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This paper investigates two types of eye movements: vergence and saccades. Vergence
eye movements are responsible for bringing the images of the two eyes into corre-
spondence, whereas saccades drive gaze to interesting regions in the scene. Control
of both vergence and saccades develops during early infancy. To date, these two types
of eye movements have been studied separately. Here, we propose a computational
model of an active vision system that integrates these two types of eye movements.
We hypothesize that incorporating a saccade strategy driven by bottom-up attention will
benefit the development of vergence control. The integrated system is based on the active
efficient coding framework, which describes the joint development of sensory-processing
and eye movement control to jointly optimize the coding efficiency of the sensory system.
In the integrated system, we propose a binocular saliency model to drive saccades based
on learned binocular feature extractors, which simultaneously encode both depth and
texture information. Saliency in our model also depends on the current fixation point.
This extends prior work, which focused on monocular images and saliency measures
that are independent of the current fixation. Our results show that the proposed saliency-
driven saccades lead to better vergence performance and faster learning in the overall
system than random saccades. Faster learning is significant because it indicates that
the system actively selects inputs for the most effective learning. This work suggests
that saliency-driven saccades provide a scaffold for the development of vergence control
during infancy.

Keywords: active efficient coding, saccades, vergence, binocular saliency map, generative adaptive subspace
self-organizing map, reinforcement learning

INTRODUCTION

Biological vision systems are often active and rely on a number of eye movements to sense the
environment. Remarkably, these vision systems have the ability to autonomously self-calibrate, but
the underlying mechanisms are still poorly understood. Here, we focus on vergence and saccadic
eye movements. Vergence eye movements are slow and disconjugate (the two eyes move in opposite
directions). They serve to align the images acquired by the two eyes so that they can be binocularly
fused. Saccadic eye movements are rapid and conjugate (the two eyes move in the same direction).
They serve to direct gaze so that the fovea, the region with highest visual acuity, falls on objects of
interest. The two types of eye movements often cooccur. For example, they are both involved when
eyemovements aremade to direct gaze toward different objects in a 3D scene (Yang et al., 2002). The
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association between vergence and saccades facilitates the imaging
of objects of interest onto the fovea of both eyes (Zee et al., 1992).

Saccades are of great importance for human vision. At any time,
the visual system receives a large amount of information from
the environment, but has limited capacity for sensing and signal
processing. Humans use saccades to direct foveal vision toward
places with relevant information (Yarbus, 1967; Renninger et al.,
2007). These saccades can be driven by top-down (Gao et al.,
2009; Kanan et al., 2009; Yang and Yang, 2012) or bottom-up
(Itti et al., 1998; Hou and Zhang, 2007; Zhang et al., 2008; Bruce
and Tsotsos, 2009; Han et al., 2011) attention mechanisms. Top-
down attention is voluntary and task-driven, whereas bottom-
up attention is involuntary and stimulus-driven. We focus here
on the bottom-up mechanism, where saccades are assumed to
be generated according to a saliency map, which assigns salience
to different points on an image by combining a number of low-
level features. For example, Itti et al. (1998) proposed to generate
a saliency map by combining the outputs of feature maps that
are sensitive to different features, such as color, intensity, and
orientation. Since the primary visual cortex (area V1) is one of
the first stages of visual information processing, many models
have been inspired by the processing found there. For example, Li
(2002) proposed to generate the saliency map by combining the
responses of model V1 neurons tuned to input features such as
orientation and color. The attention based on information max-
imization (AIM) saliency model, proposed by Bruce and Tsotsos
(2009), combines feature maps generated by a set of learned basis
functions that are similar to the receptive fields of V1 neurons.

Most proposed saliency models, including those described ear-
lier, assume monocular images, ignoring the importance of depth
in human vision. Depth cues play an important role in visual
attention (Wolfe and Horowitz, 2004) and have a strong rela-
tionship with objects, since depth discontinuities suggest object
boundaries. Although some saliency models have incorporated
depth cues, they have typically processed depth and 2D texture
information separately, e.g., by combining saliency maps com-
puted by considering each cue in isolation. For example, Wang
et al. (2013) proposed a visual saliency model that combines a
saliency map computed from disparity with a saliency map com-
puted frommonocular visual features. Liu et al. (2012) proposed a
saliency model where disparity information is extracted by taking
the difference between the left and right images. They compute the
overall saliency as the weighted average of the saliencies computed
from disparity, color, and intensity separately.

We describe here an integrated vision system that combines
binocular vergence control and binocularly driven saccadic eye
movements. This system extends prior work on learning binoc-
ular vergence control using the active efficient coding (AEC)
framework, first proposed by Zhao et al. (2012). The AEC frame-
work is an extension of Barlow’s (Barlow, 1961) efficient coding
hypothesis, which states that the activity of the sensory-processing
neurons encodes their input using as few spikes as possible. A
primary prediction of the efficient encoding hypothesis is that
the properties of the sensory-processing neurons adapt to the
statistics of the input stimuli. The AEC framework extends the
efficient coding hypothesis to include the effect of behavior. It
posits that in addition, the organism’s behavior adapts so that
the input can be efficiently encoded. By combining unsupervised

and reinforcement learning, AEC simultaneously learns both a
distributed representation of the sensory input and a policy for
mapping this representation to motor commands. Thus, it jointly
learns both perception and action as the organism behaves in the
environment. In previous work, AEC has been shown to model
the development of many reflexive eye movements and other
behaviors, such as vergence control (Zhao et al., 2012; Lonini et al.,
2013; Klimmasch et al., 2017), smooth pursuit (Zhang et al., 2014;
Teulière et al., 2015), optokinetic nystagmus (Zhang et al., 2016),
the combination of vergence and smooth pursuit (Vikram et al.,
2014), and imitation learning (Triesch, 2013).

We make several contributions in this work. First, in the origi-
nal work byZhao et al. (2012), saccadeswere generated completely
randomly. This paper integrates the vergence control process with
a more realistic model of saccade generation. Second, we extend
Bruce and Tsotsos’s (Bruce and Tsotsos, 2009) AIM saliency
model, which was formulated for monocular images, to binocular
images. In particular, instead of using a set of fixed pre-trained
monocular basis functions learned on a separate database, our
model uses a set of binocular basis functions that are learned
as the model agent interacts with the environment. These low-
level binocular features integrate depth and texture information
much earlier than in the prior work described earlier and are
consistent with what is known about the visual cortex. Poggio
and Fischer (1977) claimed that most cortical neurons (84%) are
sensitive to the depth of a stimulus. Third, we propose a saliency
model, where the saliency of a given point depends upon the
current fixation point, whereas most prior saliency models have
assigned saliency independently of the current fixation point. In
this version of the saliency model, image points that are different
from the current fixation point in terms of appearance or depth are
more salient. Fourth, rather than treating saliency and vergence
control as two separate problems, our model exhibits a very close
coupling between the two. Not only are the two behaviors learned
at the same time but they also share the same set of low-level
feature detectors.

MATERIALS AND METHODS

Architecture Overview
Our model assumes the robot is in an environment that has mul-
tiple objects located at different depths. We have made a video1

to demonstrate how our system works in the iCub simulator
(Tikhanoff et al., 2008). One frame of the video is shown in
Figure 1. The system drives the robot eyes to saccade to different
fixations chosen according to a probability distribution over the
points in the scene. This probability distribution is derived from
the saliency map of the scene. Fixations last 400ms. During each
fixation, the system controls the vergence eye movement. After
each fixation, the robot saccades to another fixation point in the
environment.

The architecture of the integrated active vision system is illus-
trated in Figure 2. It consists of three main parts: the perceptual
representation mechanism, the saccade control mechanism, and
the vergence control mechanism.

1The video is available online at https://youtu.be/axgbhDER1ow.
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FIGURE 1 | The virtual environment in the iCub simulator. The two red rays
indicate the eye gaze vectors. The inset at the lower right hand corner
outlined in red shows a red-cyan anaglyph of the stereo images.

FIGURE 2 | The architecture of the model integrating vergence and saccadic
eye movements. Red regions in the saliency map correspond to high values
while blue regions correspond to low values. The red arrows identify the steps
in generating the saccade command. The blue arrows identify the steps in
generating the vergence command.

The inputs to the system come from pairs of sub-windows from
the left and right camera images. The input to the saccade control
mechanism comes from the largest pair of sub-windows, which
cover most of the images. This pair is down-sampled to generate
a coarse scale representation. The input to the vergence control
mechanism comes from three pairs of sub-windows: a pair of

small fine scale sub-windows, a pair of medium-sized medium
scale sub-windows, and a pair of large coarse scale sub-windows.

The perceptual representation mechanism encodes the binoc-
ular image inputs using a distributed representation learned using
the generative adaptive subspace self-organizing map (GASSOM)
algorithm (Chandrapala and Shi, 2014). The GASSOM model
is a statistical generative model for time-varying sensory input
that combines both sparsity and slowness. The same perceptual
representation is used to generate the input to both the saccade
and the vergence control mechanisms.

The vergence controlmechanismmaps theGASSOMrepresen-
tation of the binocular inputs at all three scales to a set of discrete
vergence actions. The vergence action is chosen according to a
probability distribution computed using a neural network with
a softmax output. The image input in the next iteration changes
because of the vergence action.

The saccade control mechansim maps the GASSOM represen-
tation of the entire left and right eye images at the coarse scale to a
fixation point by sampling the fixation point from a 2Dprobability
distribution generated by a binocular saliency map. The saliency
control policy also includes inhibition of return (IOR) to prevent
the system from returning to a previously generated fixation too
quickly. Saccades move the eyes to the selected fixation point
while keeping the vergence angle the same.

Below, we describe in more detail the experimental setup and
the three parts of the integrated active vision system. To avoid clut-
ter in the notation, we do not indicate time explicitly. However, it
should be understood that most quantities evolve over time either
due to the agent’s behavior in the environment, e.g., the inputs
and actions, or due to learning, e.g., the network weights. Both
behavior and learning progress simultaneously.

Experimental Setups
We trained and tested our system in two different simulation
environments: the Tsukuba environment and the iCub environ-
ment. Most experiments are implemented in the Tsukuba envi-
ronment. The results of experiments using the iCub environment
are reported in Figures 5 and 10.

The Tsukuba environment is based on the Tsukuba dataset
(Martull et al., 2012), which contains 1,800 photorealistic stereo
image pairs created by rendering a virtual 3D laboratory envi-
ronment. The environment contains objects located at various
depths, resulting in a large range of disparities. Each image has
size 640-by-480 pixels.

We simulated the effect of eye movements by extracting sub-
windows from a single pair of stereo images, where the locations
of the extracted sub-windows changes over time. In particular,
we define fixation points in the left and right images. The left
and right fixation points share the same vertical position, but are
offset horizontally by an amount modeling the vergence angle. If
the vergence angle is equal to the disparity in the original image,
then the fixation points correspond to the same point in the virtual
environment.

The stereo input to the saccade control mechanism is obtained
by extracting the largest equally sized sub-windows from the left
and right images such that the left and right fixation points are
aligned in the two sub-windows. Let M and N denote the vertical
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and horizontal sizes of the images in pixels. If the horizontal offset
between the left and right fixation points is d, then the upper left
and lower right locations of the sub-windows are (d, 1) and (M,N)
in the left image and (1,1) and (M-d+ 1, N) in the right image.
These sub-windows are down-sampled by a factor of 4, resulting
in a coarse scale representation. We applied bicubic interpolation
to implement the image down-sampling.

The stereo input to the vergence control mechanism is
obtained by extracting pairs of square sub-windows centered at
the fixation points and then possibly down-sampling to generate
pairs of 55-by-55 pixel images corresponding to three scales:
coarse, medium, and fine. The coarse scale input is obtained
by down-sampling 220-by-220 pixel sub-windows by a factor
of 4. The medium scale input is obtained by down-sampling
110-by-110 pixel sub-window by a factor of 2. The fine scale input
is obtained by extracting 55-by-55 pixel sub-windows without
down-sampling.

Simulations consist of 10 frame periods of fixation separated
by saccades. Assuming a frame rate of 25 frames per second,
each fixation lasts for 400ms. During each fixation, the horizontal
location of the right fixation point is adjusted according to the
command given by the vergence control mechanism. If learned
correctly, the vergence control mechanism adjusts the horizontal
shift so that both sub-images are centered on the same point in
the scene. We define the retinal disparity to be the difference
between the shift and the original image disparity. When the
retinal disparity is 0, the images in the left and right sub-windows
are aligned. The binocular image pair is changed after every 30
fixations (300 frames), modeling a change in the scene.

Between fixations, the system uses the saccade mechanism to
choose the left image fixation point. The right image fixation point
is located at the same vertical location but is offset horizontally
by a shift, which models the vergence angle. The initial vergence
angle of each fixation is the same as the last vergence angle from
the previous fixation.

The iCub environment runs in the iCub simulation platform
(Tikhanoff et al., 2008). The iCub is a humanoid robot with an
active binocular vision system. The horizontal and vertical field
of view are 64° and 50°, respectively. To simplify the simula-
tion of the environment, we created the iCub world using some
simple objects as shown in Figure 1. The virtual environment
in front of the iCub robot contains a number of frontoparallel
planar surfaces: a large background plane at a depth of 2m, and
five smaller planes of size 0.6m× 0.6m square placed at vary-
ing depths between the iCub and the background plane and at
varying frontoparallel offsets. The planes are textured with images
randomly chosen from theMcGill natural image database (Olmos
and Kingdom, 2004). Binocular images pairs with size 320-by-240
pixels are generated by rendering this environment based on the
positions and gaze angles of the two eyes.

In our simulations, the iCub remains stationary, except for
changes in the gaze directions of its left and right eyes, which
are controlled by three degrees of freedom: the version, tilt, and
vergence angles. As in the Tsukuba environment, simulations
consist of 10 frame periods of fixation separated by saccades.
However, the left and right fixation points are both fixed at the
center of the images. Saccades between fixations are implemented
by changing the version and tilt angles, which are common to

both eyes. During saccades, the vergence angle remains constant.
During fixation, vergence eye movements are implemented by
changing the vergence angle between the two eyes while keeping
the version and tilt angles fixed. The iCub environment is more
realistic than the Tsukuba environment, but simulations are more
time consuming due to the rendering. Every 30 fixations (300
frames), the virtual environment is changed by choosing a new
set of images from the database to apply to the planar surfaces and
by randomizing the depths and positions of the smaller surfaces.

Perceptual Representation Mechanism
The vergence and saccade control mechanisms are based on the
same perceptual representation mechanism applied to the left
and right eye inputs. The left and right eye images are divided
into 2D arrays of 10-by-10 pixel patches. For saccade generation,
the patches are offset by a stride of one pixel. For the vergence
control, the patches are offset by a stride of five pixels. At each
scale s and for each pair j of corresponding patches in the left and
right eye sub-windows, we concatenate the image intensities into
a 200-dimensional binocular vector,

xs,j =
[
xL,s,j
xR,s,j

]
∈ R200 (1)

where s∈ {C, M, F} (C, M, F stand for the three scales: coarse,
medium, and fine scale, respectively), and the monocular vectors,
xL,s,j and xR,s,j, contain the pixel intensities from the left and right
image patches, which are normalized separately to have zeromean
and unit variance.

The representationmechanism has three sets ofN= 324 binoc-
ular feature extractors, each set corresponding to one scale. The
binocular stimulus xs ,j is encoded by the set of feature extractors
at the associated scale s. The n-th feature extractor in scale s
is defined by a two dimensional subspace of the input space,
which is spanned by the basis defined by the columns of a matrix
Φs,n ∈ R200×2 where n∈ {1, . . . , N}. Given an input patch vector
xs ,j, the response of the n-th feature extractor is defined to be the
squared length of the projection of xs ,j onto the subspace defined
by Φs,n:

rn(xs,j) =
∥∥∥ΦT

s,nxs,j
∥∥∥2

(2)

where the superscript T denotes the transpose operation. For each
feature extractor Φs,n, we define the response map to be the 2D set
of responses of that feature detector to the 2D array of patches.

The operations involved in computing the response maps are
similar to those used in computing the binocular energy model,
which is commonly used to model the responses of orientation,
scale, and disparity tuned binocular complex cells in the pri-
mary visual cortex (Ohzawa et al., 1990). The subspace projection
operation computes two weighted sums of the binocular image
intensities. Thus, each basis vector (column of Φs,n) is analogous
to the linear spatial receptive field of a binocular simple cell. After
learning, these basis vectors exhibit Gabor-like structures and are
in approximate spatial phase quadrature (Chandrapala and Shi,
2014). As in the binocular energy model, the response rn(xs,j)
combines the squared magnitudes of two binocular simple cells.
The magnitude of the response reflects the similarity between the
binocular image patch and the binocular receptive fields.
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The subspaces are initialized randomly and develop according
to the update rules for the GASSOM algorithm described in
Chandrapala and Shi (2014). The GASSOM exploits the concept
of sparsity by using only one subspace to represent the input and
captures the slowness by assuming that the subspace representing
x(t) ismore likely to be the same as the one that generated x(t− 1).
The model parameters, e.g., the matrices Φs,n, are learned in
an unsupervised manner, by maximizing the likelihood of the
observed data. The update to each subspace is calculated by

ΔΦs,n =
∑
j
hs,n · x̃s,j,n ·

xTs,jΦs,n

∥x̂s,j,n∥ ∥xs,j∥
(3)

where hs,n determines the amount that subspace Φs,n is updated
towards the observation, x̃s,j,n = xj − x̂s,j,n is the difference
between the input xj and its projection onto subspace Φs,n, where
the projection is computed by x̂s,j,n = Φs,nΦT

s,nxj. Thus, each
subspace at time t is updated by

Φs,n(t) = Φs,n(t − 1) + λΔΦs,n(t − 1) (4)

where λ > 0 is the learning rate.
Under the AEC framework, both the GASSOM model parame-

ters and the parameters of the vergence control policy (described
below) are learned simultaneously.

Vergence Control Mechanism
The vergence control mechanism maps the visual input to a
probability distribution over a discrete set of 11 possible vergence
actions Averg. For the Tsukuba environment, the 11 discrete ver-
gence actions are Averg = {−16, −8, −4, −2, −1, 0, 1, 2, 4, 8,
16} pixels, which modify the shift between the centers of the left
and right sub-windows. For the iCub environment, the vergence
actions are Averg = {−3.2, −1.6, −0.8, −0.4, −0.2, 0, 0.2, 0.4, 0.8,
1.6, 3.2} degrees.

The vergence control policy is implemented by a two layer
neural network. The input to the network is a 3N-dimensional
vector:

rverg =

rC
rM
rF

 (5)

where for each s∈ {C, M, F}, rs ∈ RN is obtained by spatially
pooling the response maps of the feature detectors at scale s:

rs =



1
P

P∑
j=1

r1(xs,j)

...
1
P

P∑
j=1

rN(xs,j)


(6)

where P= 100 is the number of the patches.
The output layer of the network contains 11 neurons, each

corresponding to a possible vergence command. The vector of
activations to the output neurons, zverg ∈ R11, is computed as:

zverg = θθθTrverg (7)

where θθθT ∈ R972×11 is a matrix of synaptic weights.
The vector of probabilities for selecting the different vergence

actions, πππverg ∈ R11, is calculated by applying a softmax operation
to the activation vector zverg:

πππverg = softmax
(
zverg/βverg

)
(8)

where the softmax function y= softmax(z) is defined component-
wise by:

yi =
exp (zi)∑11
k=1 exp (zk)

(9)

for i∈{1, . . . , 11} The temperature parameter, βverg, balances
exploration and exploitation during reinforcement learning. In
the following experiments, βverg is set to 1.

The neural network weights develop according to the natural
actor-critic reinforcement learning algorithm (Bhatnagar et al.,
2009). In our system, the reinforcement learner seeks a vergence
control policy thatminimizes the error in the perceptual represen-
tation of the sensory input, or equivalently maximizes the fidelity
of the perceptual representation. We define the instantaneous
reward to be the negative of the average squared reconstruction
error across the three scales, which is defined by

Rverg = −Eavg = −1
3

∑
s∈S

Es (10)

where Es is the mean squared reconstruction error at scale s
averaged across all patches. The reconstruction error of each patch
is defined as the squared length of the residual between the input
vector xs,j and its projection onto the best-fitting subspace:

Es =
1
P

P∑
j=1

∥∥∥xs,j − ΦT
s,ms,j · xs,j

∥∥∥2
(11)

where ms,j is the index of the best-fitting subspace for xs,j,

ms,j = arg max
n

∥∥∥ΦT
s,n · xs,j

∥∥∥2
. (12)

The weight matrices of the value and policy networks are
updated during fixation, but not across saccades.

Saccade Control Mechanism
Binocular Saliency Model
The binocular saliencymap is generated using binocular attention
based on information maximization (BAIM), which we propose
as a binocular extension of the AIM model of Bruce and Tsot-
sos (2009). The BAIM architecture is illustrated in Figure 3. In
essence, we replace the monocular basis functions learned by ICA
in the AIM model with the binocular basis functions learned
by GASSOM. Whereas the monocular basis functions encode
only texture information, the binocular basis functions used here
jointly encode depth and texture information. Since our experi-
ment use only gray scale images, we do not jointly encode color
as in the experiments by Bruce and Tsotsos (2009). However, the
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FIGURE 3 | The architecture of the binocular attention based on information maximization (BAIM). The left and right parts of image patches and basis vectors are
shown as 10-by-10 pixel images and aligned vertically. Red regions in the response maps and saliency maps correspond to high values while blue regions
correspond to low values. The red squares in the response maps represent the local area where response histograms are generated.

extension to include color is straightforward, involving only an
expansion of the size of the input vector.

The computations to obtain the salience map are performed
at the coarse scale. We assign saliency values to 10-by-10 pixel
patches, which are extracted with a stride of one. Given coarse
scale images with size M1 ×M2, we obtain a 2D array of Psal =
(M1 − 9)× (M2 − 9) binocular patches. To obtain a saliency map
at the original resolution, we use zero padding to increase the size
of the coarse scale map to M1 ×M2 pixels and then upsample by
a factor of 4.

The saliency value for the j-th coarse scale binocular image
patch, S(xC,j), is a measure of how informative or unlikely the
responses of the GASSOM feature detectors are in the context of
the responses from the other patches. More specifically, it is the
sum of saliency values computed for individual feature extractors
in the GASSOM representation, Sn(xC,j):

S (xC,j) =
∑N

n=1
Sn (xC,j). (13)

The saliency of each feature extractor is the Shannon self-
information of the response:

Sn (xC,j) = −ln pn [rC,n (xC,j)] (14)

where pn[·] is the probability distribution of the responses of
the n-th feature extractor at the coarse scale, which we estimate
empirically using a histogram. Each response map is normalized
to the range 0–1. The histogram of each responsemap is generated
using K =

√
Psal equal width bins:

pn [rC,n (xC,j)] = α + (1 − α)
K−1∑
k=0

hn(k) · 1[
k
K ,

k+1
K

)(rC,n (xC,j))

(15)
where

1[a,b) (x) =

{
1 if x ∈ [a, b)
0 if x /∈ [a, b)

(16)

is an indicator function with a and b as free parameters. The
parameter α = 10−6 is a small number that guarantees that the
response probabilities are non-zero. The coefficients

hn(k)=
1
Psal

Psal∑
j=1

1[
k
K ,

k+1
K

)(rn (xC,j)) for k ∈ {0, 1, 2, ...,K − 1}

(17)
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are empirical estimates of the probability that the response falls
into the k-th bin computed over Psal patches.

We considered both global binocular attention based on infor-
mation maximization (GBAIM) and local binocular attention
based on information maximization (LBAIM) versions of the
saliencymap, which differed according to patches used to estimate
the coefficients hn(k) in Eq. 17. In the GBAIM model, the coeffi-
cients were computed by summing over all coarse scale patches.
In the LBAIM model, the sum was over only the coefficients from
a 31× 31 array of patches centered around the current fixation
point. The LBAIM model tends to favor patches where the GAS-
SOM responses are more unlike those in the local neighborhood
of the current fixation point.

To speed up computations, we use only a random subset of
the GASSOM feature extractors to compute the sum in Eq. 13.
To determine the size of the subset, we computed the correlation
coefficients (CCs) to measure the similarity between the saliency
maps generated by random subsets of feature extractors and by all
feature extractors. The CC between two saliency maps S1 and S2
is defined as:

CC =

∑
j (S1(xC,j) − μ1) (S2(xC,j) − μ2)√∑

j (S1(xC,j) − μ1)
2
√∑

j (S2(xC,j) − μ2)
2

(18)

whereμ1 andμ2 are themean saliencies in themaps.Figure 4 plots
the CCs averaged over salience maps computed from 1,800 pairs
of binocular images from the Tsukuba dataset. For each saliency
map, the subsets of a certain number of feature extractors are
chosen randomly from all 324 feature extractors. Using only 25
feature, extractors generates a BAIM saliency map that is very
similar to the one using all 324 features. Thus, in our experiments,
we sum over 25 randomly selected feature extractors.

Inhibition of Return
Given the current fixation, a saccade target for the next fixation
is generated by combining the saliency map at the full image

FIGURE 4 | The average correlation coefficient (CC) values between the
binocular attention based on information maximization (BAIM) saliency maps
generated by all feature extractors and the saliency maps generated by
different subsets of feature extractors. A logarithmic scale is used on the
x-axis. Error bars represent 95% confidence intervals for the mean values of
the CCs.

resolution with a simple IOR mechanism (Dorris et al., 2002),
which prevents the system from saccading to recently visited
image locations.

Defining the full resolution saliencymap by S(j) where j indexes
the patch, we choose the next fixation point by sampling from the
probability distribution

p (j) =
S (j) · IOR (j)∑
k S (k) · IOR (k) (19)

where IOR(·) is a mask that suppresses recently visited image
locations.

Posner and Cohen (1984) indicate that the currently attended
region is inhibited for approximately 500–1,000ms. Since fixa-
tions last for 10 frames, and assuming a frame rate of 25 frames
per second, we prevent the system from visiting the last two fixa-
tion points, resulting in a 800ms long IOR window. Assuming the
indices of most recent and second most recent fixation locations
are j1 and j2, we set

IOR (j) = f
(
j, j1, σ2

1

)
· f

(
j, j2, σ2

2

)
(20)

where

f
(
j, k, σ2

)
= 1 − exp

−

∥∥∥pj − pk
∥∥∥2

2σ2

. (21)

where pj is the 2D image location of patch j, σ1 = 20 pixels and
σ2 = 10 pixels.

RESULTS

BAIM-Driven Saccades Accelerate
Vergence Learning
We compared the rate at which vergence control policies emerged
and the quality of the final polices under different saccade control
policies including a random policy where p(m, n) in Eq. 19 was
uniform over all image locations and policies where S(m, n) in
Eq. 19 was computed according to the saliency model of Itti et al.
(1998), theAIMmodel (Bruce andTsotsos, 2009), and theGBAIM
and LBAIM models proposed here.2

Figure 5 shows the evolution of the root mean squared error
(RMSE) between the learned vergence control policies during
training and the ideal policy that zeros out the input disparity in
both the Tsukuba and the iCub environments. For the Tsukuba
environment, we ran three training trials for each saccade control
policy. We set the same learning rate for the vergence control
learner to make all the saccade methods comparable. Each trial
used binocular inputs generated by disjoint sets of 120 randomly
chosen stereo images, but we used the same image sets to train the
different saccade policies. We sampled the vergence policies at 20
equally spaced checkpoints during training. At each checkpoint,
we presented the policy with inputs with initial disparities ranging

2We implemented Itti’s and AIM saliency model by using the code available at
http://www.vision.caltech.edu/harel/share/gbvs.php and http://www-sop.inria.fr/
members/Neil.Bruce/#SOURCECODE. Our implementations of the GBAIM and
LBAIM are based on the code of the AIM saliency model.
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FIGURE 5 | The evolution of the root mean squared error (RMSE) of the vergence control policy for different saccade control policies over training in (A) the Tsukuba
environment and (B) the iCub environment. Error bars indicate the SD computed over three training runs.

from −20 to +20 pixels and let the vergence policy run for 10
iterations. The RMSE in pixels was computed as the square root
of the mean squared retinal disparity after 10 iterations averaged
over all initial disparities and 100 inputs per disparity. The images
used to characterize the policies at all testing points and for all
saccade policies were identical and disjoint from those used in
training. For the iCub environment, we also ran three training
trials for each saccade control policy. Each trial was conducted in
a different randomly generated environment with disjoint sets of
image texturesmapped on to the surfaces. The same environments
were used to train under different saccade policies. During testing,
the iCub was presented with frontoparallel surfaces at depths
ranging from 0.5 to 2.0m and textures disjoint from those used in
training and allowed to verge for 10 iterations starting from initial
vergence angles ranging from 0° to 10°. The RMSE of the final
vergence anglewas averaged over all depths and all initial vergence
angles.

As shown in Figure 5, the random saccade policy performs the
worst, resulting in the largest vergence control policy RMSE at
the end of training. The two BAIM-driven saccade policies result
in the best final performance. Although there is little difference
between the two final policies, the LBAIM model exhibits faster
vergence learning, with a faster decrease in the RMSE. The two
monocular saccade models result in vergence control policies
with RMSE values lying between those learned under random
and binocularly driven saccades, with the AIM model exhibiting
slightly faster learning and lower final RMSE.

Figure 6 shows visualizations of the final policies learned in the
Tsukuba environment. It is clear that the final vergence control
policies learned using the BAIM-driven saccades are closer to the
ground truth. The “blurred” images for the policy learned using
random and monocular saliency driven saccades indicate that the
policies are less reliable in zeroing out the retinal disparity.

BAIM-Driven Saccades Select Image
Regions with Higher Entropy
To understand better how the different saccade policies lead to
vergence control policies with different performance, we exam-
ined the entropy of the image regions around the fixation points

chosen by the different saccade policies. The entropy is defined as:

E = −
∑
i
pilog2 (pi) (22)

where pi is the probability of the pixel intensity value i, which
is estimated from the histogram of pixel intensity values. The
entropy is a measure of the spread of gray values and is one
measure of the information content. Image regions whose pixels
all have the same intensity have zero entropy. Textured regionswill
havemore variability in gray levels, and therefore a higher entropy.
Intuitively, it will be harder to learn vergence from regions without
texture (with lower entropy).

Figure 7 shows the median entropies computed over the
55-by-55 pixel fine scale sub-windows at the fixation points
selected by the different saccade control methods. The statistics
were collected over 1,800 sub-window pairs. For each of the 180
stereo image pairs obtained by taking every 10th frame from
the 1,800 stereo image pairs in the Tsukuba dataset, we ran the
saccade/vergence policy learned after 100,000 iterations (the first
checkpoint in Figure 5) for 10 fixations (100 frames), and aver-
aged the entropies of the left and right sub-windows. Our testing
results for the learned systems at other checkpoints were similar.

BAIM-Driven Saccades Lead to Improved
Encoding of Small Disparities
By selecting different fixation points, the different saccade policies
expose the perceptual representation to binocular patches with
different statistics. Since the feature extractors evolve to maximize
the likelihood of the observed data, these differences in the input
statistics will be reflected as differences in the learned feature
extractors.

To study these differences, we learned feature detectors in the
Tsukuba environment using sub-windows centered at fixation
points chosen by the different saccade control policies. Since
differences in the vergence control policies will affect the input
disparity statistics, we chose the vergence angles so that the reti-
nal disparities d between the fixation points followed a discrete
truncated Laplacian distribution between −40 and +40 pixels:

P (d) = Me
−|d|�D , d ∈ {−40, −39, ..., 40} (23)
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FIGURE 6 | Visualizations of the final vergence policies after training. Each policy is presented as an image. The horizontal axis indicates the initial disparity and the
vertical axis indicates the change in vergence after 10 iterations of the policy. The intensity of each pixel corresponds to the probability of the change in vergence
given the initial disparity, i.e., the entries in each column sum to 1. For the ground truth policy, the change in vergence is always the negative of the initial disparity.

FIGURE 7 | (A) The entropy histogram of the fine scale sub-windows selected by local binocular attention based on information maximization (LBAIM). The red line
indicates the median entropy. (B) The median entropy of the patches at the fixation points selected by different saccade control methods. The error bars represent
the SEM.

where M is a normalization factor that ensures that P(d) sums to
one. The parameter D controls the spread of the input disparities.
This enabled us to isolate the effects of the saccade policies on the
perceptual representations.

Figure 8 shows the average reconstruction error Eavg of the
perceptual representations after training under different saccade
control policies and assuming two different disparity statistics.
The values of Eavg are plotted as a function of the retinal disparity

Frontiers in Neurorobotics | www.frontiersin.org November 2017 | Volume 11 | Article 589

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Zhu et al. Joint Learning of Saccades and Vergence

FIGURE 8 | The average reconstruction error for the perceptual representations learned under different saccade control policies plotted as a function of the retinal
disparity between the sub-windows. The retinal disparity at the fixation points followed truncated Laplacian distributions with parameters: (A) D= 50 and (B) D=5.

FIGURE 9 | (A) The average reconstruction error as a function of the retinal disparity. (B) The experimentally estimated reconstruction errors of local binocular
attention based on information maximization (LBAIM) and the corresponding curve fit. (C) The change of the slope a/b over the training process. Larger slopes
indicate that the perceptual encoding exhibits a stronger preference for inputs with zero disparity. Error bars represent the SD computed over three training runs.

at the fixation points. They are computed by averaging the values
of Eavg computed according to Eq. 10 over sub-windows taken at
1,000 fixation points from 100 images in the Tsukuba dataset (10
fixations per image). Images used in testing were disjoint from
those used in training.

In general, the curves have a characteristic “V” shape, being
symmetric around and achieving their minima at zero disparity.
This suggests that the perceptual representation is adapted to
best represent binocular stimuli with zero disparity and that there
are more feature extractors tuned to zero disparity. There is no
preference for positive or negative disparity stimuli. These obser-
vations are consistent with the distribution of retinal disparities
in the input, which is peaked at and symmetric around 0. The
“V” shape indicates small reconstruction error at 0 and large

average reconstruction error at large disparities. The “V” shape
is more pronounced the more tightly the input disparity statistics
are clustered around zero disparity, which is obtained by choosing
a smaller value of D in Eq. 23.

Figure 9A shows the reconstruction error curves of the per-
ceptual representations learned after joint learning under dif-
ferent saccade control policies. The differences are much more
pronounced, with curves corresponding to the BAIM-driven sac-
cade policies exhibiting much more pronounced “V” shapes.
To quantify how pronounced those “V” shapes are, we fit the
reconstruction error curves with the function

fa,μ,b,c (d) = c − a · exp
(

−|d − μ|
b

)
(24)
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where c is a vertical offset, μ sets the location of the minimum,
and a and b control the slope and depth of the “V,” respectively.
Figure 9B shows one example of a fit. We measure the sharpness
of the “V” by the ratio a/b, which is the absolute value of the slope
at μ. Figure 9C shows the evolution of the slope during training
under the different saccade control policies. In all cases, the slope
increases over time, indicating that the basis functions evolve so
that they provide a better encoding of stimuli with zero disparity.
However, the rate and magnitude at which the slope increases are
largest under the BAIM-driven saccade control policies.

LBAIM-Driven Saccades Target Locations
with Different Disparities
Figure 5 indicates that the RMSE of the final vergence control
policies learned under the GBAIM and LBAIM saccade policies
are similar, but that the vergence control policy emerges faster
under LBAIM. The similarities between the reconstruction error
curves and slope trajectories of the perceptual representations
learned under GBAIM and LBAIM in Figures 8 and 9 suggest
that the faster learning is not due to differences in the perceptual
representation. Rather, we suggest the learning is faster because
LBAIM presents more challenging vergence control stimuli to the
system.

As a concrete example, Figure 10 shows two examples of
saliencymaps computed by LBAIM in the iCub environment. The
maps were computed in the same environment, which had two
objects with the same textures in front of the iCub: one on the left
at a closer distance and one on the right at a farther distance and
partially occluded by the closer object. Figures 10A,B show exam-
ple images from the left and right eye cameras. The two saliency
maps were computed assuming the iCub was fixating either on

FIGURE 10 | (A,B) Left (A) and right (B) eye images obtained from the iCub
simulator when the robot was viewing two planar objects: one on the left
which is closer and the other on the right which is farther. (C,D) Examples of
the local binocular attention based on information maximization (LBAIM)
saliency map computed with the iCub fixating on the closer (C) and farther
(D) objects. Bright regions correspond to high saliency. The red points
indicate the fixation point. The red squares indicate the local area over which
the empirical response histogram is computed.

the closer or the farther object. Comparing their intensities, we
observe that points on the closer object becomemore salient when
the iCub is fixating on the farther object and vice versa.

For a more comprehensive and quantitative comparison, we
estimated the expected absolute disparity difference between cur-
rent and next fixations for different saliency models according to

ΔD =
1
P

∑
i,j

|Di − Dj| p(i|j) (25)

where i indexes all possible next fixations, j indexes the current
fixation point, Di is the disparity at i, and P is the number of
current fixation points considered. The term

p (i|j) =
S (i|j)∑
k S (k|j) (26)

is the probability of choosing the next fixation point i given the
current fixation point j. It is similar to Eq. 19 except that we do
not include the IOR and that we make explicit the dependency
of the saliency map S(i|j) on the current fixation. For all of the
saliency mechanisms except LBAIM, the saliency map does not
change with the current fixation location.

The LBAIM saliency model shows a clear preference toward
selecting targets with disparities that are different from that at
the current fixation point. Figure 11 shows the expected absolute
disparity difference under different saccade policies normalized
by the expected absolute disparity difference under the random
saccade policy. The expected differences were estimated from data
in the Tsukuba data set, for which ground truth disparity data are
available. We selected 200 binocular images randomly from the
1,800 image frames in the video of the Tsukuba dataset. For each
binocular image, we computed the saliency maps at 10 fixation
points (i.e., P= 2,000).

Change of Reconstruction Error within
One Fixation
The average reconstruction error of the perceptual representation,
Eavg, plays a critical role in this system. Both the learning of the

FIGURE 11 | The estimated expected absolute disparity difference, ΔD, for
saccades generated by the different saliency models normalized by the
expected difference estimated using random saccades. The error bar
represents the SD.
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FIGURE 12 | (A) The running average of the normalized decrease in the average reconstruction error during fixation increases during training. (B) To isolate the effect
of the saccade policy from differences in the perceptual representation and the vergence policy, we plot the normalized decrease in average reconstruction error
when the same perceptual representation and vergence policy were used.

perceptual representation and the learning of the vergence control
policy seek to minimize Eavg. Large decreases in Eavg during fixa-
tion suggest that the vergence control reinforcement learning is
being exposed to “challenging” situations where there is potential
for large changes in the reward.

Figure 12A shows how the average decrease in Eavg during
fixation evolves over training under the different saccade control
policies. We define the normalized decrease across one fixation
(10 frames) as the difference between the values of Eavg at the start
and end of a fixation normalized by the value of Eavg at the start of
fixation, and compute the running average across 3,000 fixations.
The normalized decreases in Eavg under the BAIM-driven saccade
policies exhibit much larger and faster increases across training
than the monocular saliency and random policies.

We isolated the effect of the choice of saccade target on the
average normalized decrease in Eavg by using the same perceptual
representation and vergence policies during fixation, but choosing
the initial fixation points according to the different saccade con-
trol policies. In the results reported here, we used the perceptual
representation and vergence policies learned by LBAIM, but other
choices gave similar results. Figure 12B shows that the ordering of
the policies is preserved, but the relative differences between the
curves for different saccade policies are smaller.

DISCUSSION

We have described an integrated active vision system that com-
bines vergence control learning with saccade control based on
two novel binocular saliency models: LBAIM and GBAIM. These
models are based on binocular feature extractors that simultane-
ously encode both texture and depth information and that are
computed in a way similar to the binocular energy model, a com-
mon computational model for disparity and orientation selective
cells in the primary visual cortex. The algorithm assigns high
saliency to regions with high information content considering
either the LBAIM or GBAIM context.

Similar to the development of human infants, both the sac-
cadic and vergence control policies in our model are immature
at the start of simulation and emerge through interaction with
the environment. For the saccade policy, this is because the basis

functions are randomly initialized. For the vergence policy, this is
because both the basis functions and the weights in the actor and
critic networks are randomly initialized. The order in which these
policies emerge is the same as in humans. In our simulation, the
saccade policy develops before the vergence policy. In humans,
infants begin to look at edges or places with sharp and high-
contrast features from 1 to 2months of age (Bronson, 1990, 1991;
Colombo, 2001). Vergence develops at about 4months of age
(Aslin, 1977; Hainline and Riddell, 1995). However, the absolute
time scale atwhich these behaviors emerge differs.Wemeasure the
time it takes these policies to emerge in terms of fixations, since the
number of iterations required by themodel is somewhat arbitrary,
as it depends upon the choice of the time step. In our simula-
tions, the vergence policies when following the LBAIM saccade
policy emerge after about 30,000 fixations (300,000 iterations)
(Figure 5). Adult humans execute around 105 fixations/day,3 so
this corresponds to 3 days for an adult, but we expect this number
to be a bit larger as infants spend less time awake and their saccade
policies are immature. The saccade policy develops very quickly,
after about 100 fixations (see Supplementary Material), but this is
largely due to the fact that it depends only on the basis functions,
as much of the processing is hard coded in our model. We expect
that if we incorporated learning into more aspects of the saccade
control policy as is likely the case in humans, we would obtain a
much slower rate of emergence.

We could obtain simulations where vergence policies emerge
on the same timescales as in humans by lowering the learning
rate. However, we did not do so to avoid excessively long com-
putation time. We are primarily interested in the relative rates,
rather than absolute rates at which the policies emerge. Since
we use the same learning rate in all simulations, the faster rate
at which the vergence policy emerges when following the BAIM
saccade policies indicates that the system is actively choosing
inputs that allow for the most effective learning. While it is clear
that saccades are driven by a number of factors beyond obtaining
effective inputs to train vergence control, ourmodel does suggest a
complementary, and hitherto largely unappreciated, potential role
for saliency-driven saccadic eye movements.

3Here, we assume that adult humans are awake for 15 h/day and make 2 saccades/s.
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Our experimental results show that vergence control policies
learned with saliency-driven saccades all exhibit higher accuracy
and are learned faster than when saccades are driven randomly
(Figures 5 and 6). The BAIM-driven saccade policies result in
the highest accuracy and fastest learning. The primary function of
saccades (and attention in general) is commonly thought to direct
the limited neural processing of an organism to more important
stimuli. Our results suggest a new complementary role of saccades
in aiding in the learning of behavior.

Through our experiments with this model, we have identified
a number of different interacting factors that account for the
improved performance and faster learning.

First, differences in the saccade policies expose the system
to input patches with different statistics. All of the attention-
based saccade control models direct gaze toward image regions
with higher entropy than encountered with randomly gener-
ated saccades (Figure 7). Patches selected by the LBAIM models
have the highest entropy, followed by the GBAIM, Itti, and AIM
models.

Second, since the perceptual representations adapt to the input
statistics, these differences lead to differences in the perceptual
representations. Higher entropy patches contain more texture,
which provides more visual cues to disparity. Perceptual rep-
resentations learned using higher entropy patches encode dif-
ferences between zero and non-zero disparities better. Figure 8
shows the dependency between the reconstruction error and the
input disparity for the different perceptual representations. The
differences between the reconstruction errors for zero and non-
zero disparities follow the same trend as the entropy, being the
smallest for the random policy, and the largest for the LBAIM and
GBAIM policies. The difference also depends upon the statistics
of the disparities of the input patches, increasing the more the
disparities are concentrated around zero disparity (smaller values
ofD in Eq. 23). The magnitude of the reconstruction error at zero
disparity shows the opposite trend, achieving the largest value for
the random policy and the smallest values for the BAIM-based
policies.

Third, the differences between the reconstruction error curves
in Figure 8 are amplified during joint learning by a positive
feedback loop setup by the interaction between the learning of the
perceptual representation and the learning of vergence control.
Both learners seek to maximize the same reward: the average
negative reconstruction error of the perceptual representation.
Initially, the disparity statistics will be similar, since the vergence
policies are initialized with randomweights. The different saccade
policies will result in slightly different reconstruction error curves.
The lower reconstruction error at zero disparity and the larger
difference between the reconstruction error at non-zero and zero
disparities for the BAIM-driven saccade control will cause the
reinforcement learner to favor more strongly the emergence of
vergence policies that seek to 0 out the retinal disparity, resulting
in a slightly better vergence control policy. In turn, the bet-
ter vergence policies cause the distribution of retinal disparities
presented to the perceptual representation to be more tightly
clustered around 0. The perceptual representation will respond
by allocating more basis functions to represent zero disparity
inputs. This further reduces the reconstruction error for zero

disparity inputs and increases the difference at non-zero and zero
disparities. This in turn improves vergence control and the cycle
continues. Figure 9A shows the net effect of this positive feedback
loop by plotting the reconstruction error curves of the percep-
tual representations learned after joint learning under different
saccade control policies. The differences between the perceptual
representations are much more pronounced, with curves corre-
sponding to the BAIM-driven saccades policies exhibiting much
more pronounced “V” shapes. Figure 9B shows the dynamic
evolution of the slope of the “V” shape at its minimum point,
which is ameasure of the difference in reconstruction error at zero
and non-zero disparities. Small initial differences expand rapidly
under the positive feedback.

Finally, the BAIM-driven saccades direct the system to focus on
more “challenging” situations, i.e., those with larger initial retinal
disparity or those where the potential change in the reward are
larger. In particular, we find that the LBAIM algorithm, by empha-
sizing saccade targets that are different from the current fixation,
exposes the system to a wider diversity of input patch textures and
input disparities, which drives faster learning. Intuitively, saccades
between targets at different depths will present more challenges
for vergence control, since they require larger change in vergence
angle between the two eyes. In our system, vergence angle is
preserved across saccades. Thus, saccades to locations with the
same absolute disparity as the current fixation will require no
change in vergence angle, presenting less of a challenge to the
vergence control policy than saccades to targets with a different
absolute disparity.

The primary difference between the LBAIM and GBAIM
saliency models is that for the LBAIM model, the saliency
depends upon the current fixation point, whereas for the GBAIM
model, saliency is independent of the current fixation point.
This dependency is introduced due to the data used to compute
the coefficients of the empirical response histogram (Eq. 17).
For the LBAIM model, points whose feature extractor responses
are different from those around the current fixation point will
be more salient. Since the feature extractors encode disparity,
this implies that points with disparity different from the cur-
rent fixation point will be more salient under LBAIM. Thus, we
observe greater differences in disparity between adjacent fixations
(Figure 11).

We also observe larger reductions in reconstruction error dur-
ing fixations (Figure 12). These larger decreases are due to the
combination of a number of factors identified earlier. First, the
same reduction in retinal disparity will result in a larger decrease
in the reconstruction error for the BAIM policies, due to the more
pronounced “V” shape of the reconstruction error curves for the
BAIM policy. Second, the better quality of the vergence control
policies learned under BAIMwill result in larger changes in retinal
disparity. Third, the choice of saccade targets will influence the
change in two ways. By choosing saccade targets with larger
entropy, the effect of changes in the retinal disparity on the visual
input will be more pronounced, leading to larger changes in Eavg.
In addition, choosing initial fixation points with larger retinal
disparity will result in larger changes in Eavg. This final factor
likely accounts for much of the difference between LBAIM and
GBAIM.
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Future work will focus on learning all aspects of the saccade
and vergence policies simultaneously and under a common par-
simonious framework provided by active efficient encoding. For
example, although the BAIM saliency maps adapt to the statistics
of the sensory input because of changes in the binocular feature
detectors learned by theGASSOMalgorithm, theway inwhich the
feature detector outputs are integrated to construct the saliency
maps is hard coded. We are currently investigating how to learn
how to combine feature map outputs to generate saccade policies.
In addition, our model of saccades and vergence can be made
more realistic. In humans, some of the required vergence change
takes place during the saccade (Coubard, 2013), with the remain-
ing disparity canceled by vergence changes after the saccade. Our
current model is a simplification of this, since there is no change
in vergence during the saccade. It will also be interesting to extend
the framework here to include these initial vergence changes by
incorporating an estimate of the disparity of the target.
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