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Abstract
Collagen in the tumor microenvironment is recognized as a potential biomarker for 
predicting treatment response. This study investigated whether the collagen fea-
tures are associated with pathological complete response (pCR) in locally advanced 
rectal cancer (LARC) patients receiving neoadjuvant chemoradiotherapy (nCRT) and 
develop and validate a prediction model for individualized prediction of pCR. The pre-
diction model was developed in a primary cohort (353 consecutive patients). In total, 
142 collagen features were extracted from the multiphoton image of pretreatment 
biopsy, and the least absolute shrinkage and selection operator (Lasso) regression 
was applied for feature selection and collagen signature building. A nomogram was 
developed using multivariable analysis. The performance of the nomogram was as-
sessed with respect to its discrimination, calibration, and clinical utility. An independ-
ent cohort (163 consecutive patients) was used to validate the model. The collagen 
signature comprised four collagen features significantly associated with pCR both in 
the primary and validation cohorts (p < 0.001). Predictors in the individualized pre-
diction nomogram included the collagen signature and clinicopathological predictors. 
The nomogram showed good discrimination with area under the ROC curve (AUC) 
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1  |  INTRODUC TION

Currently, colorectal cancer is one of the tumors with the highest 
morbidity and mortality, and LARC accounts for approximately 
70% of rectal cancers.1 To improve the rates of R0 resection and 
sphincter- preserving surgery, neoadjuvant chemoradiotherapy 
(nCRT) followed by total mesorectal excision is the standard treat-
ment for LARC patients.2 Approximately 20%– 25% of patients 
achieve pathological complete response (pCR) after nCRT, and 
these patients experience a better prognosis than patients with 
non- pCR.3

Some researchers consider the proportion of patients who 
achieve pCR after nCRT and attempt to identify alternative treat-
ment options for TME due to the surgery- related deaths and post-
operative functional complications associated with TME, especially 
abdominoperineal resection. Habr- Gama et al.4 found that the “wait 
and see” policy in clinical complete response patients compared 
with pCR patients who underwent TME showed no differences 
in prognosis. This original finding was subsequently supported by 
a series of studies5,6; therefore, the “wait and see” policy can be 
considered an alternative treatment strategy for TME. There is a 
significant clinical need for a reliable biomarker to accurately pre-
dict pCR in LARC patients who may safely adopt the “wait and see” 
policy after nCRT.

The tumor microenvironment consists of various tumor cell com-
ponents and noncellular extracellular matrix (ECM), and the ECM in-
teraction with tumor cells plays a critical role in tumor progression, 

metastasis, and therapeutic efficacy.7,8 Collagen is the dominant 
component of the ECM, and its structure has been increasingly 
recognized as a robust biomarker to predict the prognosis of mul-
tiple tumor types, such as prostate cancer and gastric cancer.9,10 
Furthermore, previous studies found that the collagen structure in 
a biopsy is associated with the treatment response associated with 
nCRT in rectal cancer and breast cancer.11,12 Nevertheless, the re-
lationship between the collagen structure in pretreatment biopsy 
and pCR has not been examined. Therefore, we hypothesized that 
collagen structure in the tumor microenvironment of the biopsy is 
associated with pCR in LARC patients.

Multiphoton imaging (MPI) is a fast, label- free, high- resolution 
imaging technology that combines two nonlinear optical effects, the 
SHG signal generated by collagen and the two- photon excitation 
fluorescence (TPEF) signal for cells, to observe detailed information 
on collagen structure and cell morphology at the subcellular level.13 
Moreover, due to the inherent physical features of collagen, MPI has 
become a useful optical tool to visualize the collagen structure in the 
tumor microenvironment.14,15 In addition, high- throughput and fully 
quantified collagen structure features can be extracted from high- 
resolution multiphoton images through the automatic image analysis 
method,10,14,15 which aids in interpreting the relationship between 
collagen structure and pCR.

Here, we clarified the correlation between the collagen structure 
in the biopsy tumor microenvironment and pCR and then developed 
and validated a nomogram for accurately individualized prediction of 
pCR in patients with LARC before nCRT.

the Guangdong Provincial Key Laboratory 
of Precision Medicine for Gastrointestinal 
Cancer (2020B121201004), the 
Guangdong Provincial Major Talents 
Project (No.2019JC05Y361), the Science 
and Technology Planning Project of 
Guangzhou City (202206010085), the 
China Postdoctoral Science Foundation 
(2020M682789), the Natural Science 
Foundation of Fujian Province 
(2018J07004), the Joint Funds of Fujian 
Provincial Health and Education Research 
(2019- WJ- 21), the Science and Technology 
Program of Fujian Province (2018Y2003, 
2019L3018, and 2019YZ016006), the 
Clinical Research Startup Program of 
Southern Medical University by High- 
level University Construction Funding 
of Guangdong Provincial Department 
of Education (LC2016PY010), the 
Clinical Research Project of Nanfang 
Hospital (2018CR034, 2020CR001, and 
2020CR011), the President Foundation 
of Nanfang Hospital, Southern Medical 
University (2019Z023), and the Training 
Program for Undergraduate Innovation 
and Entrepreneurship (201912121008, 
202012121091, and 202012121277)

of 0.891 in the primary cohort and good calibration. Application of the nomogram in 
the validation cohort still gave good discrimination (AUC = 0.908) and good calibra-
tion. Decision curve analysis demonstrated that the nomogram was clinically useful. 
In conclusion, the collagen signature in the tumor microenvironment of pretreatment 
biopsy is significantly associated with pCR. The nomogram based on the collagen sig-
nature and clinicopathological predictors could be used for individualized prediction 
of pCR in LARC patients before nCRT.

K E Y W O R D S
collagen signature, neoadjuvant chemoradiotherapy, pathological complete response, rectal 
cancer, tumor microenvironment
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2  |  MATERIAL AND METHODS

2.1  |  Data collection

This study was approved by the Institutional Review Board at 
Nanfang Hospital, Sun Yat- sen University Cancer Center, and Fujian 
Province Tumor Hospital (approval number: NFEC- 2021- 440). 
Written informed consent was obtained from all participants. The 
study was conducted in compliance with the Declaration of Helsinki. 
The inclusion criteria were as follows: (i) LARC (≥T3 and/or N+) 
was diagnosed by pretreatment medical imaging and pathological 
examination; (ii) availability of pretreatment biopsy tissue; and (iii) 
standardized nCRT completed followed by surgical resection. The 
exclusion criteria were as follows: (i) short course radiotherapy and 
(ii) no radical surgery after nCRT. Based on the inclusion and exclu-
sion criteria, we enrolled two independent panels of LARC patients 
with nCRT, including a primary cohort between January 2010 and 
June 2018. An independent validation cohort was obtained from 
January 2010 to June 2018.

Pretreatment tumor biopsy tissues were obtained endoscop-
ically before nCRT, and two experienced gastrointestinal patholo-
gists reassessed all of these biopsies. The pretreatment biopsy was 
fixed in formalin, embedded in paraffin, and cut into 4- μm sections 
for MPI.

The clinicopathologic characteristics collected from three med-
ical records were as follows: age, sex, body mass index (BMI), dif-
ferentiation status, pretreatment carcinoembryonic antigen (CEA) 
level, pretreatment carbohydrate antigen 199 (CA- 199) level, dis-
tance from anal verge, pretreatment T stage, pretreatment N stage, 
and tumor dimension.

In this study, pretreatment biopsies were reviewed for ev-
idence of tumor budding through a ×4 lens (×40 magnification) 
with confirmation of positive cases at ×10 (×100 magnification). 
Tumor budding was defined as a single cancer cell or a group of 
<5 detached tumor cells found in the stroma of the biopsy spec-
imen.16 Therefore, any budding seen at ×4 and confirmed at ×10 
was deemed positive.

2.2  |  Treatment and definition of pCR

All patients underwent preoperative radiotherapy at a total dose of 
50.4 Gy in 28 fractions. Concomitantly, preoperative chemother-
apy was delivered, and radiotherapy was administered according 
to National Comprehensive Cancer Network (NCCN) guidelines.17 
TME was performed within 6– 8 weeks after completion of nCRT by 
senior attending surgeons. Adjuvant chemotherapy started within 
6 weeks after surgery. The regimen was the same as that for preop-
erative chemotherapy.

The treatment response was evaluated by two gastrointestinal 
pathologists who were blind to the clinical outcomes according to 
surgical resection specimens. Patients with pCR were defined ac-
cording to the tumor regression grade system.18

2.3  |  Image acquisition and collagen 
feature extraction

MPI and collagen structural feature extraction were as follows: A 
×20 objective lens was selected in this study to image the entire 
biopsy tissue and present the collagen structural features.12,19 Then, 
multiphoton images were compared with the H&E images for his-
tological evaluation. The extraction of collagen features was per-
formed using MATLAB 2016b (MathWorks).20 In total, 142 collagen 
features were extracted, including eight morphological features 
and 134 texture features (Table S1). More details about the imaging 
system and feature extraction are provided in the Supplementary 
Information.

2.4  |  Collagen feature selection and collagen 
signature construction

Least absolute shrinkage and selection operator (Lasso) regression 
is characterized by variable selection and complexity regularization 
while fitting the generalized linear model. It can be used to select 
the most predictive markers from high- dimensional data and reduce 
the interaction between markers to avoid overfitting.21 Therefore, 
Lasso regression was used to select collagen features and construct 
the collagen signature.

2.5  |  Development and validation of the 
individualized prediction model

Univariable and multivariable logistic regression analyses were 
used to analyze the value of clinicopathological candidate predic-
tors and collagen signatures in the primary cohort. Then, an indi-
vidualized prediction model for pCR was developed based on the 
results of the multivariable analysis and presented as a visual nom-
ogram.22,23 The discrimination and calibration of the nomogram 
was measured by the ROC curve and calibration curve with the 
Hosmer– Lemeshow test. In addition, the variance inflation factor 
was calculated to evaluate the multicollinearity of the multivariate 
prediction model.

Internal validation was performed by the bootstrap method in 
the primary cohort to calculate the mean concordance index. The 
performance of the nomogram was validated in the independent val-
idation cohort, and the ROC curves, calibration curves, and Hosmer– 
Lemeshow tests were assessed.

2.6  |  Clinical utility of the prediction model

DCA and CIC were used to assess the clinical usefulness of the 
nomogram.24 In addition, all patients were divided into two groups 
according to the Youden index in the primary cohort, namely, the 
high-  and low- probability pCR groups, to assess the sensitivity, 
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specificity, accuracy, PPV and NPV of the prediction model in the 
primary cohort, validation cohort, and all patients, respectively.

2.7  |  Incremental value of the collagen signature to 
traditional model

To estimate the incremental value of the collagen signature to the 
clinicopathological predictors, a clinicopathologic characteristic- 
based model (i.e., the traditional model) was developed without a 
collagen signature for comparison with the nomogram. Furthermore, 
the improvement of the nomogram based on the collagen signature 
was evaluated by the area under the ROC (AUC), NRI, and index IDI.

2.8  |  Follow- up and association of the prediction 
model with prognosis

Patients achieved follow- up after radical surgery. The association 
between the nomogram- predicted high-  and low- probability pCR 
and DFS and OS was analyzed.

2.9  |  Statistical analysis

All statistical tests were performed using SPSS 24.0 and R statistical 
software (version 4.0.3). The chi- square test or Fisher's exact test 
was applied to compare categorical variables. Univariate and multi-
variate logistic regression analyses were used to identify the ORs of 
independent predictors and 95% confidence intervals (CIs). Survival 
curves are presented according to the Kaplan– Meier method and 
were compared by the log- rank test. A Cox proportional hazards 
model was used to determine the HR and 95% CI of variables for 
DFS and OS. Statistical tests were two- sided, and p < 0.05 was con-
sidered statistically significant.

3  |  RESULTS

3.1  |  Patient characteristics

According to the inclusion and exclusion criteria, 516 patients were 
included in this study (353 and 163 in the primary and validation co-
horts, respectively) (Figure S1). The detailed baseline characteristics 
of the primary and validation cohorts is listed in Table 1. Univariate 
analysis revealed that differentiation status, pretreatment CEA level, 
pretreatment CA199 level, pretreatment T stage, and tumor dimen-
sion were significantly different between the pCR and non- pCR 
groups in the primary and validation cohort cohorts (p < 0.05).

The rate of pCR in the primary (21.5%, 76/353) and validation 
cohorts (22.7%, 37/163) was balanced (p = 0.819), and the baseline 
characteristics were similar (Table S2) between the two cohorts, 
which verified their use as primary and validation cohorts.

3.2  |  Collagen feature selection and collagen 
signature construction

The flowchart of this research is presented in Figure 1. In total, 142 
collagen features shrunk to four potential features by implementing 
Lasso regression in the primary cohort (Figure S2). These collagen 
features were presented in the collagen signature calculation formula:

Tumor budding was identified in the pretreatment biopsy in 70 of 
the 353 patients (19.8%). Comparison of the four collagen features 
with tumor budding showed statistically significant differences in 
collagen straightness, collagen crosslink density and collagen orien-
tation (Table S3).

Representative H&E images, SHG/TPFF images, and binary im-
ages of the pCR and non- pCR patients are presented in Figure 2A– 
H. The distributions of the collagen signature of each patient in the 
two cohorts are presented in Figure 3. Obviously, patients with 
pCR had a lower collagen signature than non- pCR patients in the 
primary cohort (−0.830 [−2.059, −0.092] vs. 0.333 [−0.111, 0.771], 
p < 0.001), which was then verified in the validation cohort (−1.103 
[−1.929, −0.199] vs. 0.321 [−0.135, 0.810], p < 0.001; Table 1). The 
collagen signature yielded an AUC of 0.842 (95% CI 0.788– 0.895) in 
the primary cohort and 0.836 (95% CI 0.754– 0.919) in the validation 
cohort (Figure 2I,J).

Furthermore, the collagen signature was significantly associated 
with pCR in the primary and validation cohorts when stratified anal-
ysis was performed (Tables S4,S5; Figures S3,S4).

3.3  |  Development of the individualized 
prediction model

Differentiation status (OR: 2.529, 95% CI 1.216– 5.259; p = 0.013), 
pretreatment CEA level (OR: 2.620, 95% CI 1.260– 5.449; 
p = 0.010), pretreatment T stage (OR: 2.783, 95% CI 1.373– 5.642; 
p = 0.005), tumor dimension (OR: 3.609, 95% CI 1.249– 10.434, 
p = 0.018; OR: 5.347, 95% CI 1.371– 20.849; p = 0.016), and col-
lagen signature (OR: 0.269, 95% CI 0.181– 0.400; p < 0.001) were 
identified as independent predictors for predicting pCR by mul-
tivariable analysis (Table 2). A prediction model that integrated 
these five predictors was constructed and presented as a nom-
ogram (Figure 4A). Among these independent predictors, the 

Collagen signature = −150.079256+152.701843∗collagen straightness

+112.973881∗collagen crosslink density+9.718559∗collagen orientation

−1.017896∗Gabor_scale 4_orientation 3_mean
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collagen signature had the most discriminative ability for predict-
ing pCR (Figure 2I,J; Table S6). The variance inflation factor of the 
five predictors was less than five, demonstrating no multicollinear-
ity among all predictors (Figure S5).

We further investigated the relationship between these four 
clinicopathological predictors and the four collagen features 
(Tables S7– S10). The results showed that four collagen features in 

the tumor microenvironment were associated with clinicopatholog-
ical characteristics: (1) moderate or poor differentiation was related 
to high collagen orientation; (2) elevated pretreatment CEA level was 
associated with high collagen orientation; (3) patients with cT4 stage 
have higher collagen orientation and lower Gabor feature compared 
with cT3 stage; and (4) tumor dimension was significantly correlated 
with collagen orientation and Gabor feature.

TA B L E  1  Clinicopathological characteristics of the patients in the primary and validation cohorts

Characteristic

Primary cohort (n = 353)

p

Validation cohort (n = 163)

ppCR (n = 76) Non- pCR (n = 277) pCR (n = 37) Non- pCR (n = 126)

Age, years old 0.687 0.425

<60 51 (67.1) 179 (64.6) 19 (51.4) 74 (58.7)

≥60 25 (32.9) 98 (35.4) 18 (48.6) 52 (41.3)

Sex 0.576 0.418

Male 52 (68.4) 180 (65.0) 27 (73.0) 83 (65.9)

Female 24 (31.6) 97 (35.0) 10 (27.0) 43 (34.1)

BMI 0.140 0.670

<24 60 (78.9) 195 (70.4) 26 (70.3) 93 (73.8)

≥24 16 (21.1) 82 (29.6) 11 (29.7) 33 (26.2)

Differentiation status <0.001 <0.001

Moderate or poor 40 (52.6) 226 (81.6) 21 (56.8) 106 (84.1)

Well 36 (47.4) 51 (18.4) 16 (43.2) 20 (15.9)

Pretreatment CEA level 0.003

Elevated 18 (23.7) 145 (52.3) <0.001 11 (29.7) 74 (58.7)

Normal 58 (76.3) 132 (47.7) 26 (70.3) 52 (41.3)

Pretreatment CA199 
level

0.027 0.109

Elevated 11 (14.5) 74 (26.7) 5 (13.5) 33 (26.2)

Normal 65 (85.5) 203 (73.3) 32 (86.5) 93 (73.8)

Distance from anal 
verge, cm

0.099 0.366

≤5 15 (19.7) 81 (29.2) 7 (18.9) 33 (26.2)

>5 61 (80.3) 196 (70.8) 30 (81.1) 93 (73.8)

Pretreatment T stage 0.006 0.011

T4 18 (23.7) 113 (40.8) 13 (35.1) 74 (58.7)

T3 58 (76.3) 164 (59.2) 24 (64.9) 52 (41.3)

Pretreatment N stage 0.113 0.449a

N+ 58 (76.3) 233 (84.1) 33 (89.2) 105 (83.3)

N− 18 (23.7) 44 (15.9) 4 (10.8) 21 (16.7)

Tumor dimension, cm <0.001 0.008

>5 6 (7.9) 79 (28.5) 6 (16.2) 43 (34.1)

>3, ≤5 57 (75.0) 196 (64.3) 25 (67.6) 78 (61.9)

≤3 13 (17.1) 20 (7.2) 6 (16.2) 5 (4.0)

Collagen signature, 
median (IQR)

−0.830 (−2.059, 
0.092)

0.333 (−0.111, 
0.771)

<0.001 −1.103 (−1.929, 
0.199)

0.321 (−0.135, 
0.810)

<0.001

Note:: Values in parentheses are percentages unless indicated otherwise.
The p value is derived from the univariable association analyses between each of the clinicopathological characteristics and pCR.
Abbreviations: BMI, body mass index; CA199, carbohydrate antigen 199; CEA, carcinoembryonic antigen; IQR, interquartile range; pCR, pathological 
complete response.
aFisher's exact test.
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3.4  |  Evaluation and validation of the 
performance of the prediction model

The AUC of the nomogram was 0.891 (95% CI 0.847– 0.935) in the 
primary cohort (Figure 4B), and the calibration curve demonstrated 
good agreement between the predicted pCR probability and actual 
pCR probability in the primary cohort (Figure 4C). The internal vali-
dation results showed a mean concordance index of 0.893 by the 
bootstrap method.

Good performance (Figure 4D) and favorable calibration 
(Figure 4E) of the nomogram were also verified in the validation 
cohort, with an AUC of 0.908 (95% CI 0.858– 0.958). The Hosmer– 
Lemeshow test showed nonsignificant statistics in the primary co-
hort (p = 0.314) and the validation cohort (p = 0.670), proving that 
there was goodness of fit of the prediction model.

3.5  |  Clinical utility of the prediction model

DCA indicated that using the nomogram to predict pCR showed a 
greater advantage than either the “treat- all scheme” or “treat- none 
scheme” in the primary cohort, validation cohort, and all patients 

(Figure 5A). Based on these DCAs, CICs were performed to evalu-
ate the clinical impact of the nomogram to help us more intuitively 
recognize its significant value by building a simulated model com-
prised of 1000 LARC cases to more accurately identify patients with 
potential pCR. The results showed the great predictive ability of the 
nomogram when the probability threshold of nearly 0.4 was optimal 
to identify patients who would achieve pCR from nCRT (Figure 5B).

In addition, the maximum value of the Youden index was 0.251, 
which was the cut- off value in the primary cohort. Then, the pa-
tients were separated into a high probability pCR group and a 
low- probability pCR group. The nomogram also had satisfactory 
sensitivity, specificity, accuracy, PPV, and NPV (Table 3).

3.6  |  Incremental value of the collagen signature to 
traditional model

The collagen signature was excluded, and a traditional model based 
on pretreatment CEA level, pretreatment CA199 level, differentia-
tion status, pretreatment T stage, and tumor dimension (Table S11) 
was developed. The AUCs of the traditional model were 0.804 (95% 
CI 0.704– 0.860) in the primary cohort, 0.789 (95% CI 0.706– 0.872) 

F I G U R E  1  Flowchart of this study. This study included image acquisition, collagen feature extraction, collagen feature selection, collagen 
signature construction, and development and validation of the prediction model. The images in the left panel are representative H&E images 
and the corresponding multiphoton images, including TPEF and SHG, of the pretreatment biopsy (collagen is presented in green). Then, the 
SHG signal image is converted into the binary image (collagen is presented as white) for collagen feature extraction. Next, Lasso logistic 
regression was applied to select predictive collagen features to construct a collagen signature. A prediction model integrating the collagen 
signature and clinicopathological predictors was developed and assessed in the validation cohort. Scale bars: 200 μm. AUC, area under 
the curve; CEA, carcinoembryonic antigen; GLCM, gray- level co- occurrence matrix; pCR, pathological complete response; SHG, second 
harmonic generation; TPEF two- photon excitation fluorescence
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in the validation cohort, and 0.799 (95% CI 0.752– 0.846) in all pa-
tients. The nomogram demonstrated better discrimination ability 
for predicting pCR than the traditional model (Table 4; Figure 5C). 
Moreover, all the NRI and IDI values were >0, with p- values <0.05 
between the nomogram and traditional model, indicating that the 
nomograms performed better than the traditional model (Table 4). 
DCA also showed that the nomogram had a higher net benefit 
than the traditional model for predicting the probability of pCR 
(Figure 5A). In addition, the nomogram had higher sensitivity, speci-
ficity, accuracy, PPV, and NPV than the traditional model (Table 3).

3.7  |  Follow- up and association of the prediction 
model with prognosis

The median (IQR) DFS and OS were 44.5 months (28– 57 months) 
and 48 months (36– 58 months), respectively. Among patients with 

a high probability of pCR, DFS was significantly better than that 
among patients with a low probability of pCR (3- year DFS: high 
probability of pCR, 91.2%; low probability of pCR, 70.6%; log- rank 
p < 0.001; Figure 6A). Furthermore, the OS of patients with a high 
probability of pCR was also better than that of patients with a low 
probability of pCR (3- year OS: high probability of pCR, 94.1%; low 
probability of pCR, 81.3%; log- rank p < 0.001; Figure 6B). The col-
lagen signature and other predictors with the corresponding survival 
status are shown in Figure 7.

Cox proportional hazard regression found that differentia-
tion status (HR: 0.442, 95% CI 0.232– 0.842; p = 0.013), pretreat-
ment CEA level (HR: 1.561, 95% CI 1.061– 2.299; p = 0.024) and 
nomogram- predicted probability of pCR (HR: 2.475, 95% CI 1.308– 
4.682; p = 0.005) were independent prognostic factors for DFS. 
Similarly, differentiation status (HR: 0.511, 95% CI 0.238– 1.097; 
p = 0.085) and nomogram- predicted probability of pCR (HR: 2.792, 
95% CI 1.351– 5.770; p = 0.006) were independent prognostic factors 

F I G U R E  2  Representative images of tissues from patients with pCR and non- pCR and ROC curves of the predictors for predicting pCR. 
(A– D) From left to right are the representative H&E images, corresponding multiphoton image (collagen is presented in green), and binary 
image (collagen is presented in white) of a pretreatment biopsy and H&E image of a postoperative resection specimen for patients with pCR. 
(E– H) From left to right are the representative H&E image, corresponding multiphoton image (collagen is presented in green), and binary 
image (collagen is presented in white) of a pretreatment biopsy and H&E image of a postoperative resection specimen for patients with 
non- pCR. The ROC curves of the collagen signature and clinicopathological predictors in the primary cohort (I) and the validation cohort 
(J). Scale bars: (A– C) 200 μm and (d) 2 mm; (E– G) 200 μm; and (H) 2 mm. AUC, area under the curve; CA199, carbohydrate antigen199; CEA, 
carcinoembryonic antigen; pCR, pathological complete response; ROC, receiver operating characteristic curve

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J)
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for OS (Table 5). This result showed that the nomogram- predicted 
probability of pCR was significantly associated with prognosis after 
adjusting for other variables.

4  |  DISCUSSION

In this study, we developed and validated a prediction model based 
on the collagen signature and presented it as an easy- to- use nomo-
gram. The nomogram with satisfactory performance was intended 
to be used by surgeons to predict the personalized probability of 
pCR and provide an effective tool for clinical decision- making.

Collagen is the main component of the ECM; it provides structural 
and mechanical support for cells and tissues and regulates a variety 
of cell functions.25 Growing evidence has proven that changes in the 
collagen structure in the tumor microenvironment could importantly 
influence the growth, invasion, metastasis, and survival of tumor 
cells and even affect therapeutic sensitivity.26- 28 Therefore, collagen 
with great potential clinical application value is currently one of the 
hotspots of individualized medical research.29- 31 However, the rela-
tionship between pCR and collagen structure in the tumor microen-
vironment of pretreatment biopsy is unclear. With the development 
of interdisciplinary approaches, MPI can accurately and selectively 
be used to visualize collagen in the tumor microenvironment in 
a label- free manner.32- 34 In addition, it is feasible to automatically 

extract high- throughput collagen feature information from multi-
photon images for conducting subsequent data analysis to provide 
decision support.14,15 Based on the above factors, pretreatment bi-
opsy was imaged by MPI, and 142 collagen features were extracted 
in this study for subsequent analysis.

In recent studies, multimarker analyses that combine singular 
markers into marker panels have been accepted and can increase 
the prediction performance.35 Lasso regression is a useful algo-
rithm to select the most predictive value of parameters from high- 
dimensional data while avoiding overfitting.36,37 In this study, we 
shrank the regression coefficients by Lasso regression to build the 
collagen signature. As a result, 142 candidate collagen features were 
reduced to four potential predictors: collagen straightness, collagen 
crosslink density, collagen orientation, and Gabor_scale4_orien-
tation3_mean. Then, the collagen signature was constructed. The 
collagen signature demonstrated good discrimination in the primary 
cohort (AUC = 0.842), which was then confirmed in the validation 
cohort (AUC = 0.836). Therefore, the collagen signature based on 
four collagen features of pretreatment biopsy was significantly as-
sociated with pCR in LARC patients. The morphologically predic-
tive collagen features were easily identified. Previous studies have 
proven that straightness, crosslink density, and orientation of col-
lagen are associated with treatment resistance and tumor prolifer-
ation,38- 41 which is consistent with our results; that is, high values 
of straightness, crosslink density, and orientation have a higher 

F I G U R E  3  Distribution of the collagen signature in the primary cohort and the validation cohort. (A, B) Collagen score for each patient 
in the validation cohort and comparison of the collagen signature between patients with pCR and non- pCR in the primary cohort. (C, D) 
Collagen score for each patient in the primary cohort and comparison of the collagen signature between patients with pCR and non- pCR in 
the primary cohort. Red represents pCR, and blue represents non- pCR. pCR, pathological complete response
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collagen signature with a low probability of pCR after nCRT. In ad-
dition, another feature used to construct the collagen signature was 
a Gabor wavelet transform feature. The Gabor wavelet transform is 
a multiscale image analysis method that divides the image data into 
different frequency components.42 The texture features extracted 
from the wavelet decomposed image can further present the spatial 
heterogeneity of collagen at multiple scales.43 Recently, Chen et al.10 
developed a prediction model based on four collagen features to 
predict the peritoneal metastasis of gastric cancer, among which 
three were Gabor wavelet transform features. This study confirmed 
that the Gabor wavelet transform feature is closely associated with 

the biological behavior of tumors and is a critical imaging biomarker 
for predicting therapeutic efficacy and prognosis.

The presence of tumor budding is associated with a poor treat-
ment response to nCRT and showed more aggressive tumor behav-
ior in pretreatment biopsy samples. In this work, we found significant 
differences, including collagen straightness, collagen crosslink den-
sity, and collagen orientation, between the patients with tumor bud-
ding and without tumor budding. Several studies have also reported 
that collagen straightness, collagen crosslink density, and collagen 
orientation are associated with tumor aggressiveness38- 40; straighter 
collagen in the tumor microenvironment is a highway for tumor cell 

TA B L E  2  Univariate and multivariate analyses of the predictors of pCR in the primary cohort

Variables

Univariate analysis Multivariate analysis

OR (95% CI) p OR (95% CI) p

Age, years old 0.687

<60 Reference

≥60 0.895 (0.523, 1.534)

Sex 0.576

Male Reference

Female 0.856 (0.498, 1.474)

BMI 0.143

<24 Reference

≥24 0.634 (0.345, 1.166)

Differentiation status <0.001 0.013

Moderate or poor Reference Reference

Well 3.988 (2.317, 6.866) 2.529 (1.216, 5.259)

Pretreatment CEA level <0.001

Elevated Reference Reference 0.010

Normal 3.540 (0.984, 6.315) 2.620 (1.260, 5.449)

Pretreatment CA199 level 0.030 NA

Elevated Reference NA

Normal 2.154 (1.078, 4.304) NA

Distance from anal verge, cm 0.102

≤5 Reference

>5 1.681 (0.903, 3.128)

Pretreatment T stage <0.001 0.005

T4 Reference Reference

T3 4.676 (2.617, 8.357) 2.783 (1.373, 5.642)

Pretreatment N stage 0.116

N+ Reference

N− 1.643 (0.885, 3.053)

Tumor dimension, cm

>5 Reference Reference

>3, ≤5 4.216 (1.745, 10.185) 0.001 3.609 (1.249, 10.434) 0.018

≤3 8.558 (2.893, 25.319) <0.001 5.347 (1.371, 20.849) 0.016

Collagen signature 0.226 (0.156, 0.328) <0.001 0.269 (0.181, 0.400) <0.001

Abbreviations: BMI, body mass index; CA199, carbohydrate antigen199; CEA, carcinoembryonic antigen; CI, confidence interval; NA, not available; 
OR, odds ratio.
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migration.44 Therefore, these results suggested that tumor cells are 
prone to migrate and develop tumor budding in the tumor microen-
vironment with high collagen straightness, collagen crosslink den-
sity, and collagen orientation.

The epithelial– mesenchymal transition (EMT), the process during 
which epithelial cells lose adhesion with neighboring cells and are 
converted to migratory and invasive cells, is closely tied to cancer 
progression.45 Collagen in the ECM is critical for EMT.46 Four collagen 
features may reflect the tumor microenvironment, which is related to 
the promotion of EMT. Patients with high collagen straightness, col-
lagen orientation, collagen crosslink density, and low Gabor feature 
may represent increased matrix stiffness.44 Increased matrix stiff-
ness could lead to improved interstitial pressure, tumor and stromal 

cell deformation, and initiation of EMT.46 Moreover, increased matrix 
stiffness could also drive EMT through a TWIST1- G3BP2 mechano-
transduction pathway.47 The increased collagen crosslink density can 
promote EMT by weakening cell– cell adhesions.48 Furthermore, the 
increased crosslink density indicated collagen deposition. Deposition 
of collagen can promote EMT through various biological pathways, 
such as enhancement of Snail stability through discoid domain recep-
tor 2,49 disruption of E- cadherin,50 and SMADS.51

Currently, the accurate prediction of pCR using traditional 
clinicopathological characteristics remains challenging in clinical 
settings. To show the incremental value of the collagen signature 
compared with the traditional model, we excluded the collagen sig-
nature and built a traditional model. The results showed that the 

F I G U R E  4  Development, validation, and evaluation of the performance of the nomogram in the primary cohort and the validation 
cohort. (A) The nomogram is developed in the primary cohort, with the collagen signature, differentiation status, pretreatment CEA level, 
pretreatment T stage, and tumor dimension incorporated. (B, C) The ROC curve and the calibration curve of the nomogram in the primary 
cohort. (D, E) The ROC curve and the calibration curve of the nomogram in the validation cohort. In the calibration curve, the y- axis 
represents the actual pCR probability, and the x- axis represents the predicted pCR probability. The diagonal black dotted line represents a 
perfect prediction in an ideal model. The solid red line is a representation of the collagen nomogram; better prediction is indicated when the 
solid red line has a closer fit to the diagonal black dotted line. AUC, area under the curve; CEA, carcinoembryonic antigen; pCR, pathological 
complete response; ROC, receiver operating characteristic curve
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nomogram based on the collagen signature had higher AUC, sen-
sitivity, specificity, accuracy, PPV, and NPV values than the tradi-
tional model. Improvements in NRI and IDI values indicated that the 
nomogram was superior to the traditional model. Moreover, DCA 
curves indicated that the nomogram had better applicability than 
the traditional model. Based on the above results, the incremental 
value of the collagen signature could be definitely identified.

Some studies have used radiomics to predict pCR in rectal can-
cer. Liu et al.1 used radiomic analysis to evaluate pCR with a very 
high AUC of 0.975, but this model was developed before and after 
treatment imaging; therefore, it cannot predict pCR before treat-
ment. Nie et al.52 used pretreatment multiparametric MRI images to 
predict pCR and obtained an AUC of 0.84. The radiomics method de-
pends on domain expertise to manually mark handcrafted features, 

F I G U R E  5  Clinical utility of the nomogram. From left to right are the primary cohort, validation cohort, and all patients. (A) Decision 
curve analysis for the nomogram. The y- axis represents the net benefit, the x- axis represents the different threshold probabilities, the red 
line represents the collagen nomogram, the cyan line represents the traditional model, the yellow line represents the “treat- all scheme,” and 
the black line represents the “treat- none scheme.” The decision curve revealed that using the nomogram to predict pCR could add more 
benefit than the traditional model, the “treat- all scheme” and the “treat- none scheme.” (B) Clinical impact curves for the nomogram. Of 
1000 patients, the red line shows the total number of LARC patients who would be deemed pCR for each threshold probability. The black 
line shows how many of those would be true positives (cases). The closer the curves, the higher the probability that the nomogram would 
identify pCR patients from a total estimated number of pCR in LARC patients. The threshold value represents the value after which the rate 
of misdiagnosis would be lowest, thereby providing an optimal benefit ratio for the patient. (C) ROCs for the nomogram and the traditional 
model. The red line represents the nomogram; the cyan line represents the traditional model. AUC, area under the curve; LARC, locally 
advanced rectal cancer; pCR, pathological complete response; ROC, area under the receiver operator characteristic
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and radiomics also needs accurate tumor segmentation.53 The col-
lagen signature we proposed is based on biopsy specimens before 
treatment, so the error caused by the manual marking process is 
avoided. Furthermore, the collagen signature provided additional 

prognostic information and helped researchers to understand the 
interactions between tumor cells and their structural microenviron-
ment; here, the collagen signature was clinically relevant and worth 
investigating.

TA B L E  3  The performance of the nomogram and the traditional model in predicting pCR in the primary cohort, validation cohort, and all 
patients

Variables

Primary cohort Validation cohort All patients

Nomogram Traditional model Nomogram Traditional model Nomogram
Traditional 
model

Cut- off 0.251 0.321 0.251 0.321 0.251 0.321

Sensitivity, % 78.9 (68.5– 86.6) 67.1 (55.9– 76.6) 62.8 (78.4– 88.6) 56.8 (40.9– 71.3) 78.8 (70.3– 85.3) 63.7 (54.5– 72.0)

Specificity, % 87.0 (82.5– 80.5) 81.2 (76.2– 85.4) 85.7 (78.5– 90.8) 84.1 (76.8– 89.5) 86.6 (82.9– 89.6) 82.1 (78.1– 85.6)

Accuracy, % 85.3 (81.2– 88.6) 78.2 (73.6– 85.4) 84.0 (77.7– 88.9) 77.9 (70.9– 83.6) 84.9 (81.5– 87.7) 78.1 (74.3– 81.5)

PPV, % 62.5 (52.5– 71.5) 49.5 (40.1– 59.0) 61.7 (47.4– 74.2) 51.2 (36.5– 65.7) 62.2 (54.1– 69.8) 50.0 (41.9– 58.1)

NPV, % 93.8 (90.1– 96.1) 90.0 (85.7– 93.1) 93.1 (87.0– 96.5) 86.9 (79.8– 91.8) 93.6 (80.6– 95.6) 89.0 (85.4– 91.8)

Note: Values are percentages unless indicated otherwise.
Abbreviations: NPV, negative predictive value; PPV, positive predictive value.

TA B L E  4  Performance comparison between the nomogram and the traditional model

Variables AUC (95% CI) p NRI (95% CI) p IDI (95% CI) p

Primary cohort <0.001 0.001 <0.001

Nomogram 0.891 (0.847, 0.935) 0.180 (0.074, 0.286) 0.209 (0.146, 0.272)

Traditional model 0.804 (0.704, 0.860) Reference Reference

Validation cohort 0.005 0.033 <0.001

Nomogram 0.901 (0.858, 0.958) 0.216(0.017, 0.416) 0.247 (0.154, 0.339)

Traditional model 0.789 (0.706, 0.872) Reference Reference

All patients <0.001 0.003 <0.001

Nomogram 0.897 (0.863, 0.930) 0.158 (0.055, 0.260) 0.222 (0.171, 0.274)

Traditional model 0.799 (0.752, 0.846) Reference Reference

Abbreviations: AUC, area under the curve; CEA, carcinoembryonic antigen; CI, confidence interval; IDI, integrated discrimination improvement; NRI, 
net reclassification improvement.

F I G U R E  6  Kaplan– Meier analysis of disease- free survival and OS according to the nomogram- predicted subgroups of all patients. (A) 
Disease- free survival of all patients in the high-  and low- probability pCR subgroups. (B) OS of all patients in the high-  and low- probability 
pCR subgroups. pCR, pathological complete response



    |  2421JIANG et Al.

We suggest that the simpler procedure is used in routine prac-
tice as follows. First, biopsy is performed in the diagnosis of LARC 
before nCRT. Second, the H&E or unstained section of biopsy tissue 
is subjected to multiphoton imaging after a routine pathology pro-
cedure, which can be completed in only 2– 3 min. Third, the collagen 
feature was automatically extracted from the multiphoton image by 
MATLAB software within 1 min; then, the collagen signature was 
calculated. Finally, the probability of pCR was obtained through the 

nomogram before nCRT. Therefore, the prediction model could po-
tentially be used to predict pCR in rectal cancer patients who may 
safely adopt the “wait and see” policy after nCRT and help surgeons 
communicate with patients for decision- making.

There are some limitations in this study. First, this study was 
a retrospective cohort, and selection bias cannot be avoided. 
Second, some studies have demonstrated that desmoplastic re-
action (DR) classification is associated with the prognosis of 

F I G U R E  7  Distribution of the nomogram- predicted subgroups with the corresponding survival status in all patients. (A) Nomogram- 
predicted probability of pCR distribution. (B) Disease- free survival status of all patients. (C) OS status of all patients. (D) Distribution of the 
collagen signature and clinicopathological predictors with the corresponding survival status. The black dotted line represents the cut- off 
dividing the patients into high-  and low- probability pCR groups. CEA, carcinoembryonic antigen; pCR, pathological complete response
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colorectal cancer.54,55 However, we cannot clarify the relationship 
between these four collagen features and the DR category due 
to the endoscopic forceps being unable to obtain tumor biopsy 
tissue from the intrinsic muscle layer. Third, the purpose of this 
study was to develop a pretreatment collagen signature based 
on collagen features from the pretreatment biopsy to predict 
pCR. Therefore, we used pretreatment biopsy tissue rather than 

posttreatment resected samples. We did not evaluate the discrep-
ancy between the biopsy specimen and the resected sample in this 
study. Of course, the resected specimen underwent radiotherapy, 
which may cause excessive collagen deposition and structural dis-
organization by myosin IIA expression and oxidative stress.56,57 In 
addition, the regressed tumor tissue is replaced by interstitial fi-
brosis.58 In short, the collagen structure of the resected specimen 

TA B L E  5  Cox regression analysis of the preoperative predictors for survival in all patients

Variables Univariate analysis HR (95% CI) p Multivariate analysis HR (95% CI) p

Disease- free survival

Age (years old) (≥60 vs. <60) 1.215 (0.827, 1.785) 0.320

Sex (male vs. female) 1.057 (0.723, 1.456) 0.774

BMI (≥24 vs. <24) 1.140 (0.767, 1.693) 0.517

Differentiation status (well vs. 
moderate or poor)

0.307 (0.165, 0.571) <0.001 0.442 (0.232, 0.842) 0.013

Pretreatment CEA (elevated vs. 
normal)

1.978 (1.358, 2.881) <0.001 1.561 (1.061, 2.299) 0.024

Pretreatment CA199 (elevated vs. 
normal)

1.319 (0.885, 1.966) 0.174

Distance from anal verge, cm (≤5 
vs. >5)

1.140 (0.762, 1.705) 0.525

Pretreatment T stage (T4 vs. T3) 1.426 (0.985, 2.063) 0.060 NA NA

Pretreatment N stage (N+ vs. N−) 1.163 (0.732, 1.850) 0.522

Tumor dimension, cm

>5 Reference

>3, ≤5 0.816 (0.546, 1.218) 0.320

≤3 0.571 (0.253, 1.285) 0.175

Nomogram- predicted (low vs. high 
probability)

3.990 (2.074, 6.851) <0.001 2.475 (1.308, 4.682) 0.005

Overall survival

Age (years old) (≥60 vs. <60) 1.145 (0.734, 1.786) 0.552

Sex (male vs. female) 1.143 (0.720, 1.814) 0.571

BMI (≥24 vs. <24) 1.261 (0.770, 2.065) 0.356

Differentiation status (well vs. 
moderate or poor)

0.339 (0.163, 0.701) 0.004 0.511 (0.238,1.097) 0.085

Pretreatment CEA (elevated vs. 
normal)

1.250 (0.815, 1.915) 0.307

Pretreatment CA199 (elevated vs. 
normal)

1.137 (0.694, 1.862) 0.611

Distance from anal verge, cm (≤5 
vs. >5)

1.364 (0.868, 2.145) 0.179

Pretreatment T stage (T4 vs. T3) 1.897 (1.211, 2.970) 0.005 NA NA

Pretreatment N stage (N+ vs. N−) 1.135 (0.659, 1.955) 0.648

Tumor dimension, cm

>5 Reference

>3, ≤5 0.984 (0.601, 1.611) 0.948

≤3 0.936 (0.400, 2.192) 0.879

Nomogram- predicted (low vs. high 
probability)

3.525 (1.766, 7.036) <0.001 2.792 (1.351, 5.770) 0.006

Abbreviations: BMI, body mass index; CA199, carbohydrate antigen199; CEA, carcinoembryonic antigen; CI, confidence interval; HR, hazard ratio; 
NA, not available.
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may be deposited and disorganized by radiotherapy compared 
with pretreatment biopsy tissue.

In conclusion, we found that the collagen signature in the tumor 
microenvironment of pretreatment biopsy samples was significantly 
associated with pCR. We developed and validated a nomogram 
based on the collagen signature for accurately individualized predic-
tion of pCR in patients with LARC before nCRT.
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