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Functional and effective connectivity of cortical areas are essential for normal brain function under different behavioral states.
Appropriate cortical activity during sleep and wakefulness is ensured by the balanced activity of excitatory and inhibitory circuits.
Ultimately, fast, millisecond cortical rhythmic oscillations shape cortical function in time and space. On a much longer time scale,
brain function also depends on prior sleep-wake history and circadian processes. However, much remains to be established on how
the brain operates at the neuronal level in humans during sleep and wakefulness. A key limitation of human neuroscience is the
difficulty in isolating neuronal excitation/inhibition drive in vivo. Therefore, computational models are noninvasive approaches of
choice to indirectly access hidden neuronal states. In this review, we present a physiologically driven in silico approach, Dynamic
Causal Modelling (DCM), as a means to comprehend brain function under different experimental paradigms. Importantly,
DCM has allowed for the understanding of how brain dynamics underscore brain plasticity, cognition, and different states of
consciousness. In a broader perspective, noninvasive computational approaches, such as DCM, may help to puzzle out the spatial
and temporal dynamics of human brain function at different behavioural states.

1. The (Fluid Boundaries) of
the Brain: Sleep and Wake

Throughout a 24-hour day, our brain experiences different
states. We are awake during the day and we sleep during the
night. We generally feel alert in the morning but drowsier in
the evening. Thus, the way we feel, react, think, or perform
varies over time and depends on the state of our brain.
Behavioral states, global cognitive performance, and alertness
can be indexed through speed, memory, or vigilance tasks
[1]. Although they can provide us with valuable information,
they do not give any details about brain activity, which is
responsible for how we perform.

The development of neuroimaging technologies has been
essential to make huge improvements in our understanding

of the human brain. Functional magnetic resonance imaging
(fMRI) and positron emission tomography (PET) are widely
used to determine which areas of the brain are active during a
specific process or task [2, 3].The obtained images have a high
spatial resolution but a low temporal resolution.The informa-
tion they provide is an indirect measure of neuronal activity.
Another family of neuroimaging modalities includes elec-
trophysiological recordings, namely, electroencephalography
(EEG), magnetoencephalography (MEG), and local field
potential (LFP). These techniques provide direct measures of
cortical activity and offer very high temporal resolution but
rather low spatial accuracy [4, 5].

Global brain activity fluctuates considerably across the
sleep-wake cycle. During wakefulness, the EEG displays
fast, low voltage and desynchronized activity. In contrast,
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2 Neural Plasticity

during sleep, cortical activity is characterized by slower,
higher voltage and more synchronized waves [6]. Cortical
activity varies also with time spent awake. For example, sleep
deprivation is associated with a global increase in theta (4–
8Hz) activity [1, 7, 8] and beta (13–20Hz) waves [1, 7]. In
a similar vein, cognitive brain function also fluctuates over
time. Under a challenging sleep deprivation paradigm [9],
fMRI-derived brain areas associated with a working memory
task were recruited selectively as a function of time.

These macroscopic observations can be explained by
the interaction of two putative processes: sleep homeostasis
and circadian rhythmicity. Sleep homeostasis follows the
same principles as other homeostatic processes, as originally
conceptualized by Bernard in 1865 [10]. It is characterized
by an increase or decrease of sleep pressure as wakefulness
extends or sleep progresses, respectively. Sleep pressure
accumulates or dissipates in a saturating exponential fashion
and is almost exclusively dependent on sleep-wake behavior
[11]. The second process, the circadian rhythmicity, is an
endogenous cycle, whose period is approximately 24 hours. It
provides synchrony between an organism’s internal biological
timing and the external passage of day and night. This
process is controlled by the suprachiasmatic nucleus (SCN),
which is located in the anterior part of the hypothalamus
[12]. In humans, the circadian clock increasingly promotes
wakefulness during the day, opposing the gradual buildup in
homeostatic sleep pressure [13]. Therefore, this endogenous
process is what enables us to have a sleep-wake balance of
nearly 8 h–16 h. Beyond normal sleep time, the circadian
signal switches to a sleep-promoting signal, and the organism
can no longer fight off sleep as efficiently as it does during
the day [13]. Throughout sleep, the sleep-promoting signal
increases to counter the reduced sleep need. Hence, brain
functionmayheavily rely on sleep-wake history and circadian
processes [14].

Studying the brain is not limited to identifying where
and when cortical activity arises. In the last twenty years,
much attention has been given to the context-dependent
interactions among spatially segregated regions. Neurosci-
entists now also address the question of how distinct areas
communicate with each other. Three types of brain con-
nectivity can be defined to account for the interregion
interactions [15]. (i) Structural connectivity is defined as the
anatomical layout of axons and synaptic connections among
neurons. (ii) Functional connectivity refers to the statistical
dependency among brain regions. (iii) Effective connectivity
designates the direct influence that one region exerts on
one another. Both functional and effective connectivity are
plastic processes; that is, the communication between distinct
cortical areas varies over time.

Functional connectivity in young adults during rested
wakefulness and after a night of sleep deprivation was
investigated using fMRI [16]. Cortical networks, which are
functionally connected under well-rested conditions, became
less correlated after prolonged wakefulness, suggesting that
highly integrated networks become less integrated dur-
ing sleep deprivation. In addition, stronger anticorrelation
among segregated networks was observed in the first hours
of wakefulness than during sleep deprivation. Thus, highly

segregated networks become less segregated in sleep deprived
conditions. In a similar paradigm, sleep deprivation mainly
affected functional connectivity in prefrontal areas [17].
Although these studies are able to identify changes in cerebral
communication, they do not explain which source modifies
its information flow towards one another. Functional connec-
tivity estimates are statistical dependencies among cortical
regions but they lack a causal description.

Effective connectivity adds this causality component.
Experiments focusing on effective connectivity provide
insights into which brain areas influence others [25]. To
investigate effective connectivity, one often has to define
a primary source which is thought to affect others. One
way to proceed is to stimulate a specific cortical region by
using, for example, transcranialmagnetic stimulation (TMS).
TMS is a noninvasive method based on Faraday’s law of
electromagnetic induction [26]. A brief but strong magnetic
pulse (1ms, 1-2 T) is delivered by a coil placed onto the
scalp. The rapid change in magnetic field strength induces
currents in the brain tissues (i.e., eddy currents) that cause the
underlying neurons to be depolarized.The advantage of TMS
over sensory stimulation is that it bypasses sensory pathways
and subcortical structures to directly reach a desired target
[27, 28]. TMS-evoked responses propagated to connected
brain areas were investigated under sleep and wakefulness,
thus providing an indirect measure of effective connectivity
in humans [29]. The rostral portion of the right premotor
cortex was stimulated and simultaneous EEG signals were
recorded during rested wakefulness, stage 1 of sleep, and
nonrapid eye movement (NREM) sleep. TMS elicited a time-
locked response that dramatically changed from wakefulness
to sleep. During wakefulness, an initial high frequency (20
to 35Hz) response at the stimulation target was followed
by a sequence of lower frequency (8 to 12Hz) waves until
300ms. Simultaneously, thesewaves propagated to connected
cortical areas. One could compare this to a stone thrown in
a water milieu, creating multiple ripples spreading around
the epicentre. When the participants entered stage 1 of sleep,
their EEG recordings showed a TMS-evoked response which
increased in amplitude. However, subsequent responses were
considerably dampened and disappeared after 150 to 200ms.
As soon as they “switched” to NREM sleep, the initial brain
response to TMS doubled in amplitude and lasted longer (ca.
150ms). However, cortical activity at the target returned to its
baseline, without displaying any further waves. Furthermore,
the response did not propagate beyond the stimulation zone,
as if the water milieu had turned to honey, hampering the
propagation of ripples.

Altogether, these macroscopic observations suggest that
the state of cortical circuits undergoes modifications during
the sleep-wake cycle. However, changes in power spectrum,
cognitive performance, vigilance, and connectivity are only
the “tip of the iceberg.” They necessarily originate from
underlying events at the mesoscopic level. The next section
provides further insights into how the underlying neuronal
dynamics evolve over time.
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2. Neuronal Dynamics Shape
Cortical Behavior

Until recently, sleep (low frequency, high amplitude waves)
and wake (high frequency, low amplitude oscillations) were
considered as two distinct states. However, there is growing
evidence that sleep and wake are not completely dissociated.
For instance, Crochet and Petersen recorded low frequency
(3–5Hz) signals in awake immobile mice [30]. As soon
as the mice moved, faster waves reappeared, suggesting
that oscillatory EEG, which reflects underneath neuronal
dynamics, depends on behavioral state but also on whether
one is active or not [31]. Slowwaves are associated with a large
number of hyperpolarized down-states whereas fast EEG
oscillations are related to more depolarized up-states [32].
The occurrence of up- and down-states is highly correlated
with synaptic excitation and inhibition [33]. Excitation and
inhibition are processes occurring concomitantly [34]. An
increase in excitation is always followed by a rise in inhibition
and vice versa [35]. This observation fostered the concept of
“excitation/inhibition balance” [36].The physiological reason
for this equilibrium is to prevent the firing rate of neurons
from saturating. It does not mean, however, that excitation
and inhibition cancel each other out. Their exact ratio is
highly dynamic [35, 37]. Excitation is mostly mediated by
glutamatergic cells through short- and long-range projec-
tions. On the other hand, inhibition is predominantly con-
trolled by GABAergic (GABAA: gamma-aminobutyric acid-
A) interneurons, which act mostly locally [35]. Glutamatergic
andGABAergic cells have reciprocal interactions.The former
excites the latter and vice versa. In essence, excitation and
inhibition act concomitantly to generate an action potential,
such that a neuron receives massive excitatory signals from
glutamatergic cells until it is depolarized [35]. At that point,
inhibition inverses the membrane potential curve and the
potential drops to a lower value than the equilibrium voltage
(hyperpolarization). The neuron then receives some further
excitatory inputs to leave the hyperpolarized state. During
wakefulness, the number of up-states outnumbers the num-
ber of down-states, meaning that the excitation/inhibition
balance is in favor of excitation [38]. This balance is reversed
during sleep [35].

In rats, cortical neurons fire at a higher frequency after
prolonged wakefulness [6], corroborating a previous study
[39], which highlighted an increase of excitatory glutamate
in the extracellular medium. Specifically, neuronal firing rate
increased during the first three hours of sleep deprivation,
before it reached a plateau. The appearance of this plateau
may coincide with the higher level of GABAergic inhibition
also observed in sleep deprived rats [40]. During the recovery
sleep following extended wakefulness, average firing rate and
synchronous firing decreased [6]. In addition, silencing OFF
periods were longer in early than in late sleep while ON
periods became longer. OFF periods recorded by LFPs were
associated with slow-wave activity (SWA) displayed by the
EEG.

In a subsequent study [41], neuronal dynamics were
probed in sleep deprived rats and some neurons could briefly
enter an OFF period as in sleep. Interestingly, these silencing

periods could occur simultaneously in distinct regions or in
one cortical area only, butmost OFF periods occurred locally.
The instances of global and local OFF periods both increased
over the course of sleep deprivation. However, the number of
global silencing periods increased faster, thus providing some
evidence that as sleep pressure builds up, neuronal activity
across different cortical areas becomes more synchronized,
similar to a sleep state. Moreover, they found that, within a
cortical area, some neurons could enter in a “sleeplike” mode
while the others maintained or even intensified their activity.
In the following NREM sleep, both global and local OFF
periods decreased, with the former dropping faster than the
latter.

Similar local phenomena have been detected in humans,
primarily during sleep. Slow waves and sleep spindles are
mainly confined to local regions, particularly in late sleep
[42]. Furthermore, local activations of the motor cortex
have been observed, such that the activation patterns were
characterized by an interruption of SWA and appearance
of fast alpha-beta activity [43]. At the same time, other
regions showed features of deep sleep. During extended wake
states, local increase in theta activity, a marker of sleep need,
occurred in task-related regions [44].

Prolonged wakefulness exhibits some characteristics also
observed during sleep (i.e., local silencing periods, break-
down in connectivity) [41, 45]. In that sense, extendedwaking
might be temptingly seen as an intermediate stage between
the alert wake state and sleep. Similarly, sleep deprivation
induces an increase in cortical excitability, which may con-
trast this view [22]. The increase in glutamate is counterbal-
anced by an increase in GABA neurotransmitter levels, as
a means to maintain an optimal balance between excitation
and inhibition [46]. All in all, these observations highlight
the complexity of the brain. The mechanisms generating the
responses described hitherto are not yet entirely known, but
some theories exist. The next section presents some of them.

3. Temporal Orchestration of Neuronal Drive

Sleep is widely considered as playing an essential role
in synaptic plasticity. The precise mechanisms are still
unknown, but some tracks are being proposed. The concepts
described here are the “synaptic homeostasis hypothesis”
[18, 47], cell-autonomous synaptic scaling [19, 48], and the
circadian influence [20].

During the day, organisms interact with their environ-
ment. The brain is thus intensively exploited to organize
actions, remember events, and pay attention to what is
around, and so forth. The intense use of the brain causes
synaptic strengthening during the day. The consequences
of this synaptic strengthening are, inter alia, higher energy
consumption, a greater demand for the delivery of cellular
supplies to synapses, and changes in support cells such as
glia [18, 47]. Because the organism’s metabolism is tightly
controlled by homeostasis, synapses cannot continuously be
strengthened. Hence, synapses needs to be renormalized
at some time. The synaptic homeostasis hypothesis (SHY)
suggests that sleep is “the price to pay for plasticity” [18].
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Figure 1: (a) Nonrapid eye movement (NREM) sleep slow-wave activity (SWA) increases with time spent awake and decreases during sleep
modified from [18]. (b) Calcium-dependent pathways regulate both scaling up and scaling down, to maintain a balance between excitation
and inhibition modified from [19]. (c) Circadian modulation of synaptic plasticity modified from [20].

Slow waves are universal hallmarks of sleep need
(Figure 1(a)). SHY proposes that SWA is a sensor and a con-
tributor of homeostatic sleep. Slow waves are often associated
with burst firing, whichmay lead to a long-lasting depression
of excitatory postsynaptic potentials (EPSPs). Slowwaves also
causes a cascade of further changes: net synaptic depression,
progressive weakening of synapses, reduction in synchrony
and firing rates, and finally a decline in SWA. This negative
loop proceeds until reaching an equilibrium point where
sufficiently low synaptic strength is reached [18].

During wakefulness, the levels of glutamate A1
(GluA1) containing 𝛼-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors increase [21].
In drosophila, protein levels of pre- and postsynaptic
components, but also the number and size of synapses, are
higher during wakefulness [49]. In addition, spine density
increases during waking [50]. These changes, among others,
participate in what is called synaptic strengthening or
long-term potentiation. These phenomena can be indexed
through the magnitude of theta power in wake, or NREM
SWA in the subsequent sleep [51]. If wakefulness is further
extended, such as under sleep deprivation, these wake-related
synaptic events may be magnified, as indexed by changes
in numerous markers of neuronal excitation described in
animals [6, 23, 39, 52] and in humans [22, 53]. In Figure 2, we
describe some of the key findings over the past years on how
synaptic excitability increases under extended wakefulness.

Why does excitation increase when we extend wakeful-
ness beyond a normal day? When awake, the brain performs
multiple tasks demanding energy and cellular supplies [18,

47]. As long as we stay awake, the brain increases its energy
consumption and cellular supplies to create new vesicles, for
instance. However, this cannot last forever. Imagine a fragile
car. During the first kilometres, the ride is safe. Nevertheless,
the car starts to get shaky after a while, and themore we drive,
the more it shakes. In this setting, something must change
to prevent the car from a breakdown. Inhibition is what
may prevent “intoxication” of neurons caused by an overload
in excitation. Inhibition shapes neuronal spike activity and
action potentials in conjunction with excitation to ensure
optimal neuronal activity in time and space [35].

The concomitant changes in excitation and inhibition
to reach a stable state are one of the key assumptions of
homeostatic synaptic plasticity view [19]. Accordingly, there
is strong evidence that synaptic scaling is cell-autonomous
[19, 54]. Indeed, in vitro experiments where firing rate was
blocked led to a scaling up of synaptic strength, while block-
ing postsynaptic transmission did not have any impact. The
scaling up and scaling downof synaptic strength are regulated
by calcium-dependent pathways that control the density of
AMPA receptors, resulting in a balance between excitation
and inhibition [19] (Figure 1(b)). Although homeostasis is
probably involved in synaptic plasticity, it may not be the only
mechanism and biological clocks may also have a role [20, 55,
56]. For example, circadian modulation over time has been
observed in vertebrate ribbon synapses (RSs) [57]. In pineal
RSs, their number and size are higher at night than during
the day, independently of the animal’s endogenous wake
propensity (i.e., diurnal or nocturnal) [58]. In retinal RSs,
the reverse pattern has been observed [58]. In drosophila,
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Figure 2: Evidence for synaptic potentiation in sleep deprivation [18]. (a) Experiments in rats and mice show that the number and
phosphorylation levels of GluA1-AMPARs increase after wake [18, 21]. ((b), (b󸀠), and (b󸀠󸀠)) Electrophysiological analyses of cortical evoked
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the motor neuron MN5 has more synaptic buttons in the
night than in the day, but their size is larger in the day [59].
Furthermore, temperature may explain changes in synaptic
strength and morphology, as reported in vertebrate and
invertebrate species [20] (Figure 1(c)). A similar scenario
may occur in humans. Cortical inhibition in humans, as
measured by the duration of cortical silent periods, is higher
in the morning than in the evening, irrespective of being
measured after a night of sleep or sleep deprivation [60]. The
findings indicate that cortical inhibition is linked to time-of-
day modulation, which hints at a putative circadian role.

The mechanisms controlling excitation and inhibition
are not fully grasped yet. Disentangling the dual roles of
sleep homeostasis and circadian clocks in synaptic strength
renormalization is intricate. Broadly speaking, our under-
standing of neuronal mechanisms still needs to be refined.
Further studies in animals will allow us to unveil further
pieces of this huge puzzle. In humans, however, the portrait
is still very blurred. With the exception of pathological cases,
such as intracranial EEG recordings in epileptic patients
[43], research in humans is solely based on noninvasive
techniques that provide indirect measurements about the
activity of brain cells [61]. Bridging the gap between micro-
scopic cellular activity and how it is reflected in noninvasive
observations is a challenging but essential task. In the next
section, we address how in silico computational approaches
may offer powerful insights into what is currently unknown
on neuronal dynamics.

4. From In Vivo to In Silico Activity

Due to the inherent technical and ethical constraints limit-
ing human brain research, further advances rest upon the
development of computationalmodels.The idea behind these
is to predict the dynamics of group of neurons to better
understand macroscopic activity measured by noninvasive
imaging modalities.The challenge is twofold.These neuronal
dynamics must be appropriately estimated by means of some
mathematical techniques, while they have to be properly
reflected into neuroimaging data [62].

The behavior of any network is governed by the connec-
tions between its distinct nodes. Therefore, to describe neu-
ronal dynamics in a meaningful way, the connections within
and between cortical regions must be known. Recently, much
interest has been given to building detailed descriptions
of the brain network, known as structural connectomes.
The human connectome [63–65] is a project which aims to
provide a detailed mapping of the brain’s connectivity. The
term connectome is derived from the word genome, for which
there was also a sequencing project achieved in 2003 [66].
The human brain consists of approximately 1010 neurons con-
nected by 1014 synapses. In comparison, the human genome
comprises around 3.3 × 109 base-pairs, demonstrating the
huge challenge to achieve the connectome project. Structural
connectomes studies are usually carried out using diffusion-
weighted MR imaging (DWI). DWI with whole brain
probabilistic tractography investigates structural connectiv-
ity in individuals with different alleles of the brain-derived

neurotrophic factor (BDNF) gene [67]. BDNF is heavily
involved in long-term potentiation and synaptic plasticity
[68]. Moreover, it is also implicated in axonal pruning and
maintenance, as it prompts the elimination of synaptically
silent axonal terminal arbors [69]. Structural connectivity
in the forebrain, as well as interhemispheric connectivity,
may increase in individuals carrying the Met allele in
the BDNF gene [67]. Therefore, changes in white matter
architecture, as inferred in the structural brain connectivity
study abovementioned, might be differentially shaped by
BDNF genotype. Another study by Tymofiyeva et al. [70],
based on diffusion tensor imaging (DTI) (i.e., an extension of
DWI), showed that brain networks become more integrated
and less segregated with age.

Besides building structural connectomes, a parallel chal-
lenge is to establish a functional brain network and to derive
a structure-function mapping [71], which can be derived
from MRI or electromagnetic data. Recently, the dynamical
correlation between DWI-derived structural connectivity
and fMRI BOLD signals was analysed using a sliding window
approach [72]. In M/EEG studies, functional connectomes
rest upon the analysis of the statistical dependencies of
time series using independent component analysis (ICA)
[73] or Granger causal modelling (GCM) [74]. ICA is a
computational method used to separate a mixture of sig-
nals into independent subcomponents [75]. The correlation
of independent components is then evaluated to obtain
a measure of the functional connectivity between source
reconstruction-based cortical regions. On the other hand,
the idea behind GCM is that causes precede effects in time.
GCM is based on linear vector autoregressive (VAR) models,
where the recorded signals can be explained by their own
past as well as the past of other signals [74]. The advantage of
GCM over ICA is that the former offers a causal description
of time series, whereas with ICA, the connectivity measures
are purely statistical. However, GCM only regards recorded
signals to define functional connectivity but there is no
neurobiological explanation of the connectivity [76]. Hence,
it is a phenomenological model, as it forgoes any biological
attempt to explain why variables interact the way they do
and simply describes their relationship based on observations
[76, 77].

To cope with this limitation, functional connectomes can
also be built from physiological models, which are known
as dynome [78]. Dynome focuses on brain rhythms in local
structures, without explicitly accounting for the activity at the
single-neuron level or individual axons joining cortical areas.
Dynome operates on a larger scale, the mesoscale (e.g., a
cortical column), as the human brain appears to be built from
large populations of neurons performing the same function
[62]. They are based on detailed biophysical mechanisms,
which are extremely complex as different rhythms can appear
in a single cortical region (i.e., cross-frequency coupling)
and several neuromodulators can have different effects on
frequency bands [78]. The dynome models for different
cortical regions and different frequency ranges can then
be assembled as building blocks to explain behavior at a
macroscopic scale [78]. For example, gamma oscillations in
rodents are highly correlated to perisomatic inhibition and
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excitatory and inhibitory projections (modified from [24]). (b) Schematic diagram of the DCM algorithm functioning.The forward problem
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distribution for the neuronal parameters.

are modulated by slower rhythms [79], includingmodulation
by theta waves [80]. In essence, this cross-frequency coupling
of rhythms generates a multiscale timing mechanism [31]
between different states of vigilance. Ultimately, it allows for
an effective mechanism linking cortical circuits.

A complement approach to dynome is Dynamic Causal
Modelling (DCM). Despite the similarities, it is not a dynome
as such, because it relies onmore abstract biophysical models
that offer an approximation of the hidden neuronal states.
Briefly, DCM is an approach to investigate how effective con-
nectivity is affected by context, based on a biologically realis-
tic generative model [81]. DCM has been extensively used in
animal and humanmodels, ranging from local field potentials
(LFP) intracranial recordings to noninvasive approaches,
such as hemodynamic or EEG responses. DCM allows for the
comprehension of how brain dynamics underscore cognition
[82] and different states of consciousness [83]. The next part
explains in detail the principles underlying DCM.

5. Dynamic Causal Modelling

Dynamic Causal Modelling (DCM) is a computational
approach that allows one to quantify the effective connectivity
between and within brain areas and to investigate how the
parameters of effective connectivity are influenced by exper-
imental factors. In other words, DCM probes how a given
experimental manipulation affects the strength of cortical
connections [82–84]. DCM was introduced by Friston et
al. [2] and was first intended for fMRI data but was later
extended to model electromagnetic time series. The idea is
to build a network of nodes (i.e., cortical areas) that interact
through extrinsic connections. Each cortical area of the

network is represented by a biologically plausible neuronal
model [24]. Based on current physiological knowledge about
connectivity parameters, this forward model generates real-
istic electromagnetic data [81]. The recorded and predicted
data are then compared and the parameters of the neuronal
model are adjusted to improve data prediction. This step is
called the inverse problem [85]. Overall, DCM proceeds in
a loop between the forward and inverse problems until all
the parameters of the forward model have reached values
providing an optimal prediction of the data.

The next parts of this section focus on DCM for electro-
magnetic signals. First, we provide an in-depth description of
the neuronal model. Next, we explain how the forward and
inverse procedures are used to obtain the values portraying
effective connectivity. Finally, we catalogue the different types
of DCM analyses and present some DCM applications.

5.1. The Neuronal Model. The neuronal model is used to
emulate the activity of regions of interest. Each cortical region
is identically modelled with a number of interconnected
neuronal populations, as originally described by Jansen and
Rit [86]. This model comprises three neuronal popula-
tions, albeit the most recent neuronal models contain four
populations: (i) excitatory spiny stellate cells in granular
layer IV, (ii) inhibitory interneurons in supragranular lay-
ers, (iii) superficial pyramidal cells in supragranular layers,
and (iv) deep pyramidal cells in infragranular layers [87]
(Figure 3(a)). The four neuronal populations of each cortical
column are interconnected through intrinsic connections in
agreement with observations in animals [87]. The neuronal
model can explain cortical activity in different ways. The
neuronal dynamics can be described by the mesoscopic
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properties of the populations (convolution-based models)
[81] or they can encompass single-cell electrophysiological
properties (conductance-based models) [88]. This latter class
of neuronal model takes into account key ionotropic recep-
tors, such as AMPA, GABAA, and NMDA (N-methyl-D-
aspartate). Different brain regions are linked by excitatory
extrinsic connections. Anatomically, intrinsic connections
link neuronal population within the same graymatter region,
while extrinsic connections cross whitematter to join distinct
cortical areas. A further distinction between intrinsic and
extrinsic connections lies in the delay of their effect, with
intrinsic connections having smaller delays (≈2ms) than
long-range extrinsic connections (≈16ms) [89]. Following
the concept of hierarchical organization of the cortex formu-
lated by Felleman and Van Essen [90], extrinsic connections
are directed and can be classified as (i) forward, (ii) backward,
or (iii) lateral. Forward or bottom-up connections originate
in agranular layers (i.e., supragranular and infragranular
layers) and terminate in layer IV. Backward or top-down con-
nections join agranular layers. Lateral connections originate
in agranular layers and target all layers.

5.2. The Forward and Inverse Problem. Based on physiolog-
ical assumptions (i.e., priors) about synaptic parameters, the
neuronal model provides an estimation of the direct cortical
activity. However, the electromagnetic time series one has
at hand is only a reflection of this activity. The observation
model provides this conversion by accounting for the prop-
agation of signals through head tissues [89]. Altogether, the
neuronal and observation models render the forward model
and yield a likelihood function, which characterizes how well
the predicted data approximate the recorded data [91]. Thus,
the forward problem is a generative model to synthetize data.
In essence, it can be seen as the prediction step of DCM.
For the forward model to optimally explain the observed
signal, the parameters tuning it and the predicted data must
be adjusted. During this step, we say that the DCM model is
inverted.This inversion is performed in a probabilistic frame-
work, known as Bayesian inference [85]. The parameters of
the neuronal model are obtained by relying on Bayes’ rule:

𝑝 (𝜃 | 𝑦,𝑚) =

𝑝 (𝜃 | 𝑚) 𝑝 (𝑦 | 𝜃,𝑚)

𝑝 (𝑦 | 𝑚)

, (1)

where 𝜃, 𝑦, and 𝑚 correspond to the model parameters,
the observed data, and the model under consideration,
respectively. The posterior distribution 𝑝(𝜃 | 𝑦,𝑚) of the
parameters is built upon the likelihood 𝑝(𝑦 | 𝜃,𝑚), priors
𝑝(𝜃 | 𝑚), andmodel evidence 𝑝(𝑦 | 𝑚) distributions.

Nevertheless, this formula cannot be evaluated explic-
itly. Instead, it is approximation using an iterative process
called variational Bayesian technique [92]. Once the synaptic
parameters are adjusted by this update step, a new likelihood
function is evaluated in the forward problem, and so forth,
until the neuronal parameters reach an optimal solution
(Figure 3(b)).

One may formulate different hypotheses concerning how
cortical areas are connected. For example, two regions can
communicate through a unique unidirectional connection

or they can be linked by bidirectional connections. The
model evidence quantifies the properties of a good model, by
explaining the data as accurately as possible and with min-
imal complexity [15]. Thereof, different hypotheses, that is,
connectivity architectures, can be compared, using Bayesian
model selection (BMS) [93], which selects the most likely
model. A palpable example is the perturbation of neuronal
dynamics by sensory input among cortical circuits [5].
This information may be relayed through top-down and/or
bottom-up connections across frontotemporal regions (i.e.,
primary auditory cortex, superior temporal gyrus, and infe-
rior temporal gyrus). By applying BMS, it was possible to
identify the importance of top-down connections in the
predictive coding of sensory information [5].

5.3. DCM Applications. DCM allows for the analysis of
different types of data, including noninvasive EEG and MEG
time series and intracranial LFP data. Furthermore, both
evoked responses and spontaneous activity can be studied
with DCM. Currently, four variants of DCM exist to analyse
different data or to answer different questions: event-related
potentials, steady-state responses, induced responses, and
phase-coupling. DCM for event-related potentials (ERP) [94]
is designed for data acquired when a known and determinis-
tic input is applied on specific cortical regions. The input is a
stimulus that perturbs the neuronal dynamics and elicits an
evoked response. The signals are considered in the temporal
domain over typically short timewindows (<1000ms) around
the event. The second type of DCM analysis is designed for
steady-state responses of the brain; that is, no stimulus is
used to trigger a brain response. When one is looking at
spontaneous cortical activity, it is more efficient to consider
the data in the frequency domain by assessing their power
spectrum. This is the approach used in the DCM for cross-
spectral densities (CSD) [89]. Chen et al. [95] introduced an
“induced response” variant of DCM. It models time-varying
frequency power as the response to a stimulus or a task.
Contrary to the aforementioned DCM flavours, this type
of DCM does not rely on a neurophysiological motivated
model, but rather on a phenomenological model, where the
neuronal parameters are hidden and not explicitly inferred.
Finally, Penny et al. [96] provided another type of DCM
based on the analysis of phase-coupling, where the neuronal
dynamics are expressed in terms of neuronal synchronisation
processes using weakly coupled oscillators. Similar to DCM
for induced response, DCM for phase-coupling rests upon
a phenomenological model. Eventually, it infers if different
cortical sources are synchronised or not.

Hereafter, we illustrate how DCM may offer putative
insights into hidden neuronal dynamics across different
paradigms.

An unequivocal aspect of global cortical functioning is
the adaptation to changes in the environment, an ability
coined as “brain plasticity” [97]. A myriad of factors may
trigger cortical plastic changes. Among them is learning,
which, broadly speaking, may be associated with repetition-
dependent plasticity in the brain. These learning-induced
changes may impact on intrinsic and extrinsic connections
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within a cortical network. By applying a DCM for ERP
associatedwith a given learning paradigm, onemay infer how
connectivity parameters evolve over time. Brain connectivity
has been shown to change as participants heard a repeated
acoustic stimuli (roving mismatch paradigm) [84]. Based
on EEG recordings and by applying DCM for ERP, the
connectivity strength in a network involving the primary
auditory cortex and superior temporal gyrus decreased with
repetition. Plasticity may thus be a key mechanism for
adaptation to a specific stimulus across distributed brain
systems [98].

An important question in human neuroscience is how
discrete synaptic events may underpin different states of
consciousness and behavioral states. The former was tested
in a DCM study, whereby the effective connectivity between
the frontal and parietal cortices was investigated in severely
brain-damaged patients [83]. Intriguingly, the transmission
of information flow (top-down connectivity) in the fron-
toparietal cortex differed between patients in vegetative state
and controls. The frontoparietal cortex is involved in the
explicit processing (awareness) of stimuli [99]. Therefore,
“impairments” in the effective connectivity in this brain
circuitrymight be critical for the perception of consciousness.

As mentioned earlier, DCM has been applied in “mice to
men” studies, as a means to infer neuronal states in different
experimental settings. One key approach when using DCM is
the capacity to infer how specific neuronal parameters encode
for changes in EEG spectral oscillations [82]. DCM forCSD is
the “DCMflavour” for such premise and is intended for spon-
taneous activity [100] and/or pharmacological experiments
[82].

A previous in vivo study has shown that ketamine reduces
theta activity and increases gamma activity in the hippocam-
pus in mice [101]. With that assumption in mind, neuronal
mechanisms underpinning the variations in frequencies in
the hippocampus and the prefrontal cortex were investi-
gated in ketamine-doped rats [102]. Using DCM for CSD,
a reduction in top-down connectivity from the medial pre-
frontal cortex to the dorsal hippocampus was observed under
ketamine.The excitatory NMDAR-mediated bottom-up con-
nectivity from the prefrontal cortex to the hippocampus also
decreased with ketamine doses. In contrast, they noticed
an increase in the excitatory AMPAR-mediated bottom-up
connectivity. All in all, this study provides some insights into
how ketamine induces a breakdown in corticohippocampal
connectivity. In humans, NMDAR dysfunction and theta-
gamma rhythm abnormalities play a key role in neuropsy-
chiatric disorders, such as schizophrenia [103].Therefore, the
insights provided by this DCM study in rodent models may
offer a framework for how aberrant mechanisms of cortical
information flow underpin neuropsychiatric ailments.

DCM has also been applied to in vivo assays of ongoing
synaptic processing underlying human cognition [82]. Mag-
netoencephalographic (MEG) measurements were acquired
from participants during a working memory task, under
a pharmacological (dopaminergic) challenge. The rationale
for this approach is the critical role that the dopaminergic
system plays in working memory [104]. DCM for CSD was
applied to reconstructed signals from the prefrontal cortex.

In essence, specific synaptic mechanisms, which included
synaptic transmission via excitatory AMPA and NMDA and
inhibitory GABAA receptors and glutamatergic inputs to
layer IV, may be modulated by L-Dopa [82].Thus, changes in
these ionotropic receptors may be associated with the synap-
tic effects of dopamine. Importantly, better performance in
the working memory task was associated with these changes
in DCM-derived ionotropic receptor levels. These results
provide a novel framework to noninvasively infer howhidden
synaptic events mediate cognitive processes in humans.

DCM for CSD can also be applied onto recordings of
spontaneous activity, without any influence of a drug. It
has so far been used predominantly on data acquired in
pathophysiological conditions such as epilepsy. An epileptic
state arises from a sudden increase in excitation triggered
by a deviation of the interaction between pyramidal cells
and inhibitory interneurons from its normal regime [105].
A recent study showed that epileptogenesis is also char-
acterized by a slow drift in intrinsic connectivity within
and surrounding the ictal zone [100]. Using DCM for CSD,
increased intrinsic connectivity from inhibitory interneurons
to superficial pyramidal cells was detected at seizure onset,
followed by a gradual decrease thereafter.

The activity of neocortical neural circuits is powerfully
modulated by subcortical inputs [106]. However, recording
subcortical activity using noninvasive EEG recordings is
a challenge. Spatial EEG sensitivity depends on biological
parameters, such as (i) distance between neuronal popula-
tions and EEG sensors and (ii) the complex cellular archi-
tecture of deeper sources [107]. Thus, deep brain structures
are typically considered as electromagnetically “silent” [108].
However, as subcortical activity influences cortical activity
through subcortical-cortical connectivity, its changes may be
indirectly inferred from EEG signals. If one uses biophysical
models of EEG activity, inwhich synaptic activity is generated
by artificial neural networks, then parameters of subcortical
activity can be included in a model as modulating cortical
sources, which are those mostly detected at the EEG level
[108]. Within the DCM framework, both variables can be
inferred from actual EEG data [109]. This assumption was
highlighted by a study investigating the mechanisms for
anesthesia-induced loss of consciousness [110]. By applying
DCM for CSD to data from wakefulness, mild sedation, and
loss of consciousness, spectral changes across all behavioral
states involved changes in corticothalamic interactions. Com-
pared with wakefulness, mild sedation was accounted for
by an increase in thalamic excitability that did not further
increase during loss of consciousness. Conversely, loss of con-
sciousness was associated with a decrease in backward cortic-
ocortical connectivity from frontal to parietal cortices, while
thalamocortical connectivity was unaffected. Furthermore,
DCM for CSD data in Parkinson patients inferred that con-
nections to and from the subthalamic nucleus were strength-
ened and promoted beta synchrony, in untreated relative to
treated Parkinson state [111]. These results per se emphasize
the role of subcortical modulation in cortical dynamics.

Strikingly, much still remains to be known about the hid-
denneuronal events underpinning different sates of vigilance.
To date, our understanding of putative cortical mechanisms
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accounting for sleep and wakefulness is primarily derived
from in vivo studies in animal models (for a review, see
[112]) and data from epileptic patients (for a review, see [113]).
Spontaneous activity in sleep and wake may be investigated
using DCM for CSD as in the previous studies.

Despite the potential to unveil hidden neural states, DCM
has drawbacks. As it relies on abstract, neural mass models
[24, 114], it may not accurately reflect biophysical properties
critical to some neural computations. Chief among these is
absence of neuromodulatory factors, including cholinergic,
serotoninergic, and dopaminergic activity, that impact on
cortical dynamics [61]. Another critical aspect is that DCM
cellular parameters do not represent single-cell properties,
but rather those of a cortical macrocolumnar neuronal
network. Thus, it is designed to unravel functional dynamic
properties of a neuronal ensemble. In itself, this hinders
the understanding of single-cell activity, currently inferred
only from direct intracranial recordings in epileptic patients
[113]. Indeed, a key limitation in human neuroscience is the
understanding of how brain circuits operate in fine spatial-
temporal dynamics in vivo. Thus, computational approaches
become an attractive choice at hand to explore these latent
neuronal dynamics. In this scenario, DCM may offer a
unique insight into these dynamics by exploring the effective
connectivity within and between cortical regions.

In light of the studies illustrated in this section, we can
ask whether DCM is indeed a dynome. Dynome and DCM
address the same questions, namely, how brain activity is
orchestrated among regions and how it varies depending on
the context. In Kopell et al. [78], it was argued that DCM
relies on abstract biological generative models. Although this
was true for the earliest models, the latest ones account
for subtle features like the presence of four different neu-
ronal populations, the introduction of electrophysiological
properties of neurons [88], and the dependence on space
[115]. These ingredients make the latest generative models
biologically meaningful. To foster even more their reliability,
DCM neuronal models would have to include the role of
glial cells, internal (e.g., thermal) noise in neurons, and
dendritic backpropagation [15]. Regarding the connections
between brain nodes, dynome and DCM share the fact that
they do not model the brain as an entity; yet, they are
different. In DCM, several sources can be modelled and
interact by making connections among them. On the other
hand, dynome investigates local networks and treat them
as independent building blocks [78], which is a biological
deficiency on its own.

In short, both DCM and dynome approximate the
dynamics of the brain. In that sense, it is hard to say that
one is more physiological than the other. Notwithstanding
their differences, DCM, dynome, and other methodological
techniques that use varying temporal scales allow us to
better apprehend the rich spatiotemporal landscape of brain
dynamics.
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