallized, though these
solved structures represent only a small fraction of all GPCRs.
These crystal structures reveal a common topology that includes
seven transmembrane alpha helices (TMHs) that are connected
with three intra- and three extracellular (EC) loops; GPCRs
also contain an EC N-terminus and an IC C-terminus that
begins with a short helical segment (Helix 8) oriented parallel
to the membrane surface. To date, GPR35/CXCR8 has not been
crystalized; however, GPR35/CXCR8 does contain many of the
highly conserved Class A residue patterns in TMHs 1, 2, 3, 4, 5
(N1.50, D2.50, and (E)DRY motif in TMH3, C3.25, W4.50, and
P5.50); see Figure 1. Interestingly, there are a few notable con-
served motif differences: 1) a conservative substitution (CFLP)

FIGURE 6 | A helix net representation for GPR55 is provided here.
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FIGURE 7 | Cannabinoid agonists that activate GPR55 are shown here.

for the TMH6 CWXP motif, and 3) a non-conservative substi-
tution (DAICY) for the TMH7 NPXXY motif. In addition, the
GPR35/CXCR8 EC-1 (EC-1) loop is shorter than most [2 amino
acids (aa) vs. 6 aa in β2-AR and Rho] and the GPR35/CXCR8 EC-
3 loop is noticeably longer thanmost (11 aa long vs. 5 aa in β2-AR,
6 aa in Rho and CB1/CB2).

Disulfide Bridge Positions
Like most Class A GPCRs, GPR35/CXCR8 also has a cys-
teine in the EC2 loop (C162) that can form a disulfide bridge
with C3.25(89) (CB1 and CB2 are exceptions) and like CXCR4,
GPR35/CXCR8 has key cysteines in the N-terminus [C(8)] and
at the TMH7 EC end [C7.25(248)], that likely form another
disulfide bridge.

Intracellular Ionic Lock
TMH6 in most GPCRs has a negatively charged glutamate or
aspartate in position 6.30. This residue interacts with R3.50 of the
conserved DRY motif to form an “ionic lock” that keeps the IC
end of the receptor closed and therefore inaccessible to G-protein.
GPR35/CXCR8 does not have a negatively charged residue at
6.30, but has a threonine that can still form a hydrogen bond with
R3.50 to keep the receptor IC domain closed.

Model-Guided Studies
Several mutation and computational studies have probed
GPR35/CXCR8’s structure, allowing for the identification of
functionally important residues—ultimately informing novel lig-
and design. First, it has been reported that TMH3 (specifi-
cally Y3.32 and R3.36) is important for both human and rat
GPR35/CXCR8 signal transduction (Jenkins et al., 2010). R3.36
was probed due to its importance in the binding of anionic
ligands in GPR81 (Liu et al., 2009); in analogy, the authors
hypothesized R3.36 may be important to GPR35/CXCR8’s abil-
ity to bind anionic ligands, such as kynurenic acid (12) (Jenkins
et al., 2011). The authors reported that mutation of R3.36 or Y3.32
to an alanine abolished the ability of all tested agonists [includ-
ing kynurenic acid (12) and zaprinast (2)] to activate human or
rat GPR35/CXCR8; importantly, this mutation did not signifi-
cantly impact global receptor expression and only significantly
reduced rat R3.36A surface expression (though other mutants
trended toward reduced surface expression; Jenkins et al., 2011).
Additionally, Y3.32 was mutated to a leucine—at this mutant,
tested agonists were able to signal (albeit with a significantly
increased EC50) at rat GPR35/CXCR8, but signaling was com-
pletely abolished at human GPR35/CXCR8 (Jenkins et al., 2011).
Altogether, the authors state that the similar functional outcomes
of the tested agonists suggest (but does not prove) that the ligands
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FIGURE 8 | Cannabinoid antagonists that inhibit GPR55 signaling are
shown here.

may share a common orthosteric binding site, and that these
mutation results suggest that R3.36 and Y3.32may be key binding
site residues (Jenkins et al., 2011).

In a later report, mutation and modeling studies were per-
formed to investigate the function and binding site of several
anti-allergy compounds at both human and rat GPR35/CXCR8
(MacKenzie et al., 2014). These compounds were tested at sev-
eral human and mouse GPR35/CXCR8 mutants; mutation con-
sisted of several species residue switches (human→rat, and vice
versa) of positively charged residues hypothesized to be part of
the orthosteric binding site. These mutations include, at human
GPR35/CXCR8: R164S, R4.60M, L4.62R, R6.58Q, R7.32S, and
R6.58Q-R7.32S; the reciprocal rat→human mutations were per-
formed as well. Their results suggest that the impact of these
mutations (at both human and rat GPR35/CXCR8) are highly
ligand-specific; additionally, all of these mutations impacted at
least two of the tested ligands, suggesting that these residues
may be part of GPR35/CXCR8’s orthosteric binding site (with
the exception of the rat→human Q6.58R, which appeared to
have no effect on any of the agonists tested). Furthermore, the
authors report that the mutation results were consistent with pre-
sented homology models of both human and rat GPR35/CXCR8;
these models were also used to predict a detrimental human
SNP. The SNP (V2.60M) was experimentally characterized and
agonists were indeed found to have a reduced potency at this
mutant. Altogether, these results provide valuable structural
insight into GPR35/CXCR8’s binding site (especially regarding
species selectivity).

Finally, Zhao et al. (2014) have reported the results of
human GPR35/CXCR8 mutation and computational studies.
Homology models of human WT GPR35/CXCR8 in an inac-
tive (R) and active (R∗) state were constructed, as well as
an R∗ model of R6.58(240)A GPR35/CXCR8. These models
used the β2-adrenergeic receptor (β2-AR) crystal structure as
an initial template (Cherezov et al., 2007); however, mod-
els were refined (to account for sequence differences between
β2-AR and GPR35/CXCR8) using the Monte Carlo/simulated
annealing technique Conformational Memories. Zaprinast (2)
and pamoic acid (1) were manually docked in the final
GPR35/CXCR8 models; these docks were refined with the
automatic docking program, Glide. Both manual and auto-
matic docking used Y3.32 and R3.36 as primary interaction
sites. GPR35/CXCR8-ligand models (see Figure 5) were energy
minimized and used to direct mutation studies: K1.32(20)A,
R2.65(81)A, R3.36(100)A, A4.59(150)G, R4.60(151)A, R164A/L,
R167A, R6.58(240)A, R7.33(256)A, and K7.40(263)A. Consistent
with computational results, residues within the TMH1-2-7 region
had no effect on ligand efficacies; likewise, residues in the TMH3-
4-5-6 region were found to be important for agonist efficacy.
Specifically, the models predicted favorable electrostatic inter-
actions between the agonists and R164, as well as a favorable
interaction between R167 and pamoic acid (1); consistently,
mutation of these residues to alanine resulted in a loss in
efficacy. Interestingly, the R4.60(151)A mutation resulted in a
complete loss in signaling. In addition, the R6.58(240)A muta-
tion did not significantly impact pamoic acid (1)’s ability to
signal via GPR35/CXCR8; this is consistent with the reported
computational results, as pamoic acid (1) did not form a sig-
nificant interaction with R6.58(240)A in the WT or mutant
receptor models. Finally, the R6.58(240)A mutation resulted
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FIGURE 9 | Non-Cannabinoid agonists that activate GPR55 are shown here. ∗CID1135734 (34), while structurally related to other GPR55 agonists, does not
bind to GPR55 and was used as a negative control.

in a 30 fold increase in zaprinast’s (2) potency; the mod-
els rationalize this by illustrating that R6.58(240) introduces
steric crowding and that zaprinast (2) is able to form more
favorable interactions when it is mutated to an alanine (see
Figure 5). Together, these results suggest that zaprinast (2) and
pamoic acid (1) bind the TMH3-4-5-6 region of GPR35/CXCR8,
though each ligand forms unique interactions within its binding
site.

GPR55

GPR55 belongs to the rhodopsin-like (Class A) family of GPCRs
(Genbank accession # NM-005683; see helix net sequence repre-
sentation in Figure 6). GPR55 was de-orphanized as a cannabi-
noid receptor (Brown and Wise, 2001; Drmota et al., 2004). It
has the highest amino acid identity to the following receptors:

GPR35 (27%), P2Y (29%), GPR23 (30%), and CXCR4 (26%;
Sawzdargo et al., 1999). GPR55 exhibits lower amino acid
identity to the cannabinoid CB1 (13.5%) and CB2 (14.4%)
receptors.

Signaling
GPR55 has been reported to couple to Gα13 (Ryberg et al., 2007;
Henstridge et al., 2009), Gα12, or Gαq (Lauckner et al., 2008)
proteins.

Activation of GPR55 also results in activation of PLC, RhoA,
ROCK, ERK, p38 mitogen activated protein kinase, and Ca2+
release that can induce downstream transcription factors such
as NFAT, NF-κB, CREB, and ATF2 (Lauckner et al., 2008;
Henstridge et al., 2009, 2010; Kapur et al., 2009; Oka et al., 2010a).
It has recently also been shown that GPCR-associated sorting
protein 1 (GASP-1) is an important regulator of ligand-mediated
down-regulation of GPR55 (Kargl et al., 2012).
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FIGURE 10 | Non-Cannabinoid antagonists that inhibit GPR55 signaling are shown here.

Cannabinoid Ligands Recognized at
GPR55

The initial deorphanization of GPR55 as a cannabinoid recep-
tor spurred a wide search for GPR55 ligands among known
cannabinoid ligands (Henstridge et al., 2009). Initial studies
confirmed that various cannabinoid and atypical cannabinoid
compounds activate GPR55 (Johns et al., 2007; Ryberg et al.,
2007; Lauckner et al., 2008). However, some of these stud-
ies did not agree concerning the pharmacological action for
the same cannabinoid compound at GPR55. GTPγS functional
assays indicated that GPR55 is activated by nanomolar con-
centrations of the endocannabinoids 2-AG (18), virodhamine,
noladin ether, oleoylethanolamide and palmitoylethanolamide
and the atypical cannabinoids CBD (19) and abn-CBD (20);
see Figure 7 (Ryberg et al., 2007). In a separate study, abn-
CBD (20) and O-1602 (21) were found to act as agonists at
GPR55, while the cannabinoid aminoalkylindole, WIN55,212-
2 (22) produced no effect (Johns et al., 2007). Using an IC
Ca2+ assay, Lauckner et al. (2008) reported that �9-THC (23),
the aminoalkylindole, JWH-015, anandamide (AEA;24) and R-
methanandamide acted as GPR55 agonists, while the CB1 antag-
onist, SR141716A (25), acted as a GPR55 antagonist. The CB1
antagonist, AM251 (26) was shown to elicit a GPR55-mediated
Ca2+ signal in one study (Henstridge et al., 2009) and an
increase in GTPγS binding in another study (Ryberg et al.,
2007).

The deorphanization of GPR55 as a cannabinoid receptor
has been controversial in the literature. Oka and co-workers

reported that lysophosphatidylinositol (LPI, 28; see Figure 9)
compounds are endogenous GPR55 agonists (Oka et al., 2007),
with 2-arachidonoyl-sn-glycero-3-phosphoinositol (2-AGPI; 29)
possessing the best LPI activity observed to date (Oka et al., 2009).
Neither LPI nor 2-AGPI, however, bind to CB1 or CB2 receptors.
Kapur et al. (2009) confirmed that LPI (28) is a GPR55 agonist
in their screen for GPR55 ligands using a β-arrestin green flu-
orescent protein biosensor. These investigators also found that
the cannabinoid CB1 antagonists AM251 (26) and SR141716A
(25) were also GPR55 agonists (Kapur et al., 2009). These GPR55
ligands activated the G protein dependent signaling of PKCβII
and possessed comparable efficacy in inducing β-arrestin traffick-
ing. In contrast, the cannabinoid agonist CP55940 (27, Figure 8)
acted as a GPR55 partial agonist/antagonist, producing the for-
mation of β-arrestin GPR55 complexes, and the phosphorylation
of ERK1/2, but inhibiting GPR55 internalization (Kapur et al.,
2009). Ryberg et al. (2007) reported that CBD (19) was an ago-
nist at GPR55, however, Whyte et al. (2009) found CBD (19) to
function as a GPR55 antagonist. Here, CBD attenuated effects
produced by GPR55 agonists O-1602 and LPI on human and
mouse osteoclast polarization and resorption in vitro.

Non-Cannabinoid GPR55 Agonists

Despite the many cannabinoid ligands identified to act at GPR55,
no cannabinoid ligand has been found to have low nanomolar
potency at GPR55. One reason for this is that initial ligand
searches were conducted using cannabinoid receptor/lipid biased
compound libraries and not by casting a wider net (Yin et al.,
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FIGURE 11 | Homology models of CID1792197 (30; agonist) and ML191
(35; antagonist) docked at WT R* (active) and R (inactive) GPR55
models, respectively. The view is from the lipid bilayer, toward TMH6-7;
residues that form the ‘toggle switch’ are shown in lavender; residues that form
hydrogen bonds are shown in yellow; residues that form van der Waals
interactions are shown in orange; hydrogen bonds are shown as dashed yellow

lines. (A) CID1792197 (agonist, blue) in the human WT GPR55 R* model; (B)
ML191 (antagonist, pink) in the human GPR55 R model. Notice that ML191 is
docked more extracellularly than CID1792197 and sterically blocks the toggle
switch residues (lavender) from undergoing necessary conformational changes
via interactions with F6.55 (i.e., ML191 packs against F6.55, which in turn
packs against M3.36).

2009; Brown et al., 2011). For this reason, discovering and
characterizing novel GPR55 chemotypes is still a crucial step in
the GPR55 field. Results from wider screens are now appearing
in the literature. Brown et al. (2011) used diversity screening
to identify (1-{2-fluoro-4-[1-(methyloxy)ethyl]phenyl}-4{4′ -
fluoro-4-(methylsulfonyl)-2-biphenylyl]carbonyl} piperazine),
GSK494581A (34) as a selective small-molecule ligand of
GPR55. In collaboration with the Sanford-Burnham screen-
ing center of the Molecular Libraries Probe Production
Centers Network (MLPCN), the Abood laboratory used
a high content, high throughput β-arrestin screen (see
http://mli.nih.gov/mli/mlp-probes/) to identify a series of
GPR55 agonists that belong to novel, GPR55 agonist chemotypes
(Heynen-Genel et al., 2010). The structures of three of these
novel agonists 30 (EC50 = 0.11 μM), 31 (EC50 = 0.16 μM) and
32 (EC50 = 0.26 μM) are illustrated in Figure 9. The goal of the
Abood lab is to use these agonists to design second generation,
nanomolar efficacy ligands.

Non-Cannabinoid GPR55 Antagonists

The Abood lab, in collaboration with the Sanford-Burnham
screening center of the MLPCN, also has identified new,
non-cannabinoid GPR55 antagonists using a β-arrestin, high-
throughput, high-content screen of ∼300,000 compounds. This
screen yielded novel, GPR55 antagonist chemotypes with IC50s in
the 0.16–2.72 μM range, many of which being completely selec-
tive, with no observed agonism or antagonism against GPR35,
CB1 or CB2 up to 20 μM (Heynen-Genel et al., 2010 “Screening
for Selective Ligands for GPR55 – Antagonists” [ML191, ML192,
ML193] Bookshelf ID: NBK66153; PMID: 22091481). Three
GPR55 antagonists identified in this screen were nominated

as probe compounds for future studies. These are ML191
(CID23612552) (35), ML192 (CID1434953) (36), and ML193
(CID1261822) (37) (see Figure 10 for compound drawings).

Additional GPR55 antagonists have been reported by other
laboratories. CID16020046 (38) (Kargl et al., 2013) and 3-(2-
hydroxybenzyl)-5-isopropyl-8-methyl-2H-chromen-2-one (39)
(Rempel et al., 2013b) are GPR55 selective; while CBD (19)
(Whyte et al., 2009;McHugh et al., 2010) and tetrahydromagnolol
(40) (Rempel et al., 2013a) act at additional receptors.

GPR55 Sequence Analysis and
Important Features

Figure 6 illustrates a helix net representation of the GPR55 amino
acid sequence. GPR55 possesses most of the conserved Class A
patterns in transmembrane helices (TMHs) 1, 2, 4, and 5 (N1.50,
D2.50, W4.50, and P5.50), with the following conserved motif
differences: (1) the TMH3 D/ERY motif is substituted conserva-
tively with DRF, (2) the TMH6 CWXP hinge motif is substituted
conservatively with SFLP, and (3) the TMH7 NPXXYmotif has a
non-conservative substitution, DVFCY. There are also important
loop length differences. These are notable because the distance
that the ends of helices can be apart from one another is lim-
ited by the length of the loops connecting them. The GPR55
extracellular-1 (EC-1) loop is shorter than most (3 aa vs. 6 aa
in β2-AR and Rho) and the GPR55 EC-3 loop is noticeably
longer than most (14 aa long vs. 5 aa in β2-AR, 6 aa in Rho and
CB1/CB2).

Disulfide Bridge Positions
GPR55 has a cysteine in the extracellular 2 (EC2) loop (C168) that
can form a disulfide bridge with C3.25(94). This feature is seen
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in most Class A GPCRs with CB1 and CB2 being notable excep-
tions. The GPR55 sequence suggests a second disulfide bridge
seen in the CXCR4 crystal structure (Wu et al., 2010), GPR55 has
cysteines in the N-terminus [C(10)] and at the TMH7 (EC) end
(C7.25), that likely form this second disulfide bridge.

Intracellular Ionic Lock
In most Class A GPCRs, residue 6.30 at the IC end of TMH6
is negatively charged (D/E6.30). This residue forms a salt bridge
(called the “ionic lock”) with R3.50 of the D/ERY motif at the IC
end of TMH3. This “ionic lock” keeps the IC end of the receptor
closed and therefore inaccessible to G protein. Although GPR55
does not have a negatively charged residue at 6.30, it has a glu-
tamine. Q6.30 can still form a hydrogen bond with R3.50 to keep
the receptor IC domain closed.

Binding Pocket Toggle Switch
G protein-coupled receptors also have a set of residues within the
binding pocket that act as a “toggle switch” which controls the
transition form the inactive state (R) to the activated state (R∗).
This toggle switch involves a residue on TMH6, 6.48 [F6.48(239)
in GPR55] whose change from a χ1 torsion angle of g+ to trans
causes a straightening of TMH6 at its IC end that breaks the IC
“ionic lock.” In the inactive state, the χ1 of F6.48 is kept in g+
via an interaction with another residue. For GPR55, this residue
is M3.36(104). Antagonists will stabilize the interaction between
M3.36(104) and F6.48(239). Agonists prefer a binding pocket in
which the toggle switch residues have undergone torsion angle
changes that move these residues away from each other [F6.48
χ1 g+ → trans; M3.36(104) trans→ g+] permitting TMH6 to
straighten.

Primary Ligand Interaction Site
The CB1 and CB2 receptors have a single positively charged
residue within the TMH domain, K3.28. K3.28 in CB1 has been
shown to be the primary ligand interaction site for classical, non-
classical and endo-cannabinoids, as well as, for the biarylpyrazole
inverse agonists (Song and Bonner, 1996; Hurst et al., 2002).
GPR55 has one positively charged residue, K2.60, whichmutation
studies indicate to be important for ligand binding (Kotsikorou
et al., 2011). For this reason, K2.60 has been used as a pri-
mary interaction site for docking studies of ligands at GPR55
(Kotsikorou et al., 2011, 2013).

GPR55 R and R∗ Models
Models of the GPR55 inactive (R) and activated (R∗) states have
been published that explored the GPR55 agonist (Kotsikorou
et al., 2011) and antagonist binding sites at GPR55 (Kotsikorou
et al., 2013). These models were based initially upon the 2.4Å
crystal structure of the β2-AR (PDBName: 2RH1; Cherezov et al.,
2007) and then modified to reflect sequence dictated conforma-
tional differences in TMHs 1,2,5,6 and 7 [please see a complete
discussion in the paper (Kotsikorou et al., 2011)]. Because GPR55
has considerable sequence similarity with the CXCR4 receptor
(26%; Sawzdargo et al., 1999) and because their sequences share a
key second disulfide bridge, involving N-terminus residue [C(10)
in GPR55; C(28) in CXCR4] and TMH7 residue (C7.25 in both

GPR55 and CXCR4), the current GPR55 model in the Reggio
lab has been updated to include an N-terminus/TMH7 disulfide
bridge by analogy with the CXCR4 crystal structure (PDB Name:
3ODU;Wu et al., 2010). This N-terminus/TMH7 disulfide bridge
helps to open up the EC region of the receptor.

GPR55 Agonist Binding Studies

Using the GPR55 model for the activated state (R∗), Kotsikorou
et al. (2011) studied the binding of a series of GPR55 agonists:
LPI (28) and three novel agonists obtained from the Sanford-
Burnham screen, 30 (EC50 = 0.11μM), 31 (EC50 = 0.16μM) and
32 (EC50 = 0.26μM). These structures are shown with PubChem
Compound IDs in Figure 9 (Kotsikorou et al., 2011). Closely
related compound 33 (EC50 > 32 μM), that does not bind to
GPR55 served as a negative control. Similarities in shapes, as
well as molecular electrostic potential (MEP) similarities were
identified. Modeling data indicated that the similarity between
30, 31, 32, and LPI (28) enables them all to be recognized by a
single GPR55 binding pocket. The shape of the GPR55 R∗ bind-
ing site accommodates ligands that are inverted-L shapes or T
shapes with long, thin profiles that can fit vertically deep in the
receptor binding pocket, while their broad head regions occupy
the horizontal binding pocket opening near the EC loops. The
vertical pore is narrow enough that it cannot accommodate the
N-methyl group of 33 (negative control). For GPR55 agonist lig-
ands (30–32), the most negative electrostatic potential region is
exposed either at the “elbow” of the L or at one end of the T
cross bar [see red regions in Figure 5 in the paper (Kotsikorou
et al., 2011)]. It is this region that interacts with K2.60 in each
of the docks. Figure 11A shows CID1792197 (30; blue) docked
in the WT R∗ GPR55 model. The view is from the lipid bilayer,
toward TMH6-7; residues that form the ‘toggle switch’ are shown
in lavender; residues that form hydrogen bonds are shown in yel-
low; residues that form van der Waals interactions are shown in
orange; hydrogen bonds are shown as dashed yellow lines.

Other reported GPR55 agonists have been docked in this
GPR55 R∗ model to test the model. The CB1 antagonist/GPR55
agonist, AM251 (26) (Kapur et al., 2009) adopts a T-shape, with
its pyrazole and 2,4-dichlorophenyl rings forming the cross bar of
this T-shape and the 4-iodophenyl ring extending into the vertical
section of the binding pocket. The structure of benzoylpiperazine
GPR55 agonist, (GSK494581A; 34) (Brown et al., 2011) is simi-
lar to 32. 34 adopts a T-shape at GPR55 R*, binding in the same
receptor region and in a similar orientation as 32 with compa-
rable energy of interaction [see Supplementary Information in
(Kotsikorou et al., 2011)].

GPR55 Antagonist Binding Studies

Using a model of GPR55 inactive state, Kotsikorou et al. (2013)
studied the binding of an antagonist series that emerged from the
Sanford-Burnham screen, ML191 (35), ML192 (36) and ML193
(37). These studies suggested that GPR55 antagonists possess a
head region that occupies a horizontal binding pocket extending
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into the EC loop region, a central ligand portion that fits vertically
in the receptor binding pocket and terminates with a pendant
aromatic or heterocyclic ring that juts out. Both the region that
extends extracellularly and the pendant ring are features associ-
ated with antagonism (see below). Figure 11B illustrates ML191
(35; pink) docked in the WT R (inactive) GPR55 model. The
view is from the lipid bilayer, toward TMH6-7; residues that
form the ‘toggle switch’ are shown in lavender; residues that form
hydrogen bonds are shown in yellow; residues that form van
der Waals interactions are shown in orange; hydrogen bonds
are shown as dashed yellow lines. This figure shows that ML191
(35) is docked more extracellularly compared with the agonist
CID1792197 (30) in the R* model (see Figure 11A). In this posi-
tion, the pendant phenyl ring of ML191 (35) sterically blocks the
toggle switch residues (lavender) from undergoing necessary con-
formational changes via interactions with F6.55 (i.e., ML191 (35)
packs against F6.55, which in turn packs against M3.36).

Docks of two other recently reported GPR55-selective
antagonists CID16020046 (38) (Kargl et al., 2013) and 3-(2-
hydroxybenzyl)-5-isopropyl-8-methyl-2H-chromen-2-one (39)
(Rempel et al., 2013b) show that these two compounds also adopt
a similar orientation at GPR55 (Kotsikorou et al., 2013). While
two other GPR55 antagonists that are non-selective, tetrahydro-
magnolol (40) (Rempel et al., 2013a) and CBD (19) (Whyte et al.,
2009;McHugh et al., 2010) do not completely conform to the gen-
eral shape description. The fact that these are also the only two
ligands that lack GPR55 selectivity leads to the speculation that
this shape difference may be the origin of their non-selectivity
(Kotsikorou et al., 2013).

The Key Molecular Features that
Discriminate GPR55 Antagonists from
Agonists

There are two striking differences between the GPR55 antag-
onist vs. agonist structures. GPR55 antagonists possess a head
region that occupies a horizontal binding pocket extending into
the EC loop region, a central ligand portion that fits vertically
in the receptor binding pocket and terminates with a pendant
aromatic or heterocyclic ring that juts out. This pendant por-
tion in ML193 (37), ML192 (36) and ML191 (35) may be able to
prevent putative toggle switch residues, M3.36(104)/F6.48(239)
from undergoing any conformational change by sterically block-
ing their movement. Second, the location of the most negative
electrostatic potential region of the two classes (antagonist vs.
agonist) deviate from each other. The agonists have their most
electronegative region [which hydrogen bonds to K2.60(80)] near
the broad head region, while the most electronegative region
found in antagonists is near the end of the central portion of
the molecule. Because K2.60(80) is located two turns from the
EC end of the GPR55 TMH bundle, the GPR55 antagonists bind
higher than GPR55 agonists, extending into the EC loop region.
The EC-2 loop residue, F169, for example is an important interac-
tion site for ML191 (35), ML192 (36), andML193 (37). EC-2 loop
conformational changes have been reported to be critical for sig-
nal transduction of numerous Class A GPCRs (Unal et al., 2010).

The fact that ML191 (35), ML192 (36), and ML193 (37) all bind
high enough in GPR55 to interact directly with the EC-2 loop and
block its movement may be another reason for the antagonism
exhibited by these compounds.

On the other hand, GPR55 agonist structures lack the pen-
dant phenyl or heterocyclic ring of the antagonists that juts
out after the vertical central portion. It is this portion of the
antagonists that stabilizes the toggle switch in its “off” conforma-
tion. Instead, agonist structures maintain a thin vertical profile
in the binding pocket that relies on the M3.36(104)/F6.48(239)
toggle switch residues having undergone the [F6.48 χ1 g+ →
trans; M3.36(104) trans→ g+] transition to provide room for the
agonist to penetrate deep into the binding pocket.

GPR55 Expression Profile and
Therapeutic Potential

GPR55 has been shown to be expressed in numerous tis-
sues throughout the body, in mouse, rat and human tissues
(Sawzdargo et al., 1999; Ryberg et al., 2007; Moreno-Navarrete
et al., 2012). In the human CNS, GPR55 is found predominantly
in the caudate, putamen, and striatum (Sawzdargo et al., 1999). In
mice, GPR55 mRNA is most abundantly expressed in the adrenal
tissue, ileum, jejunum, frontal cortex and striatum (Ryberg et al.,
2007). Numerous studies have indicated that GPR55 activation is
pro-carcinogenic (Ford et al., 2010; Andradas et al., 2011; Pineiro
et al., 2011). Bone cells including osteoblasts and osteoclasts have
been found to also express GPR55 (Abed et al., 2009; Rossi et al.,
2009; Whyte et al., 2009).

In addition, GPR55 is expressed in tissue that is involved in
regulating energy intake and expenditure. Localization studies in
different organisms have shown that this receptor has been iden-
tified in the hypothalamus in mice (Ryberg et al., 2007) and in
different regions of the gastrointestinal tract, including the esoph-
agus, stomach, jejunum and colon in mouse (Ryberg et al., 2007),
and jejunum, ileum and colon in rat (Lin et al., 2011; Schicho
et al., 2011). In the rat small intestine, GPR55 was localized
mainly in the submucosa and myenteric plexus (Lin et al., 2011).
GPR55 mRNA and protein expression have also been located in
the liver in rats (Sawzdargo et al., 1999), mice (Romero-Zerbo
et al., 2011), and humans (Moreno-Navarrete et al., 2012), in adi-
pose tissue from rats (Romero-Zerbo et al., 2011), in visceral and
subcutaneous white adipose tissue (WAT) in humans (Moreno-
Navarrete et al., 2012) and in pancreas from rat, specifically the
islets of Langerhans (Romero-Zerbo et al., 2011). GPR55 tissue
expression in brown adipose tissue has yet to be determined.
Importantly, the localization of GPR55 in several tissues involved
in regulating energy intake and expenditure suggests a role for
this GPCR in the maintenance of energy homeostasis.

Based upon this expression pattern, there are at least three
therapeutic areas in which GPR55 may prove useful: (1) the regu-
lation of energy intake and expenditure, which impacts the fields
of obesity and diabetes (Simcocks et al., 2014; Liu et al., 2015);
(2) resorption of bone, which impacts the field of osteoporosis
(Whyte et al., 2009); and (3) agonist pro-carcinogensis, which
impacts many types of cancers (Ford et al., 2010; Andradas et al.,
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2011; Pineiro et al., 2011; Leyva-Illades and Demorrow, 2013).
These categories are discussed below.

Obesity and Type-2 Diabetes
The first reports of biological activity for LPI suggested that LPI
is involved in stimulation of insulin release from pancreatic islets
via mobilization of Ca2+ ions (Metz, 1986a,b). These results sug-
gest that LPI may play a role in whole body metabolism, as well
as in obesity and type-2 diabetes. The GPR55 agonist, O-1602
(21), has also been shown to influence obesity, because this com-
pound increased food intake and adiposity in Sprague-Dawley
rats (Diaz-Arteaga et al., 2012). However, the increase in food
intake was still evident in GPR55−/− mice (Diaz-Arteaga et al.,
2012), indicating that this compound was also acting on other
receptor(s). There is increasing evidence that GPR55 may play
a role in homeostatis as well. A link between a GPR55 gene
polymorphism and anorexia nervosa has been reported (Ishiguro
et al., 2011). GPR55 has been shown to be expressed in human
visceral and subcutaneous adipose tissue (VAT and SAT), as well
as in liver (Moreno-Navarrete et al., 2012). Moreno-Navarrete
et al. (2012) and co-workers reported that GPR55 expression in
VAT is positively associated with obesity and type-2 diabetes. LPI
plasma levels were found to be higher in obese compared to lean
patients. In differentiated adipocytes from visceral fat of obese
patients, LPI raised IC calcium levels. These results suggested
that the LPI/GPR55 system is positively associated with obesity
in humans (Moreno-Navarrete et al., 2012). Taken together, these
studies would suggest that a GPR55 agonist may increase weight
gain and fat storage (Henstridge, 2012).

Most recently, Imbernon et al. (2014) have investigated the
regulation of GPR55 in rat WAT in different physiological and
pathophysiological settings involved in energy balance. They
compared GPR55 expression with CB1 receptor expression by
real time PCR and western blotting. Circulating levels of LPI
(28) were measured by liquid chromatography-mass spectrom-
etry. Both WAT CB1 and GPR55 levels were increased after
fasting and recovered after leptin treatment. Their expression
was decreased during gestation and increased throughout lifes-
pan. Orchidectomy diminished WAT CB1 and GPR55 expres-
sion, whereas ovariectomized rats showed increased GPR55 but
decreased CB1 levels. Alterations in pituitary functions alsomod-
ified WAT CB1 and GPR55 levels. However, serum LPI levels
were inversely regulated by fasting and gonadectomy in compar-
ison to WAT GPR55. These results suggest that GPR55 and LPI
are regulated by different physiological and patho-physiological
settings known to be associated with marked alterations in energy
status (Imbernon et al., 2014).

Understanding the role of GPR55 in energy homeostasis may
provide a novel target for therapeutic intervention in type-2 dia-
betes (Liu et al., 2015). High GPR55 mRNA expression has been
found in pancreatic islets and protein expression was found in
insulin-secreting β-cells (Romero-Zerbo et al., 2011). GPR55 is
expressed in β cells, which secrete insulin, whereas neither α

cells, which secrete glucagon, nor δ cells, which secrete somato-
statin (Elayat et al., 1995), express GPR55 (Romero-Zerbo et al.,
2011). This cellular localization suggests involvement of GPR55
in the endocrine function of the pancreas, but only through

insulin secretion and possibly the maintenance of blood glucose
levels (Romero-Zerbo et al., 2011). O-1602 (21) activation of
GPR55 produced an increase in Ca2+ release and insulin secre-
tion stimulated by glucose. The latter was reduced in GPR55−/−
mice. Further in vivo experiments showed that GPR55 activation
increases glucose tolerance and plasma insulin levels. McKillop
et al. (2013) assessed the effects of various GPR55 agonists on
glucose homeostasis. GPR55 expression in pancreatic β cells was
confirmed and GPR55 was demonstrated to be a strong activator
of insulin secretion, with glucose lowering effects in vivo.

Bone
Bone cells including osteoblasts and osteoclasts express GPR55
(Abed et al., 2009; Rossi et al., 2009; Whyte et al., 2009). LPI
has been proposed to play an important role in bone physiology
due to regulation of osteoclast number and function. Whyte et al.
(2009) confirmed a high level of GPR55 expression in murine and
human osteoclasts, implying involvement of LPI in stimulation of
osteoclast polarization and bone resorption.

Whyte et al. (2009) also showed that LPI and O-1602 both
inhibited osteoclast formation from bone marrow macrophages
in vitro. The GPR55 antagonist, CBD increased osteoclast for-
mation. GPR55 agonists stimulated the resorptive activity of
osteoclasts, although they were found to inhibit osteoclast forma-
tion. CBD enhanced osteoclast formation and inhibited resorp-
tive activity. These observations suggest that GPR55 activation
inhibits osteoclast formation, but increases the ability of osteo-
clasts to resorb bone. GPR55 antagonism increases osteoclast
formation, but reduces the ability of osteoclasts to resorb bone.
In GPR55−/− mice, Whyte et al. (2009) found a sex based differ-
ence. Male GPR55−/− mice, had high peak bone mass affecting
the trabecular compartment of the tibia and femur. Impairment
of bone resporption appears to be the mechanism, although the
reasons responsible for the differences in skeletal phenotype in
these animals is unclear.

In regenerative processes such as bone healing, migration and
differentiation of mesenchymal stem cells (MSCs) are known to
be involved. However, little is known about the pharmacothera-
peutic options aiming at the mobilization and differentiation of
MSCs. Schmuhl et al. (2014) recently demonstrated that CBD
promotes the migration of MSCs via activation of the CB2 recep-
tor and inhibition of GPR55. CBD also induces osteoblastic
differentiation. CBDmay therefore recruit MSCs to sites of calci-
fying tissue regeneration and subsequently support bone regen-
eration via an osteoanabolic action on MSCs (Schmuhl et al.,
2014).

Cancer
Ruban et al. (2014) recently reported a link between LPI andATP-
binding cassette (ABC) transporter C1 (ABCC1)/multidrug resis-
tance protein 1 (MRP1). These investigators discovered that LPI
synthesized by cytosolic phospholipase A2 (cPLA2) is pumped
out of the cell by ABC transporter C1 (ABCC1)/(MRP1), initi-
ating a signaling cascade downstream of GPR55. These results
suggest that blockade of this pathway may represent a novel
strategy to inhibit cancer cell proliferation (Ruban et al., 2014).
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The GPR55 endogenous ligand, LPI is secreted by fibroblasts
and epithelial cancer cells and transformed thyroid cells, leading
tomitogenic effects (Falasca and Corda, 1994; Falasca et al., 1998).
Increased LPI plasma levels have been found in ovarian can-
cer patients compared with healthy control patients (Xiao et al.,
2000). Based upon knowledge of such links between LPI and can-
cer, numerous studies have explored the link between GPR55 and
cancer.

Skin Cancer
Activation of GPR55 has been shown to enhance skin cancer cell
anchorage-independent growth, invasiveness and tumorigenic-
ity in vivo (Pérez-Gómez et al., 2013). This suggests that GPR55
promotes tumor growth and aggressiveness. Pérez-Gómez et al.
(2013) have shown that GPR55−/− mice are more resistant to
DMBA/TPA-induced papilloma and carcinoma formation than
their wild-type littermates (Pérez-Gómez et al., 2013). In human
skin tumors and squamous cell carcinomas, GPR55 is also upreg-
ulated compared with GPR55 levels in healthy tissues. Thus,
GPR55 appears to be pivotal in skin tumor development. This
suggests not only that GPR55 antagonists may have therapeu-
tic value in skin cancer, but also that this receptor could be
used as a new biomarker in squamous cell carcinomas (Pérez-
Gómez et al., 2013). Lymphoblastoid cell lines, human astro-
cytoma, melanoma, and B lymphoblastoma tumors have also
been reported to have GPR55 expression (Oka et al., 2010a;
Andradas et al., 2011).

Breast Cancer
In response to the tumormicroenvironment, LPI andGPR55 play
a role in the modulation of migration, orientation and polar-
ization of breast cancer cells (Ford et al., 2010). Ford et al.
(2010) found GPR55 expression in the highly metastatic MDA-
MB-231 human breast cancer cell line. This expression was less
abundant in the less-metastatic human cell line, MCF-7 (Ford
et al., 2010). MDA-MB-231 cell chemotaxis was enhanced by
treatment with prevented. LPI treatment of MDA-MB-231 cells
significantly enhanced cell chemotaxis. This effect could be pre-
vented using GPR55 siRNA (Ford et al., 2010). Andradas et al.
(2011) have found expression of GPR55 in human breast tumors.
Higher levels of GPR55 were documented in tumors with the
worst prognosis (Andradas et al., 2011). These investigators also
observed an association between increased GPR55 levels and
high proliferative indexes, but not tumor size or metastasis.
Overexpression of GPR55 increased cell viability and ERK phos-
phorylation. Decreased cell viability and ERK phosphorylation
were observed when GPR55 was downregulated. The prolifera-
tive effects mediated by GPR55 have been proposed to be the
result of ERK activation and downstream expression of c-Fos
(Andradas et al., 2011).

Prostate and Ovarian Cancer
Pineiro et al. (2011) found that human ovarian (OVCAR3 and
A2780) and prostate (PC-3 and DU145) cancer cell lines have
GPR55 mRNA and protein expression. Treatment of these cells
with LPI produced a transient increase in IC Ca2+, ERK and
Protein Kinase B (Akt) phosphorylation. Treatment of these

cells with GPR55 siRNA reversed these effects, suggesting that
GPR55 may mediate LPI effects in ovarian and prostate cancer
cells. Downregulation of GPR55 inhibited cancer cell prolifera-
tion without addition of exogenous LPI. This suggests that cancer
cells may release LPI and promote proliferation in an autocrine
loop via GPR55 (Pineiro et al., 2011).

Cholangiocarcinomas
Neoplastic transformation of the epithelial cells that line the
biliary ducts produces cholangiocarcinomas (DeMorrow et al.,
2007). With the identification of GPR55 as a novel cannabi-
noid receptor capable of regulating the effects of AEA, Huang
et al. (2011) showed that both malignant and non-malignant
cholangiocytes express GPR55 to a similar degree. O-1602 had
a suppressive effect on cholangiocarcinoma growth both in vitro
and in vivo at a level similar to that of AEA. The antiprolifera-
tive action of AEA can be prevented by knocking down GPR55
expression. The growth-suppressing effects of GPR55 activation
by AEA require Gα12 and Jun N-terminal kinase activation and
subsequent translocation of Fas into the lipid raft structures.
These data suggest that GPR55 offers an intriguing target for the
design of potential chemotherapeutic agents directed at neoplas-
tic transformation of bile duct epithethial cells (Leyva-Illades and
Demorrow, 2013).

Glioblastoma
Higher histological grade human glioblastomas have been
reported to be associated with increased GPR55 expression.
Silencing GPR55 in a xenograft model of glioblastoma slowed
tumor growth and reduced the number of proliferation cells
within the tumors (Andradas et al., 2011).

Pancreatic Cancer
Increasingly advanced stages of human pancreatic ductal adeno-
carcinoma has been linked with high GPR55 levels (Andradas
et al., 2011).

Conclusion

It is hoped that this review will suggest to the GPR55 scientific
community, additional ligands that can be used to study effects
produced byGPR55. New, selective, non-cannabinoid GPR55 lig-
ands have not found there way into published studies yet. Use
of such ligands may resolve some of the ambiguities that cur-
rently exist in the GPR55 literature concerning effects produced
by endogenous ligands such as LPI that may not be due to action
at GPR55 (Drzazga et al., 2014).
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