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’ INTRODUCTION

Scaffold diversity is one of many parameters that may be used
to characterize compound screening libraries.1 The balance
between the diversity of scaffolds within a library and the density
of coverage for each scaffold varies according to the library design
principles applied. Dense representation over small numbers of
scaffolds is often applicable in libraries focused on a particular
biological target class where thorough coverage of pharmaco-
phore space is desired, for example in kinase-focused libraries.2

However, such dense coverage of scaffold space may impart
significant redundancy due to over population with structurally
similar compounds. However, sparse representation of a large
number of scaffolds may also be problematic in a screening
library; for example, hit confirmation and rapid generation of
structure activity relationships is challenging for compounds that
are single exemplars of a particular scaffold. Thus the balance
between scaffold diversity and scaffold representation is an
important feature in library design and use.

In order to analyze the scaffold diversity of a compound
library, a suitable representation of a scaffold is required. The
definition of a scaffold often depends on the problem and the
expertise of the individual defining the scaffold. One frequently
applied description of a scaffold is the Markush structure, which
first appeared in a patent, filed by Eugene A. Markush of the
Pharma-Chemical Corporation in 1924.3 The patent claimed a
family of pyrazolone dyes and described a scaffold structure
appended with “R” groups to denote the substitution patterns
(Figure 1). Markush structures are generic and use variables to
encode more than one structure in a single representation.

Markush structures are often used in patent applications to
define the scope of a chemical series.4 However, Markush
structures often differ from how a medicinal chemist would
define the relevant scaffold of a chemical series. A scaffold may,

for example, define the core structure essential for pharmacolo-
gical activity and the appended substituent vectors define optimal
substitution patterns. For example, the HSP90 inhibitor NVP-
AUY922 (Figure 2a)5 is represented by a Markush structure
(Figure 2b) in the corresponding patent application.6 A medic-
inal chemistry representation of the scaffold may be more
granular (Figure 2c) to reflect the importance of the resorcinol
and isoxazole amide functionalities for pharmacological activity
as well as the benzylic amine substituent for aqueous solubility.5

A preferred scaffold representation is objective, invariant, and
is not data set dependent.7 One such method is the Murcko
framework, proposed by Bemis and Murcko in 1996 which has
been used to analyze the structures of known drugs.8 The
method dissects molecules into ring systems (Figure 2d), linkers
(Figure 2e), side chain atoms (Figure 2f), and the framework
(Figure 2g), which is the union of ring systems and linkers in a
molecule. A Murcko framework (Figure 2h) retains information
on atom type, whereas a graph framework8 (Figure 2i) reduces all
atoms to carbon and all bonds to single bonds.

There are examples of methods where the scaffold definition is
data set dependent, such as a Maximum Common Substructure
(MCS) search. In this approach, molecules are typically clustered

Figure 1. An interpretation of theMarkush structure as described in the
1924 Markush patent.3
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based upon their chemical fingerprints and for each cluster the
MCS is found: the compounds are then grouped based upon
their MCS.9 This method is data set dependent since different
compound data sets will result in a different cluster assignment
and therefore a different MCS.

The Murcko framework of a molecule can also be dissected
into more than one ring system by cleaving linker bonds between
rings in the Murcko framework. Compound libraries have been
analyzed by the ring systems present,10 which can be arranged in
a hierarchical tree according to complexity.11,12 The Scaffold
Tree13 is such an example of a hierarchical tree of ring systems.
The Scaffold Tree methodology takes each molecule in a library
and iteratively removes rings one by one, based on a set of
prioritization rules, until only one ring remains. Each molecule
has n+1 Levels numbered sequentially from Level 0 (the single

remaining ring) up to Level n (the whole molecule) where Level
n-1 is the Murcko framework (Figure 2j). The scaffold hierar-
chies of each molecule are then combined into a tree for the
whole library. The Scaffold Tree has been used in conjunction
with biochemical activity data for structure�activity relationship
(SAR) analysis14�17 but, to our knowledge, has not yet been used
for a scaffold diversity analysis of compound libraries, based upon
the number and frequency of scaffolds present, as described
herein.

A number of studies have been carried out to investigate the
diversity of compound sets based upon the frequency of scaffolds
present. For example, Bemis and Murcko identified 1179 scaf-
folds present in 5129 known drugs using the Murcko framework
definition of a scaffold.8 Half of the drugs in the data set were
based on the 32 most frequently occurring scaffolds, suggesting

Figure 2. The HSP90 inhibitor NVP-AUY922 depicted using different scaffold representations.
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that the scaffold diversity of known drugs is extremely low.
A similar analysis of the CAS (Chemical Abstracts Service)
Registry of over 24 million compounds also showed that a large
percentage of organic compounds are represented by only a small
percentage of scaffolds.18 These findings suggest that the more
frequently a scaffold has been used, the more likely it will be used
again. A similar conclusion is drawn from a study that looks at the
co-occurrence of fragments in the same molecule.19 It was found
that particular fragments and combinations of fragments were far
more frequent than others and were therefore termed “Chemical
Clich�es”.19

Compound libraries have also been analyzed in terms of the
topology of the scaffolds present. One study describes ring systems
present in the CAS Registry using three integer descriptors to
represent the topology of the ring system, thereby allowing the ring
systems to be plotted in 3-dimensional topology space.20 Some
areas of topology space were highly populated with significant voids
also observed. A subset of the CAS Registry flagged for “Ther-
apeutic Use” was mapped onto the topology space to represent
medicinally relevant rings. Two bounds were found that contain
these medicinally relevant rings, namely size and molecular com-
plexity; indicating that the scaffold space of medicinally relevant
rings is influenced by size constraints for druglike molecules and
ease of synthesis. Similar conclusions were reached in a study that
enumerated graph representations of scaffold topologies and ex-
amined frequency of occurrence in compound libraries.21

An analysis of the scaffolds present in a set of approximately
150,000 bioactive compounds found only 780 simple aromatic
scaffolds.22 A virtual library containing nearly 600,000 small
aromatic scaffolds was produced to assess how the biologically
active scaffolds covered chemical space. The scaffolds were
clustered in a Self-Organizing Map (SOM) which demonstrated
that biologically active scaffolds are sparsely distributed across
the virtual library forming well-defined activity islands. The
authors suggest three possible reasons for the lack of diversity
of bioactive molecules:
1 Biological activity is limited to a small area of chemical space;
2 Most small aromatic scaffolds are synthetically inaccessible;
3 The chemical space of small aromatic scaffolds is so large
that known bioactive compounds will only ever cover an
insignificant proportion of this space.

A similar investigation23 also suggested that some scaffolds are
more popular due to the synthetic ease of attaching other medicin-
ally relevant moieties; the accumulated synthetic and medicinal
chemistry knowledge on these more popular scaffolds makes them
more attractive for future use. A further study identified scaffolds
that have selectivity for target-gene families but finds that these
scaffolds are underrepresented in approved drugs.24

Metrics have been applied to quantify the distribution of mole-
cules over scaffolds. For exampleNC50C and PC50C quantify the
number of scaffolds and the percentage of scaffolds that represent
50% of molecules in a library.23 Studies using these metrics again
show that the distribution of molecules over scaffolds is skewed in
compound libraries.25 Shannon entropy may also be used to
describe the distribution of molecules over scaffolds. A Shannon
entropy of 0 indicates that all compounds contain the same scaffold;
a high Shannon entropy indicates that each scaffold represents the
same number of molecules and that the library is, therefore, evenly
distributed over the represented scaffolds.26

The studies discussed above highlight the lack of scaffold
diversity inmany compound libraries. Recently Pitt et al. generated

a collection of 24,847 virtual small aromatic rings named VEHI-
CLe (virtual exploratory heterocyclic library).27 Only 1701 of the
VEHICLe ring systems were identified as synthesized (i.e. in
existence). A machine learning approach predicted that over
3000 of the ring systems could easily be synthesized. This suggests
that only a small area of scaffold space is covered by synthesized
compounds and that a large area of scaffold space is synthetically
accessible.

In this work we analyze the scaffold diversity of 7 representative
compound libraries, including the ChEMBLdb, drug sets, vendor
libraries, and in-house screening collections. We compare the
Murcko framework and Scaffold Tree representations of scaffolds
for the first time and show that Level 1 of the ScaffoldTree is useful
for the characterization of scaffold diversity in compound libraries
and offers advantages over the use of Murcko frameworks. This
analysis also demonstrates that the majority of compounds in
the libraries we analyzed contain only a small number of well
represented scaffolds and that a high percentage of singleton
scaffolds represents the remaining compounds. Tree Maps have
recently been exemplified as a useful method for the two-dimen-
sional (2D) depiction of structure activity relationships using
dendrograms which incorporate molecule fragmentation
hierarchies.28 Here we demonstrate the use of Tree Maps to
visualize the distribution of molecules over scaffolds, and the
molecular similarity of the scaffolds, within a compound library.
This novel use of Tree Maps provides easily interpretable depic-
tions of compound library scaffold diversity for the medicinal
chemistry community.

’METHODS

Data Sets. The scaffold diversity analyses were performed on
7 data sets containing both publicly available and proprietary
compounds. They are described here and summarized in Table 1.
ICR Screening Collection (ICRSC). 79,742 Compounds from

the Institute of Cancer Research (ICR) in-house hit discovery
screening collection. This collection includes compounds se-
lected from multiple commercial vendors based upon in-house
developed filters for leadlike molecules as well as compounds
synthesized in-house.

Table 1. Summary of the Data Sets Used in the Scaffold
Diversity Analysis

data set description compounds

ICRSC compounds from the ICR’s

internal screening collection

79,742

VC compounds from the ICR’s

preferred vendors

1,923,627

ICRFL fragments from the ICR’s internal

screening collection

2448

CHEMBL compounds from the EBI’s

ChEMBL database. The CHEMBL

database compounds are taken

from the medicinal chemistry literature.31

530,038

DBSM small molecule drugs taken from

DrugBank34
4654

DBAD approved drugs taken from DrugBank34 1361

BIOFOC compounds from BioFocus

designed to target kinases35
10,000
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Vendor Collection (VC). 1,923,627 Compounds that are
commercially available from 11 of the ICR’s preferred vendors.
Compound libraries were downloaded directly from the vendors,
and compounds containing toxicophores were removed. Mol-
ecules with more than 35 heavy atoms or an AlogP greater than
6 were also removed.29

ICR Fragment Library (ICRFL). The fragment library
(ICRFL) contains 2448 fragments, either synthesized at the
ICR or purchased from vendors. [Fragment definition para-
meters: molecular weight: 150�300 Da (+20 Da for specific
groups), AlogP:e 3, H-bond acceptors:e 5, H-bond donors:e
3, topological polar surface area (TPSA): e 75 Å2, rotatable
bonds:e 4, heavy atoms:g 10, rings: 1�3, ring size: 3�7 atoms,
fused rings:e 2, number of sulfur atoms:e 1, number of halogen
atoms: e 1 (except fluorine), compounds containing toxico-
phores were removed.]
ChEMBLdb (CHEMBL). 530,038 Compounds from the EBI-

ChEMBLdatabase. ChEMBL-db consists of bioactive compounds
taken from the medicinal chemistry literature and is manually
curated by the EBI-ChEMBL team.30 CHEMBL represents
80% of the version (08) of ChEMBLdb, Version 03 was used in
this work.31

DrugBank. DrugBank is a bioinformatics and chemoinfor-
matics resource that combines chemical drug data with target
drug data. It contains small molecule drugs, FDA approved small
molecule and biotech (protein/peptide) drugs, experimental
drugs, and the protein or drug target sequences related to these
drugs.32,33 DrugBank Small Molecules (DBSM) contains 4654
small molecule drugs from DrugBank version 2.5, 1335 of which
are also contained in DrugBank Approved Drugs (DBAD).34

DrugBank Approved Drugs (DBAD) contains 1361 approved
drugs from Drug Bank version 2.5.34

BioFocus Kinase Focused Library (BIOFOC). Library of
10,000 compounds from BioFocus designed to target kinases.35

Scaffold Representations. To analyze the scaffold diversity
of the 7 data sets, two scaffold representations were used:
Murcko frameworks8 and the Scaffold Tree13 both of which
represent compounds containing cyclic systems. Murcko frame-
works were generated in Pipeline Pilot 7.036 using the Generate
Fragments component with the FragmentsToGenerate parameter
set to MurckoAssemblies; all other parameters were kept as the
default values.
The Scaffold Tree13 is a hierarchical classification of chemical

scaffolds. Murcko frameworks of the compounds in the library
are generated; these are leaf nodes of the Scaffold Tree. Lower
levels of the Scaffold Tree are obtained by iterative removal of
rings according to a set of prioritization rules that are designed to
retain the most richly functionalized ring systems and are
intended to be intuitive to a synthetic medicinal chemist. This
process continues until only one ring remains.13 We have
observed that, in the majority of cases, the most richly function-
alized ring system is retained; however, in compounds containing
an all carbon fused ring system, this scaffold is prioritized over a
single ring heterocycle in the same molecule which could be
regarded as more richly functionalized. The root node, the single
remaining ring after fragmentation, is named Level 0, and sub-
sequent levels or nodes in the tree are named numerically
(Figure 2j). There can be any number of levels to the Scaffold
Tree depending on the complexity of the molecules represented.
Compounds of different complexity have different numbers of
Levels in the Scaffold Tree; therefore, we sought a Level that the
majority of compounds in our representative data set possess. All

compounds of the Scaffold Tree possess Level 0; however, Level 0
always contains a single nonfused ring and is too generic to be a
useful scaffold representation; for example, many molecules are
reduced to the same single ring representation which lacks
sufficient granularity. Higher levels of the Scaffold Tree were close
or identical to the Murcko framework which often incorporates
multiple ring systems. We observed fewer examples of concor-
dance to the Murcko framework at Level 1 than at all other levels
(excluding Level 0) although Level 1 scaffolds can be the same as
the Murcko framework, for example, in the case of compounds
defined as fragments. Level 2 scaffolds and above have a greater
number of examples where the scaffold is the same as the Murcko
framework. In addition, some small compounds (e.g. fragments)
do not possess a Level 2 or above.We therefore used Level 1 of the
Scaffold Tree in our analysis. In summary, the Scaffold Tree is a
data set independent, rule based method, which is designed to
retain themost richly functionalized ring systems. Level 1 scaffolds
contain one or two rings, and as Level 1 is less complex than higher
levels of the Scaffold Tree, the vast majority of compounds in our
representative data sets possess a Level 1 scaffold; only single rings
with no substituents are excluded from Level 1 (see below).
The Molecular Operating Environment (MOE) from the

Chemical Computing Group37 was used to generate the Scaffold
Tree for each data set using the linear fragmentation function. An
SVL script was applied to an SDF file; the linear fragmentation
function was used to apply the Scaffold Tree fragmentation rules.
The Level 1 scaffold of each compound is saved to a molecular
database (.mdb file) along with the original molecule.
As mentioned above, both Level 1 scaffolds and Murcko

frameworks can only represent molecules containing ring sys-
tems; therefore, acyclic molecules are omitted from the data
analysis. This does not affect the ICRFL and BIOFOC data sets;
for ICRSC, VC, and CHEMBL, between 0.06% and 2% of
compounds are excluded. For DBSM and DBAD, 17.3% and
7.6% of molecules are excluded which include, for example,
acyclic peptide drugs or development compounds. Molecules
containing only a single ring with no substituents have one level,
Level 0 of the Scaffold Tree, and are, therefore, omitted from the
analysis. This only affects the VC, CHEMBL, and DBSM data
sets where less than 0.15% of compounds are single rings with no
substituents. One of the Scaffold Tree rules is the removal of
3-membered ring heterocycles (e.g. epoxides). The 3-membered
ring is converted to a double bond. This step is carried out when
side chains are removed from the molecule, before the iterative
removal of other rings. As a consequence, compounds that
contain only 3-membered heterocyclic rings are rendered acyclic
before the iterative removal of rings and are therefore excluded
from the analysis. This only affects the VC, CHEMBL, DBSM,
and DBAD data sets where this rule applies to less than 0.5% of
compounds.
Scaffold Diversity Analysis. In these analyses we investigate

two types of diversity: the distribution of molecules over the
unique scaffolds present in the data set and the structural
diversity of these scaffolds. Of the methods described below,
the scaffold counts and cumulative scaffold frequency plots
provide information on the distribution of molecules over
scaffolds, and the Tree Maps provide information on both the
distribution and structural diversity.
Scaffold Counts. The scaffold diversity analysis was per-

formed on the ICRSC, VC, ICRFL, CHEMBL, DBSM, DBAD,
and BIOFOCdata sets. For each data set theMurcko frameworks
and Level 1 of the Scaffold Tree were defined for each compound
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and the following steps performed using Pipeline Pilot.36 The
numbers of unique Murcko frameworks and Level 1 scaffolds for
each data set were counted, along with the number of molecules
they represent; this is referred to as the scaffold frequency. The
number of singleton scaffolds was also recorded; singleton
scaffolds are scaffolds that are only present in one exemplar
molecule.
Cumulative Scaffold Frequency Plots (CSFP). Scaffold fre-

quency is the number of molecules that contain a particular
scaffold; the scaffold frequency can be represented as a percen-
tage of total molecules in the data set. To generate cumulative
scaffold frequency plots (CSFP), the scaffolds are sorted by
their scaffold frequency (most frequent to least frequent) the
cumulative percentage of scaffolds is then plotted against the
cumulative scaffold frequency as a percentage of total mol-
ecules. CSFPs were generated for each data set using both the
Murcko and Level 1 scaffold representations. From the
cumulative frequency plots, the percentage of scaffolds that
represent n percent of compounds can be determined Pn. For
example P50 is the percentage of scaffolds that represent 50%
of compounds; this measure has been used in various scaffold
diversity analyses and is often termed PC50C.23 The ratio of
scaffolds to compounds (N/M) and the ratio of singleton
scaffolds to all scaffolds (Ns/N) are also used to assess the
diversity of scaffold space.
Tree Maps. Tree Maps are visualizations of hierarchical data

structures and were introduced in 1992 by Shneiderman to
visualize the directory tree of hard disks.38 Tree Maps use a 2D
space-filling approach where rectangles or circles represent each
leaf of a hierarchical tree. The size and color of each rectangle or
circle can correspond to specific properties of the data being
represented. Tree Maps have been used previously to visualize
hierarchical clusters of compounds and their biological activity
data.28,39 Rather than visualizing the whole hierarchical Scaffold
Tree with Tree Maps we have visualized all Level 1 scaffolds
present in each data set and have clustered the scaffolds based on
their structural similarity. We have used circular Tree Maps
rather than rectangular Tree Maps to better highlight clusters of
scaffolds. The color and area of the circles represents the scaffold
frequency of the scaffolds they represent. This allows visualiza-
tion of both scaffold structural diversity and the distribution of
compounds over scaffolds. To our knowledge this is the first
application of Tree Maps to visualize the distribution and
chemical diversity of compound libraries.
Tree Maps were created using the software TreeMap from

MacroFocus.40 First, the Level 1 scaffolds of each data set were
clustered using FCFP_2 fingerprints. The Cluster Molecules
component in Pipeline Pilot was applied with the average
number of compounds per cluster set to 20. This component
selects a molecule from the data set at random as the first cluster
center and then selects the remaining cluster centers to give
maximum dissimilarity to the first cluster center and each other.
The remaining molecules are then assigned to each cluster based
upon their similarity to the cluster center. This method is order
dependent, as the random molecule selection is dependent on
the order the molecules enter the component. As the Cluster
Molecules component presorts the data we used the Cluster Data
component to test the order dependency of the clustering
algorithm. The clustering protocol was applied 5 times; for each
run, a random number was generated for each compound using
the current time in 24-h format as the seed for the Random
Number component. The compounds were then sorted by the

random number and sent to the Cluster Data component. Thus,
for each run, the compounds are entering the Cluster Data
component in a different order. For each run of the protocol
the mean Kelley spread and distance of the clusters were
calculated.41,42 The spread is based on the mean pairwise
similarity of the members of a cluster, and the distance reflects
how dissimilar one cluster is from another. The mean spread and
distance for each of the 5 runs were consistent, within one
standard deviation, when tested with all 7 data sets. In summary,
the order dependency of the Cluster Molecules component did
not have a major effect on the clusters used to visualize the data
sets in the Tree Maps.
After clustering, each scaffold had a cluster number attributed

to it which could be used in the TreeMap software to group the
scaffolds based on the clusters to which they belong. The scaffold
frequency attributed to each scaffold was also used in the
visualization.
In the Tree Maps, scaffolds are represented by circles where

the area of the circle is proportional to the scaffold frequency.
The color of the circle is also related to the scaffold frequency.
The scaffolds are grouped into gray circles, which represent the
cluster to which they belong. The distances between clusters and
scaffolds in the TreeMaps are not representative of the structural
or property similarity of clusters and scaffolds.

’RESULTS AND DISCUSSION

Scaffold Counts. Tables 2 and 3 show the number of
compounds included in the analysis (M) and the number of
Murcko frameworks and Level 1 scaffolds present in each data set
(N) as well as the number of singleton scaffolds (Ns). The ratios
of scaffolds to molecules (N/M) and singleton scaffolds to total
scaffolds (Ns/N) are also reported. Pn values (P25, P50, and P75 in
Tables 2 and 3) indicate the percentage of scaffolds that
represent n percent of compounds; thus P75 is the percentage
of scaffolds that represent 75% of all compounds in the data set.
The significance of these figures is discussed alongside the
cumulative scaffold frequency plots below.
When analyzed using Level 1 scaffolds, the BIOFOC and VC

data sets have an extremely low ratio of scaffolds to molecules
(N/M = 0.02 and 0.04, respectively) indicating that these data
sets contain heavily represented scaffolds. The CHEMBL and
ICRSC data sets also have a low proportion of scaffolds (N/M =
0.13 and 0.16, respectively). The DBAD, DBSM, and ICRFL

Table 2. Murcko Framework Analysis: Results of the Scaffold
Diversity Analysis on the ICRSC, VC, ICRFL, CHEMBL,
DBSM, DBAD, and BIOFOC Data Sets Using Murcko
Frameworksa

data set M N Ns N/M Ns/N P25 P50 P75

ICRSC 76,563 33,050 23,123 0.41 0.70 1.23 9.93 39.8

VC 1,922,434 388,952 237,617 0.20 0.61 0.22 2.01 15.3

ICRFL 2448 1146 822 0.47 0.72 1.67 12.0 46.6

CHEMBL 519,362 153,199 102,548 0.29 0.67 0.49 4.49 24.1

DBSM 3849 2061 1680 0.54 0.82 1.05 12.6 53.3

DBAD 1258 785 633 0.57 0.81 3.58 19.9 59.9

BIOFOC 10,000 2498 1559 0.25 0.62 0.80 5.36 20.9
aM = number of compounds, N = number of Murcko frameworks, Ns =
number of singleton scaffolds, Pn = percentage of scaffolds that represent
n percent of compounds.
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data sets (N/M = 0.55, 0.52, and 0.43, respectively) have close to
one scaffold for every twomolecules suggesting they are the most
scaffold diverse data sets. The ratio of scaffolds to molecules (N/
M) should be used in conjunction with the number of singleton
scaffolds to provide accurate information on the distribution of
molecules over scaffolds. For example, DBSM has N/M = 0.52
(i.e. there are 1.9 molecules to every scaffold) suggesting that the
data set is scaffold diverse. However, the proportion of singleton
scaffolds to scaffolds (Ns/N) is 0.83; therefore, 83% of scaffolds
(1670 scaffolds) represent only 1 molecule each, and 17% of
scaffolds (342 scaffolds) represent the remaining 2173molecules
(an average of 6.3 molecules per scaffold). Table 3 indicates that,
in most cases, a large proportion of the Level 1 scaffolds are
singletons (Ns/N > 0.6), suggesting that the distribution of
molecules over scaffolds is uneven. An exception is the BIOFOC
data set (Ns/N = 0.35); despite having the lowest proportion of
scaffolds (N/M = 0.02), a low proportion of these are singletons.
In the case of the BIOFOC data set the molecules are more
evenly distributed over a small number of scaffolds. This result is
expected since the BIOFOC data set was designed as a screening
collection containing a selection of kinase inhibitor scaffolds that
are equally represented.35

The Murcko framework analysis delivers similar overall con-
clusions (Table 2). BIOFOC and VC have the lowest proportion
of scaffolds (N/M = 0.25 and 0.20, respectively), and DBAD,
DBSM, and ICRFL have the highest proportion of scaffolds
(N/M = 0.57, 0.54, and 0.47, respectively). A high proportion of
scaffolds are singletons (Ns/N > 0.6), and Ns/N values are more
uniform across the 7 data sets than for the Level 1 scaffold
analysis. One difference in the analyses using Murcko frame-
works and Level 1 scaffolds is the proportions of scaffolds to
molecules (N/M). The lowest proportion of scaffolds when
using the Murcko framework representations (for VC N/M =
0.20) is higher than the lowest proportion of scaffolds when using
Level 1 scaffold representations (for BIOFOCN/M = 0.02). The
range of proportions is also narrower for Murcko frameworks
(range of N/M = 0.37) compared to Level 1 scaffolds (range of
N/M = 0.53). Murcko frameworks are a more discriminating
representation of a scaffold (i.e. they carry greater chemical
description) than Level 1 Scaffolds, and, therefore, more unique
scaffolds are defined by Murcko frameworks. Thus, there is a
higher proportion of Murcko scaffolds present in data sets. The
difference in N/M for the Murcko and Level 1 analyses are
significant for most cases examined apart from ICRFL, DBSM,

and DBAD where the difference is very small (Table 4). A
possible reason is that these three data sets contain a relatively
high percentage of molecules which have one ring (12.5�19.4%)
as defined in Pipeline Pilot36 (Table 4). In the case of molecules
containing a single ring, Level 0 of the Scaffold Tree is this single
ring and is also theMurcko framework, whereas the next Level up
the hierarchical Scaffold Tree (Level 1) is the single ring plus its
substituents (the whole molecule). For such compounds, the
Level 1 scaffold is more descriptive than the Murcko framework,
and, therefore, more unique Level 1 scaffolds than Murcko
frameworks are generated. The ICRFL, DBSM, and DBAD data
sets have a much higher proportion of fragmentlike compounds
containing only one ring than other data sets in our analysis and
could, we propose, explain why the results for the Murcko and
Level 1 analyses for these data sets are more similar.
In summary, we have shown that the proportion of scaffolds

present in a data set (N/M), in conjunction with the proportion
of singleton scaffolds (Ns/N), is a useful indicator of scaffold
diversity across a diverse range of compound libraries. In most of
the data sets tested, molecules are unevenly distributed, with a
small number of highly populated scaffolds and a large number of
singletons. Murcko frameworks are a more discriminating re-
presentation of a scaffold than Level 1 scaffolds, and, as a result,
more unique scaffolds are defined by Murcko frameworks. For
molecules containing one ring, Level 1 scaffolds provide a more
granular representation in comparison to Murcko scaffolds.
Cumulative Scaffold Frequency Plots (CSFP) and Pn Values.

The CSFPs are shown in Figure 3 for the Level 1 scaffolds and
Figure 4 for the Murcko frameworks. The CSFPs give an indica-
tion of the distribution of molecules over scaffolds. In the
extreme case where each scaffold represents the same number
of compounds, the plot would be diagonal from (0%, 0%) to
(100%, 100%); therefore, the closer the curve is to the diagonal,
the more evenly distributed the data set.
In the case of Level 1 scaffolds (Figure 3) the CSFPs give

similar conclusions to the proportion of scaffolds to molecules as
shown in Table 3. DBAD, DBSM, and ICRFL are closest to the
diagonal, indicative of a more even distribution. The BIOFOC,
VC, CHEMBL, and ICRSC data sets are furthest from the
diagonal and are least evenly distributed. All curves begin with
a very steep gradient; this indicates the presence of scaffolds that
represent a large proportion of the data set. The shallow region of
the curve represents the high proportion of singleton scaffolds.
An interesting example is the BIOFOC data set, which has
a much lower ratio of singleton scaffolds to overall scaffolds
(Ns/N = 0.35) despite having a low proportion of scaffolds
overall (N/M = 0.02). This profile is represented by a lower
gradient early in the plot compared to other data sets (VC,
CHEMBL, and ICRSC, Tables 2 and 3). The BIOFOC curve

Table 3. Scaffold Tree Analysis: Results of the Scaffold
Diversity Analysis on the ICRSC, VC, ICRFL, CHEMBL,
DBSM, DBAD, and BIOFOC Data Sets Using Level 1 of the
Scaffold Treea

data set M N Ns N/M Ns/N P25 P50 P75

ICRSC 79,563 12,520 8637 0.16 0.69 0.22 1.34 7.70

VC 1,922,433 81,368 62,889 0.04 0.77 0.026 0.14 0.70

ICRFL 2448 1074 792 0.43 0.74 2.04 10.1 43.0

CHEMBL 519,341 68,370 53,385 0.13 0.78 0.032 0.35 3.06

DBSM 3843 2012 1668 0.52 0.83 1.15 10.8 52.3

DBAD 1253 691 537 0.55 0.78 2.93 15.8 54.7

BIOFOC 10,000 167 49 0.02 0.35 1.00 3.10 8.34
aM = number of compounds, N = number of Level 1 scaffolds, Ns =
number of singleton scaffolds, Pn = percentage of scaffolds that represent
n percent of compounds.

Table 4. Percentage of Compounds in Each Data Set That
Have Less than One Ring

data set number of rings = 1 N/M (Murcko) N/M (Level 1)

ICRSC 5.0% 0.41 0.16

VC 2.5% 0.20 0.04

ICRFL 12.5% 0.47 0.43

CHEMBL 6.8% 0.29 0.13

DBSM 19.4% 0.54 0.52

DBAD 15.6% 0.57 0.55

BIOFOC 0.1% 0.25 0.02
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also levels off later than for the other data sets due to the lower
proportion of singletons in the data set.
The CSFP for the Murcko framework representations

(Figure 4) indicates similar overall trends to the CSFP analysis
using Level 1 scaffolds, i.e. the DBAD, DBSM, and ICRFL data
sets are more evenly distributed than the VC, ICRSC, CHEMBL,
and BIOFOC data sets. However, the Murcko framework CSFP
analysis is less discriminatory between data sets. We propose that
this is a result of the more granular Murcko scaffold definition
(i.e. they carry greater chemical description) which enhances the
apparent scaffold diversity with respect to use of Level 1 scaffolds.
The information obtained from the CSFPs can be quantified

using Pn values; this is the percentage of scaffolds that represent n
percent of compounds. These values are shown in Tables 2 and 3.
The Pn values reflect the conclusions discussed above. For
example VC has a low proportion of Level 1 scaffolds and is
unevenly distributed in the CSFP; its P25, P50, and P75 values are

2.50� 10�2, 0.13, and 0.70, respectively. This indicates that 75%
of the data set is represented by 0.70% of unique scaffolds and
confirms that the data set is unevenly distributed with the
majority of compounds represented by an extremely small
proportion of scaffolds. The BIOFOC data set has the lowest
proportion of scaffolds of all the data sets, but the proportion of
singletons and the CSFP analysis indicates that molecules are
distributed more evenly over these few scaffolds. The P25, P50,
and P75 for BIOFOC are 1.00, 3.10, and 8.34, respectively. These
values are higher than those for other data sets with low M/N
supporting our evidence that BIOFOC is more evenly distrib-
uted over scaffolds.
Murcko Frameworks vs Level 1 Scaffold Tree Analyses.

From these analyses several differences are apparent in the use of
Level 1 scaffolds and Murcko frameworks to characterize the
scaffold diversity of chemical libraries. Murcko frameworks
deliver a more even distribution of compounds over scaffolds.
We propose that this is because Murcko frameworks are more
granular in definition (i.e. they carry greater structural descrip-
tion) such that there are more unique scaffolds in a data set. This
can be a drawback, for example, larger molecules with many ring
systems will likely have a Murcko framework similar to the
original molecule which does not represent the molecular core
(Figure 5a). However, for libraries of fragmentlike molecules
containing only one ring, many compounds will be represented

Figure 4. Murcko framework analysis: cumulative scaffold frequency
plot showing the distribution of compounds over Murcko framework
scaffolds in the ICRSC, VC, ICRFL, CHEMBL, DBSM, DBAD, and
BIOFOC data sets.

Figure 5. Examples of how compounds of different complexity are
represented byMurcko frameworks and Level 1 scaffolds. Eachmolecule
had n+1 Levels numbered sequentially from Level 0 (the single
remaining ring) up to Level n (the whole molecule) where Level n-1
is the Murcko framework: compound a: A typical leadlike/druglike
chemical structure; compound b: A typical fragmentlike chemical
structure.

Figure 3. Scaffold Tree analysis: cumulative scaffold frequency plot
showing the distribution of compounds over Level 1 scaffolds in the
ICRSC, VC, ICRFL, CHEMBL, DBSM, DBAD, and BIOFOC data sets.
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Figure 6. Example TreeMap. The colored circles represent scaffolds and are labeled with their scaffold frequency. The area and color of the circles relate
to the scaffold frequency. Scaffold circles are grouped into gray circles if the scaffolds are in the same cluster.

Figure 7. TreeMap of the VC data set Level 1 scaffolds. Scaffolds are represented by colored circles, the area and color of the circles relate to the scaffold
frequency, gray circles represent clusters of scaffolds. Tree Maps illustrate the large proportion of singleton scaffolds in the data sets (many small white
circles) and the presence of highly populated scaffolds (few large green circles).
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by a single common scaffold in the Murcko framework
(Figure 5b). Level 1 scaffolds perform better in both these
scenarios. Larger compounds are reduced to two ring scaffolds,
which better represent the core of the molecule (Figure 5a), while
fragments with one ring retain greater structural information
(Figure 5b). In addition, we show that Level 1 scaffolds better
highlight the separation betweenmore and less scaffold diverse data
sets. We therefore used Level 1 scaffolds for our further analyses.
Tree Maps. We have presented the scaffold diversity of

compound libraries using the distribution of molecules over
scaffolds. This is different from structural diversity, a term which
we use here to describe differences in overall chemical structure.
Our analysis shows that the compound libraries we studied are
unevenly distributed over scaffolds; however, the well repre-
sented scaffolds may be structurally diverse. To examine this
aspect of scaffold diversity we visualize the structural similarity of
scaffolds using Tree Maps.28,38

The Level 1 scaffolds for each data set were clustered by their
fingerprint similarity using FCFP_2 fingerprints. The scaffolds
were then visualized using Tree Maps.38 Figure 6 shows a simple
example of a Tree Map, each colored circle represents a scaffold,
the scaffold circles are grouped into gray circles which represent
the cluster to which the scaffolds belong. The area of each scaffold

circle is proportional to the scaffold frequency, the largest circles
have the highest scaffold frequency, and the smallest circles have
the lowest scaffold frequency. The color of the circle is also related
to the scaffold frequency. In the example each circle is labeled with
the scaffold frequency to illustrate how the size and color of the
circles relate to scaffold frequency, although the actual Tree Maps
are too complex to show these numerical labels.
TreeMap representations of the Level 1 scaffolds for the chemical

libraries under study are depicted in Figures 7�9 and S1�S4. Tree
Maps illustrate the large proportion of singleton scaffolds in the data
sets (many small white circles) and the presence of highly populated
scaffolds (few large green circles). The added information of the
scaffold clusters better depicts the structural diversity of the highly
populated scaffolds. For example, theBIOFOCdata set is designed to
contain kinase inhibitor-like compounds, and the hinge binding
scaffold is often highly conserved in inhibitors of this gene family.
This is illustrated in the Tree Map for the BIOFOC data set
(Figure 9) where the most highly populated scaffolds are clustered
together. The DBAD and DBSM data sets (Figures S4 and 8) are
more diverse, consistent with our previous analyses, here scaffolds are
more evenly represented, and the most popular scaffolds are more
structurally diverse and therefore found in different clusters. The
ICRSC andVC (Figures S1 and 7) data sets are unevenly distributed

Figure 8. Tree Map of the DBSM data set Level 1 scaffolds. Scaffolds are represented by colored circles, the area and color of the circles relate to the
scaffold frequency, gray circles represent clusters of scaffolds. TreeMaps illustrate the large proportion of singleton scaffolds in the data sets (many small
white circles) and the presence of highly populated scaffolds (few large green circles).
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over scaffold space; however, the highly populated scaffolds are in
different clusters of the Tree Map indicative of structural diversity
within the overall library.
In summary, we have used Tree Maps to visualize the diversity

of compound libraries. We show that Tree Maps are an effective
way to illustrate both the distribution and structural diversity of
chemical scaffolds. The Tree Map visualization of the compound
libraries under study clearly shows the presence of highly
populated scaffolds as well as singleton scaffolds and illustrates
the structural similarity of scaffold space.

’CONCLUSIONS

We have shown that a representative set of compound libraries
commonly used in drug discovery are predominantly distributed over
a small number of highly populated scaffolds with a concomitantly
high number of singleton scaffoldswhen analyzed using bothMurcko
frameworks and Level 1 scaffold definitions. High representation in
small areas of scaffold space is useful in libraries focused on particular
biological target classes; for example the BIOFOC kinase focused
library, where dense coverage of pharmacophore space is desired.
However, this dense coverage may also represent significant redun-
dancy in screening collections due to over population with structu-
rally similar compounds. Poorly represented or singleton scaffolds
may also be problematic in screening collections; for example, hit
confirmation for molecules that are single exemplars of a scaffold can
be hampered by the paucity of close analogs available for screening. In
addition, it is oftendifficult to readily produce SARdata through rapid
screening of close analogs. Thus screening collections should ideally
be diversified by inclusion of more representative exemplars of
singleton scaffolds.

We found that Level 1 scaffolds better highlight the differences
between compound data sets than Murcko frameworks. Analysis
using Murcko frameworks shows that data sets are more evenly
distributed over scaffolds then analysis using Level 1 scaffolds.
We propose that this difference arises because Murcko frame-
works are a more granular representation of a molecule than
Level 1 scaffolds (by virtue of the fact that Murcko frameworks
incorporate substituents), and, therefore, data sets appear to
contain more unique scaffolds, and appear more diverse, than the
analysis by Level 1 scaffolds described here. Level 1 scaffolds are
also applicable across a wider range of molecular weight and
complexity than Murcko frameworks; for example, they encom-
pass substituents present on single ring fragmentlike molecules
which are increasingly important and prevalent constituents of
compound libraries. Level 1 scaffolds provide a useful compro-
mise between the minimalistic Level 0 single ring scaffold
representation and the more granular Murcko definition. For
these reasons we propose that Level 1 scaffolds are better suited
to the analysis and cross comparison of diverse compound
libraries ranging from fragmentlike and leadlike to Rule of Five
compliant.

For the first time, we have used Tree Maps to visualize
compound library composition and show that they are an
effective way of illustrating both the distribution and structural
diversity of chemical scaffolds. Tree Map visualization of the
compound libraries under study clearly shows the presence of
highly populated scaffolds as well as singleton scaffolds. In
addition, Tree Maps clearly illustrate the structural similarity of
constituent scaffolds. Tree Maps therefore provide a useful tool
for medicinal chemists to assess the scaffold diversity of screening

Figure 9. Tree Map of the BIOFOC data set Level 1 scaffolds. Scaffolds are represented by colored circles, the area and color of the circles relate to the
scaffold frequency, gray circles represent clusters of scaffolds. TreeMaps illustrate the large proportion of singleton scaffolds in the data sets (many small
white circles) and the presence of highly populated scaffolds (few large green circles).
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libraries, assisting the prioritization of synthetic efforts directed
toward library diversification. We are currently developing other
methods for effectively visualizing and comparing scaffold dis-
tribution and diversity for the analysis and design of compound
libraries for hit generation.
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bS Supporting Information. Tree Map representations of
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