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Gastric adenocarcinoma (GA) is a significant cause of mortality worldwide. The molecular mechanisms of GA remain poorly
characterised. Our aim was to characterise the functional activity of the computationally identified genes, NET 1 and MYEOV in GA.
Digital Differential Display was used to identify genes altered expression in GA-derived EST libraries. mRNA levels of a subset of
genes were quantitated by qPCR in a panel of cell lines and tumour tissue. The effect of pro- and anti-inflammatory stimuli on gene
expression was investigated. Cell proliferation and invasion were measured using in an in-vitro GA model following inhibition of
expression using siRNA. In all, 23 genes not previously reported in association with GA were identified. Two genes, Net1 and Myeov,
were selected for further analysis and increased expression was detected in GA tissue compared to paired normal tissue using
quantitative PCR. siRNA-mediated downregulation of Net1 and Myeov resulted in decreased proliferation and invasion of gastric
cancer cells in vitro. These functional studies highlight a putative role for NET1 and Myeov in the development and progression of
gastric cancer. These genes may provide important targets for intervention in GA, evidenced by their role in promoting invasion and
proliferation, key phenotypic hallmarks of cancer cells.
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Gastric cancer is the second most common cause of cancer-related
mortality worldwide, with highest incidence in Japan and China
(Parkin et al, 2001). While the incidence of gastric cancer has been
falling in recent decades, the overall 5-year survival for gastric
cancer remains poor, with European rates varying from 12 to 28%
(Newnham et al, 2003). This poor survival, despite advances in
both diagnostic and therapeutic modalities, is primarily due to the
advanced stage of disease at presentation. Adenocarcinomas
represent the majority of gastric cancers and histologically, can
be classified into two distinct types – intestinal and diffuse (Faivre
et al, 1998). Intestinal type gastric adenocarcinoma (GA) is the
most common and is believed to arise as a result of chronic
inflammation inducing intestinal metaplasia, subsequent dysplasia
and finally cancer (Lauren, 1965). Diffuse-type GA is characterised
by both solitary or poorly organised clusters of mucin-rich cells
and a diffuse infiltrating growth pattern. Unlike intestinal type GA,
no identifiable precancerous lesions occur. Several environmental
factors have been linked to the development of GA, the most
significant being the presence of chronic Helicobacter Pylori
infection (Correa, 1992). While the molecular events underlying

the pathogenesis of GA have not been fully elucidated, mutations
in, and altered expression of several genes involved in several
important cellular processes have been identified, such as the
oncogenes bcl-2, b-Catenin, c-erbB-2, cyclinE, K-ras, K-sam,
c-Met; the tumour suppressor genes APC, DCC, p53, E-Cadherin,
p16, p53; and growth factors such as VEGF and EGF (Ming, 1998).
Furthermore, high-level microsatellite instability, as a result of
alteration in DNA mismatch repair genes, is seen in approximately
15% of diffuse and familial gastric cancer (El-Omar et al, 2000;
Engel et al, 2003; Nardone, 2003).

Recent advances in the field of molecular biology, genomics and
bioinformatics have ushered in a new era in cancer research. One
can now study global gene expression patterns in specific tissues or
cell types. This approach can be used to identify novel cancer
markers, oncogenes, tumour suppressor genes, and potential
therapeutic targets. Digital Differential Display (DDD) is a web-
based bioinformatics tool for generating differential gene expres-
sion profiles between cDNA tissue libraries (http://www.ncbi.nlm.-
nih.gov/UniGene/ddd.cgi). Using the EST profiles of normal and
disease cDNA libraries represented in the NCBI UniGene database,
DDD compares the number of times that ESTs from different
libraries, or pools of libraries, are assigned to a specific UniGene
cluster (Scheurle et al, 2000; Dennis et al, 2002; Pontius et al,
2003).

Herein, we describe the expression and functional characterisa-
tion of the DDD identified gastric cancer-associated genes Net 1
and Myeov. We verified the expression of these genes in an in-vitro

Received 13 October 2005; revised 17 February 2006; accepted 22
February 2006; published online 21 March 2006

*Correspondence: Dr P Doran;
E-mail: pdoran.genome@mater.ie
5 These authors contributed equally to this work

British Journal of Cancer (2006) 94, 1204 – 1212

& 2006 Cancer Research UK All rights reserved 0007 – 0920/06 $30.00

www.bjcancer.com

G
e
n

e
tic

s
a
n

d
G

e
n

o
m

ic
s



GA model and a panel of ex-vivo GA and adjacent normal tissue
using real-time PCR. Having determined the changes in expression
of these genes in GA, their functional importance was assessed
using a gene knockdown-based approach. Specifically, siRNA
duplexes were used to knockdown mRNA expression of Net1 and
Myeov. This approach induced alterations in the cellular
phenotype as evidenced by perturbed cell invasion and prolifera-
tion, key endpoints in the molecular phenotype of GA.

MATERIALS AND METHODS

Cell culture and cell treatments

An in vitro model of gastric cancer was established using three GA
cell lines: AGS (ECACC, UK), Kato III (ECACC, UK) and 23132/87
(DSMZ, Germany). The AGS and 23132/87 cell lines were
established from primary tumours while the KatoIII was derived
from metastatic tissue (Sekiguchi et al, 1978; Barranco et al, 1983;
Vollmers et al, 1993). AGS cells were cultured in Hams F12
medium containing 10% fetal bovine serum (FBS). KatoIII cells
were grown in RPMI 1640 containing 20% FBS and 23132/87 cells
were cultured in RPMI 1640 medium containing 10% FBS. All
medium was supplemented with 2 mM L-glutamine, 1 U ml�1

penicillin and 1 mg ml�1 streptomycin. All cells were incubated in
a humid 5% CO2 atmosphere at 371C. To investigate the effect of
pro- and anti-inflammatory stimuli on gene expression, AGS cells
were treated separately with 0, 0.3, 1, 3 and 10 ng ml�1 interleukin-
1b, TNF-a and dexamethasone for 4 h under the growth conditions
described above. AGS cells were also treated with or without
10 ng ml�1 of each treatment for 0, 2, 4, 6 and 8 h. Total RNA was
obtained from normal human alveolar epithelial cells (AEC)
(Promocell).

Human tissue

With informed patient consent according to a protocol approved
by the local ethics committee, representative samples of GA and
adjacent normal gastric mucosa were collected at endoscopy and
surgery and immediately stored in an RNAse inhibitor (RNAlater,
Sigma-Aldrich, Ireland) at �201C. Details of the tumour histology,
stage, patient age and gender were noted. In addition to these
samples total RNA derived from both GA tissue and matched
adjacent normal mucosa was obtained (Ambion, UK; Biochain
Institute Inc, Hayward, CA, USA; and Stratagene Europe,
Amsterdam, The Netherlands). Details of all tissue used in this
study are listed in Table 1.

RNA extraction and PCR

TRIzolt (Sigma-Aldrich, Ireland) was used to extract RNA as
previously described (Murray et al, 2004). For extraction from
tissue, 1 ml TRIzolt was added and the tissue was homogenised at
15 000 r.p.m. using a POLYTRON PT 2100 rotor-stator (Kinematica
Inc, Newark, NJ, USA). For extraction from cells in culture, cells
were washed in PBS and 1 ml of TRIzolt was added to cells and left

for 10 min at room temperature with occasional shaking. A
measure of 2 mg of total RNA was treated with DNAse I and reverse
transcribed using random hexamers and SuperScript II reverse
transcriptase (Invitrogen Ltd, UK). Primers were designed using
Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_
www.cgi) and synthesised by Sigma-Aldrich, Ireland. The
sequences of primers used for PCR were b-actin forward: 50-GTC
ACC TTC ACC GTT CCA G-30, reverse: 50-CTC TTC CAG CCT TCC
TTC CT-30, Net1 forward: 50-CTG TTC ACC TCG GGA CAT TT-30,
reverse: 50-TGG AGC TGT CAG ACG TTT TG-30, Myeov forward:
50-GGG CTC AGT GAA GAG TCT GG-30, reverse: 50-CACACC ACG
GAG ACA ATG AC-30, TNFa forward: 50-TGG TGT GGG TGA GGA
GTA CA-30, TNFa reverse: 50-AGC CCA TGT TGT AGC AAA CA-30,
MKP1 forward: 50-TCC TGC CCT TTC TGT ACC TG-30, MKP1
reverse: 50-ATG AAG TCA ATG GCC TCG TT-30. polymerase chain
reaction was carried out in a 50 ml mix containing 0.5 ml of Taq
polymerase (Invitrogen, UK) and 1 ml of cDNA. Polymerase chain
reaction products were run on a 2% agarose gel with a parallel
100 bp DNA ladder (Promega, UK). Real-time PCR was carried out
according to the manufacturers’ instructions using the LightCycler
RNA SYBR Green 1 Amplification Kit (Roche Applied Science)
together with the Light Cycler instrument. All measurements were
independently repeated three times. The maximum concentration
of total RNA template used was 0.5 mg ml�1. The following
components were added to 1 ml of total RNA in a 20 ml capillary
tube: 10.2 ml PCR-grade H2O, 4 ml SYBR Green 1 reaction mix,
2.4ml 25 mM MgCl2, 0.4 ml RT– PCR enzyme mix and 1 ml each of
forward and reverse primers. The reaction conditions were as
follows: reverse transcription: 551C for 10 min followed by
denaturation: 951C for 30 s. Forty-five PCR cycles were then run
at denaturation: 951C for 10 s; annealing: (b-actin: 541C, Net1:
521C, Myeov 561C) for 10 s and extension: 721C for 13 s. Data
analysis using the delta Ct method was performed using the
LightCycler version 4.0 software. b-actin expression levels were
used to normalise Net1 and Myeov expression.

Gene silencing by RNA interference

Two siRNA duplexes were designed and synthesised for silencing
each of the genes Net1 and Myeov (Qiagen Inc. CA, USA). The
duplexes had the following sequences: Net1(1) sense, 50-GGA GGA
UGC UAU AUU GAU A-30; Net1(1) antisense, 50-UAU CAA UAU
AGC AUC CUC C-30; Net1(2) sense, 50-GGU GUG GAU UGA UUG
GAA A-30; Net1(2) antisense 50-UUU CCA AUC AAU CCA CAC C-
30; Myeov(1) sense, 50-GGA UGU AAG UUA UCA ACU A-30;
Myeov(1) antisense, 50-UAG UUG AUA ACU UAC AUC C-30;
Myeov(2) sense, 50-CCA UGA GGU AGC UAC UAA A-30 and
Myeov(2) antisense, 50-UUU AGU AGC UAC CUC AUG G-30. A
chemically synthesised non-silencing siRNA duplex with the
following sequence; sense, 50-UUC UCC GAA CGU GUC ACG U-
30; antisense, 50-ACG UGA CAC GUU CGG AGA A-30 that had no
known homology with any mammalian gene was used to control
for nonspecific silencing events. A total of 6� 104 AGS cells were
added to each well of a 24-well plate in 500 ml growth media and
incubated under the standard conditions of 371C and 5% CO2 in a

Table 1 Matched gastric adenocarcinoma and normal tissue specimens used in this study

Sample Gender Age (years) Histology Clinical stage

1 Male 57 Adenocarcinoma Ia
2 Male 63 Poorly differentiated adenocarcinoma Not available
3 Female 69 Adenocarcinoma Not available
4 Male 76 Moderately differentiated adenocarcinoma IV
5 Male 70 Poorly differentiated adenocarcinoma Not available
6 Female 73 Moderately differentiated adenocarcinoma IV
7 Male 71 Poorly differentiated adenocarcinoma Not available
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humid incubator for 24 h. A volume of 98 ml growth medium was
mixed with 0.5 mg siRNA (or a combination of 0.25 mg of each) and
3 ml RNAifect (Qiagen). Following incubation, media was removed
from the cells and this mix was added dropwise. A volume of 300 ml
growth medium was added and the cells were incubated for 48 h
under standard conditions before either being assayed as described
below of before RNA was extracted as described.

Cell proliferation assay

A colorimetric MTS assay (Promega) was used to assess the effect
of Net1 and Myeov knockdown on AGS cell proliferation.
Following siRNA knockdown, 5� 104 of either control or siRNA-
treated cells were added, in triplicate, to each well of a 96-well
micro-plate. The total volume was adjusted to 100 ml with growth
medium and 20 ml of MTS reagent was added to each well. The
micro-plate was incubated for 2 h at 371C and 5% CO2 and
absorbance at 492 nm was read using a Rosys Anthos 2010 plate
reader (http://www.promega.com/tbs/tb169/tb169.pdf).

In vitro invasion assay

Biocoat Matrigel invasion chambers (BD Biosciences, USA) were
used to investigate the effect of siRNA-mediated Myeov and Net1
gene silencing on the in vitro invasiveness of the AGS gastric cell
line as previously described (Murray et al, 2004). Briefly, 5� 104

AGS cells were seeded into the upper chamber of the 24-well
invasion chamber in medium containing 1% serum. A volume of
750ml of medium containing 20% FBS was added to the outer
chambers to act as a chemoattractant for the cells. The plates were
then incubated for 48 h in a 5% CO2 humidified 371C incubator.
Following incubation cells that had invaded through the mem-
brane were fixed and stained before the membrane was removed
and mounted on a slide for microscopic assesment. Invasive cells
were visualised at � 40 magnification and the number of cells in
five random fields were counted and an average calculated.

Statistical methods

A student’s t-test was used to compare the expression profiles,
based on RT– PCR mRNA levels, of selected genes in matched GA
and normal tissues, and in the 3 GA cell lines. A P-value of o0.05
was taken to indicate significant alterations.

RESULTS

Differential expression of Net1 and Myeov in gastric cancer
cell lines and human tissue

Digital differential display (DDD) was used to compare 185 pooled
normal and 201 pooled adult cancer tissue EST libraries with 11
pooled gastric cancer tissue libraries, details of which are listed in

Table 2. All gastric cancer tissue libraries analysed were derived
from primary tumours. This comparrison identified 23 genes
whose expression was altered in gastric cancer-derived material
(Table 3). Digital differential display was used to calculate the fold
difference in the representation of these genes between libraries.
Two genes (Net1 and Myeov) not previously studied in gastric
cancer were selected for further investigation using an in vitro GA
model and a panel of matched ex vivo GA tissue and adjacent
normal tissue. Our group has shown elevated expression of Myeov,
a putative oncogene, initially described in Multiple Myeloma
(Janssen et al, 2000), in colorectal adenomas and cancer compared
to normal colonic mucosa (Moss et al, 2004). Net1 is a member of
the guanine nucleotide exchange factor (GEF) family which are
involved, through their regulation of RhoA activity, in a range of
biological processes including cell proliferation, apoptosis, differ-
entiation and cytoskeletal reorganisation (Rossman et al, 2005).

To investigate the expression of Net1 and Myeov in gastric
cancer, real-time PCR was used to determine mRNA levels in tissue
and cells lines. Using b-actin mRNA expression to normalise,
quantitative PCR confirmed elevated levels of Net1 expression in
all cancer tissue specimens studied, in comparison with adjacent
normal tissue (Figure 1). Net1 expression was significantly
increased by 34, 32, 58, 25 and 30% in five of the seven paired
tumour tissue samples studied (Po0.05). This confirmed the
enhanced expression identified using DDD. Expression of Net1 was
shown in three separate gastric cancer cell lines, namely AGS,
23132 and KatoIII (Figure 2). Net1 expression in a non-cancerous
airway alveolar epithelial cell line (AEC) was less than that in the
gastric cancer cell lines. Similarly, increased Myeov expression in
gastric cancer tissue in comparison with normal tissue from the
same patient was confirmed using real-time PCR (Figure 3). All
gastric cancer tissue studied, expressed higher levels of Myeov
mRNA than adjacent normal tissue. Myeov expression was
significantly increased by 17, 18, 19, 51, 18 and 34% in six of the
seven tumour tissue samples studied in comparison with adjacent
normal tissue (Po0.05). The increased levels of Myeov in gastric
cancer tissue confirmed the observations made using DDD. Myeov
expression was also detected in all gastric cancer cell lines studied
(Figure 4). The expression of Myeov in AEC cells was not as high
as its expression in gastric cancer cell lines.

The expression of Net1 and Myeov in response to
inflammatory stimuli

Inflammation is a key process underpinning the progression of GA
(Kai et al, 2005), thus the putative role of inflammatory mediators
in driving Net1 and Myeov expression was further investigated.
Cells were treated with specific pro- and anti-inflammatory stimuli
to investigate to effect on Net1 and Myeov expression in response
to inflammation. Net1 mRNA expression increased in a dose- and
time-responsive manner to treatment with TNFa (Figure 5).
Treatment with 10 ng ml�1 TNFa resulted in a threefold increase

Table 2 Details of pooled gastric cancer tissue EST libraries studied

dbEST library ID Title Tissue Protocol Histology Tumour site Cell morphology

10299 S4SNU1 Cell line Uncharacterised Adenocarcinoma, poorly differentiated Primary Lympoblast-like
10301 S5SNU484 Cell line Uncharacterised Adenocarcinoma, poorly differentiated Primary Epithelial
10302 S5SNU484s1 Cell line Subtracted Adenocarcinoma, poorly differentiated Primary Epithelial
10305 S7SNU719 Cell line Uncharacterised Adenocarcinoma, moderately differentiated Primary Epithelial
10306 S7SNU719s1 Cell line Subtracted Adenocarcinoma, moderately differentiated Primary Epithelial
10310 S10SNU1 Cell line Uncharacterised Adenocarcinoma, poorly differentiated Primary Lympoblast-like
10311 S11SNU1 Cell line Uncharacterised Adenocarcinoma, poorly differentiated Primary Lympoblast-like
10324 S21SNU520 Cell line Uncharacterised Adenocarcinoma, poorly differentiated Primary Floating aggregates
10325 S21SNU520s1 Cell line Subtracted Adenocarcinoma, poorly differentiated Primary Floating aggregates
1449 NCI_CGAP_Gas4 Bulk Non-normalised Adenocarcinoma, poorly differentiated Primary Bulk tissue
3637 ST0240 Bulk Uncharacterised Carcinoma Primary Bulk tissue
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in Net1 expression after 4 h (Po0.05). Treatment with IL-1b or
dexamethasone did not have a significant effect on Net1 expression
(Figure 5). Treatment with either TNFa, IL1b or dexamethasone
did not have a significant effect on Myeov expression (Figure 5).
This data suggests that these genes respond in a stimulus-specific
manner.

Effect of Net1 and Myeov knockdown on cellular
proliferation

Having identified enhanced expression of Net1 and Myeov in GA,
the functional consequence of their expression was studied.

Specifically, the functional effect of Net1 and Myeov gene
knockdown using a silencing RNA approach was determined.
Using AGS gastric cancer cells, siRNA was used to suppress gene
expression. Two siRNA duplexes were designed to target each
transcript and gene silencing was confirmed using real-time PCR.
Using two separate siRNA duplexes, Net1 expression was reduced
by 49 and 41% (Figure 6A) (Po0.05). Combining both duplexes
resulted in a 55% reduction in Net1 expression. Cells in which Net1
expression was reduced had significantly lower proliferation rates
in compassion with the same cells in which Net1 mRNA was
unperturbed (Figure 6B). Using both siRNA duplexes seperataly,
cell proliferation was decreased by 47 and 41% in comparison with

Table 3 Novel genes identified by DDD

Symbol Name UniGene ID GAa Non cancera Cancera Function

AGR2 Arginase, type II Hs.226391 0.00242 0.00012 0.00017 Urea cycle
ANKRD9 Ankyrin repeat domain 9 Hs.432945 0.00098 0.00002 0.00004 Function unknown
ARHGEF16 Rho guanine exchange factor 16 Hs.87435 0.00032 0.00002 0.00002 Function unknown
BENE BENE protein Hs.185055 0.00059 0.00003 0.00004 Function unknown
C8G Complement component 8, gamma polypeptide Hs.1285 0.00016 0.00000 0.00000 Complement activation
CLDN18 Claudin 18 Hs.278966 0.00043 0.00003 0.00001 Tight junction component
CLDN2 Claudin 2 Hs.16098 0.00023 0.00002 0.00002 Tight junction component
EPS8L3 EPS8-like 3 Hs.5366 0.00021 0.00001 0.00002 Receptor activity
FBXL6 F-box and leucine-rich repeat protein 6 Hs.12271 0.00037 0.00002 0.00003 Ubiquitin cycle
GEFT RAC/CDC42 exchange factor Hs.61581 0.00027 0.00002 0.00003 Cell proliferation
KIAA1706 KIAA1706 protein Hs.412318 0.00034 0.00003 0.00001 DNA binding
KREMEN2 Kringle containing transmembrane protein 2 Hs.73452 0.00043 0.00000 0.00004 Wnt signaling pathway
MEIS4 Likely ortholog of mouse myeloid ecotropic viral integration

site-related gene 2
Hs.356135 0.00043 0.00002 0.00004 Transcription regulation

MYEOV Myeloma overexpressed gene Hs.436000 0.00048 0.00000 0.00004 Nucleic acid binding
NET1 Neuroepithelial cell transforming gene 1 Hs.25155 0.00100 0.00008 0.00008 Regulation of cell growth
NOS3 Nitric-oxide synthase activity Hs.511603 0.00027 0.00002 0.00001 Nitric-oxide synthase activity
PARD6G Par-6 partitioning defective 6 homolog gamma

(Caenorhabditis elegans)
Hs.223584 0.00037 0.00001 0.00001 Cytokinesis

PTK2B Protein tyrosine kinase 2 beta Hs.438975 0.00094 0.00004 0.00005 Signal transduction
S100A14 S100 calcium binding protein A14 Hs.288998 0.00041 0.00001 0.00003 Calcium ion binding
SMCX Smcx homolog, X chromosome (mouse) Hs.103381 0.00066 0.00004 0.00004 Transcription regulation
THBS3 Thrombospondin 3 Hs.169875 0.00046 0.00004 0.00003 Cell-matrix adhesion
UNC93A Unc-93 homolog A (C. elegans) Hs.267749 0.00027 0.00000 0.00000 Function unknown
WBSCR21 Williams beuren syndrome chromosome region 21 Hs.182476 0.00043 0.00002 0.00004 Aromatic compound metabolism

aFraction of sequences mapping to UniGene cluster.
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Figure 1 Net1 expression in paired gastric normal and tumour tissue. Real-time PCR was used to investigate the levels of Net1 expression in matched
gastric cancer (C) and normal (N) tissue. Each tissue specimen was analysed in triplicate for mRNA levels. b-actin expression was used to normalise the data.
*(Po0.05). Average Net1 expression in cancer (AC) and normal (AN) tissue is displayed.
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control cells (Po0.05). Cell proliferation was decreased by 58%
using both duplexes in combination. Similarly, two siRNA
duplexes were used to supress Myeov expression by 100 and
30% (Figure 7A) (Po0.05) which in turn led to 68 and 36%
reduction in gastric cancer-cell proliferation (Figure 7B) (Po0.05).
Using both siRNA duplexes in combination resulted in a 75%
decrease in Myeov expression (Po0.05) and a 73% decrease in
AGS cell proliferation (Po0.05). These data demonstrate that the
enhanced expression of Net1 and Myeov in the setting of GA has a
significant effect on gastric epithelial tumour cell biology.

Effect of Net1 and Myeov knockdown on in vitro invasion

To further demonstrate the putative role of Net1 and Myeov in
gastric cancer, the effect of RNAi-mediated mRNA downregulation
on the in vitro invasion of AGS cells was monitored. The Net1-
targetted siRNA duplexes resulted in 49 and 41% knockdown
in mRNA expression (Figure 6A) and the same duplexes
caused 100 and 96% decrease in cell invasion (Figure 6C)

(Po0.05). Using both siRNA suplexes in combination resulted in
a 55% reduction in Net1 mRNA expression and a 96% reduction
in in vitro cell invasion (Po0.05). Reduction in Myeov mRNA by
100 and 30% using two separate RNAi duplexes (Figure 7A)
resulted in 85 and 90% decreased cell invasion (Figure 7C)
(Po0.05). Using both siRNA molecules resulted in a 75%
reduction in Myeov expression and a 99% decrease in AGS cell
invasion (Po0.05).

DISCUSSION

Gastric adenocarcinoma is a significant global cause of morbidity
and mortality, with no satisfactory therapy available. Therefore,
the development of novel diagnostic and prognostic markers,
coupled with enhanced therapeutic options is a key goal for the
cancer research community. This goal can only be realistically
achieved by further improving our knowledge of the gastric
tumour at a molecular level. Examination of EST libraries from
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Figure 2 Net1 expression in normal epithelial and gastric cancer cell
lines. Real-time PCR was used to determine the relative expression levels
of Net1 mRNA in normal alveolar epithelial cells (AEC) and in three gastric
cancer cell lines (AGS, 23132/87 (231) and KatoIII (Kato). Each sample was
analysed in triplicate for mRNA levels. b-actin expression was used to
normalise the data.
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Figure 3 Myeov expression in paired gastric normal and tumour tissue. Real-time PCR was used to investigate the levels of Myeov expression in paired
gastric cancer (C) and normal (N) tissue. Each tissue specimen was analysed in triplicate for mRNA levels. b-actin expression levels were used to normalise
the data. b-actin expression was used to normalise all data. *(Po0.05). Average Myeov expression in cancer (AC) and normal (AN) tissue is displayed.
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Figure 4 Myeov expression in normal epithelial and gastric cancer cell
lines. Real-time PCR was used to determine the relative expression levels
of Myeov mRNA in normal alveolar epithelial cells (AEC) and in three
gastric cancer cell lines (AGS, 23132/87 (231) and KatoIII (Kato). Each
sample was analysed in triplicate and b-actin expression was used to
normalise the data.
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both gastric tumours and normal tissue identified a cohort of
genes with differential representation in cancer-derived libraries.

Neuroepithelial transforming gene-1 (Net1) is a guanine
nucleotide exchange factor (GEF) that activates Rho family
proteins (Symons and Rusk, 2003). The Net1 gene was originally
isolated in a tissue culture screen for novel oncogenes in NIH 3T3
fibroblasts (Chan et al, 1996; Alberts and Treisman, 1998). GEFs
regulate Rho- GTPases, a main branch of the Ras superfamily of

small (B21 kDa) GTPases. Rho proteins, once activated, stimulate
signalling in multiple pathways by binding to downstream effector
proteins, modulating their activities and thereby regulating a range
of cellular processes including cell proliferation, apoptosis,
differentiation and cytoskeletal reorganisation. They are also
thought to play a role in transformation and metastasis (Yoshioka
et al, 1999; Etienne-Manneville and Hall, 2002; Jaffe and Hall, 2002;
Sahai and Marshall, 2002). Other GEFs with established roles in
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Figure 5 The effect of pro- and anti-inflammatory stimuli on Net1 and
Myeov expression in gastric cancer. (A) The effect of 10 ng ml�1

interleukin-1b (IL-1B), TNF-alpha (TNFa) and Dexamethasone (DEX) on
Net1 and Myeov expression in AGS gastric cancer cells was monitored
using real-time PCR. Cells were treated for 4 h. Enhanced TNFa expression
was used as a positive response to TNFa and IL1B treatment (Gallagher
et al, 2003). Enhanced MKP1 expression was used a positive response to
DEX treatment (Lasa et al, 2002). Apart from the positive controls, the
only trteatment to have a significant effect was TNFa, which resulted in a
threefold increase in Net1 mRNA expression *(Po0.05). Enhanced TNFa-
induced Net1 expression resulted in a dose-dependent (B) and time-
dependent (C) manner *(Po0.05).
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Figure 6 The effect of Net1 knockdown on gastric adenocarcinoma cell
proliferation and invasion. (A) Real-time PCR was used to confirm the
significant siRNA-mediated reduction in Net1 expression. Using two siRNA
duplexes; Net1(1) and Net1(2), Net 1 expression was reduced by 49 and
41%, respectively, in comparison with control cells. Using a combination of
both siRNA duplexes; Net1(1þ 2) resulted in 55% decreased Net1
expression (Po0.05). (B) The proliferation of cells treated with both
duplexes was compared with control cells using an MTS assay. siRNA
mediated Net1 downregulation resulted in 47 and 41% decrease in cell
proliferation. Using both Net1 siRNA duplexes in combination resulted in
58% decreased cell proliferation (Po0.05). (C) Downregulation of Net1
expression using both siRNA duplexes resulted in 100 and 96% reduction
in cell invasion in comparison with control cells. A combination of both
siRNA molecules resulted in 96% AGS cell invasion *(Po0.05).
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various malignancies include Bcr (Advani and Pendergast, 2002)
Tiam (Malliri et al, 2002) and Vav1 (Fernandez-Zapico et al, 2005).
Owing to the importance of GEFs in normal cellular processes and
in malignancies and also because there is no published evidence to
support its role in the gastric cancer setting Net1 was chosen for
further validation and investigation.

mRNA expression determination, using real-time PCR, con-
firmed elevated Net1 expression in gastric cancer tissue in
comparison with normal tissue (Figure 1). Net1 was further shown

to be expressed in three separate gastric cancer cell lines (Data not
shown). In this study, Net1 expression was responsive in a dose-
and time-dependent manner to the pro-inflammatory cytokine
TNF-a (Figure 5). There was no significant effect on Net1
expression in response to treatment with IL1b or with the anti-
inflammatory steroid dexamethasone. These data suggest that in
the disease setting, Net1 expression is increased in response to
inflammation, a common driving factor of GA. To delineate the
functional role of Net1 in gastric cancer, RNAi technology was
employed to knockdown expression and the effect on cellular
proliferation and invasion was monitored. Net1 is a RhoA-specific
GEF (Kawasaki et al, 2003). Elevated levels of Rho activity have
been shown to downregulate the cell cycle regulator p21/Waf1 thus
inducing cell proliferation in Swiss-3T3 cells (Sahai et al, 2001).
Recently, it has been demonstrated that abolition of RhoA
expression in AGS cells resulted in decreased proliferation (Liu
et al, 2004). In this study a reduction in Net1 expression resulted in
a significant decrease in the proliferation of GA cells (Figure 4B).
Using two siRNA duplexes that targeted Net1 mRNA, AGS cells
with Net1 knockdown showed 47 and 41% decreased proliferation,
in comparison with control cells in which Net1 expression was
unchanged. Net 1 is a GEF for RhoA, which has been previously
shown to promote the cell cycle by inducing cyclin D1 expression
via the AP-1 transcription factor (Hill et al, 1995; Marinissen et al,
2001). Increased cyclin D1 expression has been shown to be
associated with uncontrolled gastric cancer cell proliferation (Song
et al, 2003). Cyclin D1 is a critical regulator of normal progression
of cells through G1-S transition via the activity of cyclin D1-
dependent regulatory proteins (Shie et al, 2000; Yu et al, 2000). In
addition, in a study utilising a mouse model in which hyper-
proliferation/hyperplasia of the colon was induced, cyclin D1
protein levels measured in tissue extracts were significantly
enhanced (Sellin et al, 2001). Furthermore, it has been demon-
strated in a clinical analysis that nearly 50% of tissue samples
examined from 70 colorectal cancer patients expressed increased
levels of cyclin D1 (Utsunomiya et al, 2001). These studies suggest
that one of the potential mechanisms of tumour growth promotion
may include the disregulation of cyclin D1.

The in vitro invasion of AGS gastric cancer cells following Net1
knockdown was also assessed. siRNA-mediated Net1 knockdown
using two separate duplexes significantly reduced the invasive
capacity of these cells by 100 and 96% in comparison with control
cells in which the Net1 expression was unaltered (Figure 4C).
Invasion is an essential event in the malignancy of gastric cancer
and this finding further underpins the role of Net1 in mediating
this process.

Given the importance of Rho proteins in the motility of normal
cells and their aberrant regulation in transformed cells, it is likely
that they are involved in the invasion of tumour cells. RhoA has
been shown to induce the AP-1 transcription factor, which is
known to regulate matrix metalloproteinase (MMP) expression
(Benbow and Brinckerhoff, 1997; Marinissen et al, 2004). The roles
of MMPs in malignant cancers are well established, where elevated
expression occurs in areas of active invasion (Sternlicht and
Bergers, 2000). Rho proteins have been shown to mediate MMP-2
activation and enhance cell invasion (Zhuge and Xu, 2001). It is
therefore likely that the RhoA-mediated increase in AP-1 activity
leads to increased MMP expression thus supporting the motile and
invasive phenotype. As well as increased ECM turnover and
proteolytic activity, cyoskeletal reorganisation is a crucial aspect of
cellular locomotion and its disregulation is often a hallmark of
invasive tumour cells. RhoA can regulate the function of the ERM
(ezrin, radixin, moesin) family of adaptor proteins (Matsui et al,
1998). ERM proteins promote cell motility by functioning as
molecular linkers between the plasma membrane and the actin
cytoskeleton through their association with the cell adhesion
molecule CD44 (Tsukita et al, 1994; Bretscher et al, 2002; Martin
et al, 2003). CD44 upregulation has been reported in various
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Figure 7 The effect of siRNA-mediated Myeov knockdown on AGS cell
proliferation and invasion. (A) Confirmation of Myeov downregulation
using real-time PCR. Myeov downregulation, using two separate siRNA
duplexes, Myeov(1) and Myeov(2), resulted in 100 and 30% decreased
expression when compared with control cells. A combination of both
Myeov siRNA molecules resulted in 75% decreased Myeov expression
(Po0.05). (B) Using siRNA duplexes, cell proliferation was reduced 68 and
36%, respectively, when compared with control cells. Using both duplexes
in combination resulted in 73% decrease in gastric cancer cell proliferation
(Po0.05). (C) Similarly, cell invasion was reduced by 85 and 90% and by
99% using a combination of both siRNA duplexes in comparison with
control cells *(Po0.05).
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invasive tumours and have previously demonstrated that CD44
activation leads to enhanced MMP expression and increased cell
invasion in colorectal cancer (Murray et al, 2004). RhoA function
therefore promotes both cell motility and ECM turnover, thus
linking two key metastatic events. It is therefore likely that elevated
levels of Net1 in gastric cancers favours tumour proliferation
and invasion through RhoA activation. The specific mechanisms
of Net1 activation remain to be established and the exact role of
Net1 in controlling proliferation and invasion requires further
investigation.

Myeov was initially identified as a transforming gene through
the application of a NIH/3T3 tumorigenicity assay to DNA from a
gastric carcinoma however its role in gastric cancer remains
unclear (Janssen et al, 1999). Myeov maps to the 11q13 region.
This region of chromosome 11 contains several genes, most
notably CyclinD1 and ESM1/Cortactin, which are frequently
overexpressed, mainly through amplification, in a variety of
human cancers (Schuuring, 1995; Ormandy et al, 2003). Myeov
has been shown to be activated concurrently with CyclinD1 in
multiple myeloma, breast cancer and esophageal squamous cell
carcinomas (Janssen et al, 2002a, b). Sequence analysis predicted
Myeov is a 313-amino-acid protein containing no known
functional motifs except for an RNP1 motif typical of RNA-
binding proteins (Kai et al, 2005). Herein we have evaluated the
expression and biological significance of Myeov in human gastric
cancer to determine its role in the disease process.

Real-time PCR confirmed elevated Myeov mRNA levels in
gastric cancer tissue and cell lines in comparison with its
expression in normal tissue (Figure 2A). AGS cells were treated
with specific pro- and anti-inflammatory cytokines, yet neither had
a significant effect on Myeov expression (Figure 5), suggesting that
the role of Myeov in GA is independent of inflammation and not
driven by it. The significance of enhanced Myeov expression in
gastric cancer was then investigated. As GA cells are characterised
by their increased proliferative and invasive capabilities, these two
functional end points were monitored in vitro. Using two duplexes,

RNAi-mediated knockdown of Myeov in human gastric cancer
cells resulted in 68 and 36% decreased proliferation in comparison
with control cells in which Myeov expression was unaltered
(Figure 5B). The role of Myeov in the invasivness of gastric cancers
was highlighted by the decreased in vitro invasion of gastric cancer
cells in which Myeov expression had been suppressed using siRNA
(Figure 5C). Using two siRNA duplexes that targeted Myeov
mRNA, cell invasion was decreased by 85 and 90% in comparison
with control cells.

As Myeov is co-expressed with Cyclin D1, we propose that both
genes are co-regulated and may share activity in advancing the
neoplastic process. Cyclin D1 upregulation has been implicated as
a driver of gastric cancer, and its inhibition has been shown to
reverse the transformed phenotype of human gastric cancer cells
(Chen et al, 1999). The degree of cyclin D1 overexpression has
been correlated with invasive stages of gastric cancer (Oda et al,
1999).

In this study we have employed comparison of EST libraries to
identify genes whose expression is putatively altered in GA. DDD.
Net1 and Myeov expression was confirmed in gastric cancer tissue
and cell lines. siRNA-mediated knockdown of both genes resulted
in significantly decreased cell proliferation and invasion. The data
presented herein suggest regulatory roles for the in silico identified
genes Net1 and Myeov in the setting of gastric cancer. The
functional consequences of knockdown of the genes provide
important clues to the activity of Net1 and Myeov in GA and
further study may establish the roles for these genes in initiation
and progression of this disease. Further investigations will
doubtlessly lend more weight to the potential of these genes as
therapeutic targets in GA.
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