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Palladium-catalyzed allene synthesis enabled by
β-hydrogen elimination from sp2-carbon
Ge Zhang 1,2,3, Yi-Kang Song 1, Fang Zhang 1, Ze-Jian Xue2, Meng-Yao Li 2, Gui-Shan Zhang2,

Bin-Bin Zhu2, Jing Wei 4✉, Chunsen Li4, Chen-Guo Feng 1,2✉ & Guo-Qiang Lin 1,2,3✉

The rational design based on a deep understanding of the present reaction mechanism is an

important, viable approach to discover new organic transformations. β-Hydrogen elimination

from palladium complexes is a fundamental reaction in palladium catalysis. Normally, the

eliminated β-hydrogen has to be attached to a sp3-carbon. We envision that the hydrogen

elimination from sp2-carbon is possible by using thoroughly designed reaction systems, which

may offer a new strategy for the preparation of allenes. Here, we describe a palladium-

catalyzed cross-coupling of 2,2-diarylvinyl bromides and diazo compounds, where a β-vinylic

hydrogen elimination from allylic palladium intermediate is proposed to be the key step. Both

aryl diazo carbonyl compounds and N-tosylhydrazones are competent carbene precursors in

this reaction. The reaction mechanism is explored by control experiments, KIE studies and

DFT calculations.
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Palladium catalysis has proved to be a powerful synthetic
tool, which is demonstrated by numerous useful transfor-
mations and highlighted by the 2010 Nobel Prize in

chemistry1–3. Although the mechanism involved in those reac-
tions have been extensively explored, efforts to acquire a deep
understanding of the current mechanistic hypothesis and apply
them to design new transformations have never ceased. As an
elementary reaction in palladium catalysis, β-hydrogen elimina-
tion has been well studied (Fig. 1a)4–7. Theoretically, the hydro-
gen elimination can be divided into two categories according to
the hybrid state of the attached carbon atom. Hydrogen elim-
ination from sp3-carbon is the most common pattern, and both
alkyl and alkenyl palladium complexes8–11 can undergo this
elimination pathway, affording olefins and allenes respectively. In
contrast, the second hydrogen mode, where the eliminated
hydrogen is attached to a sp2-carbon (also means β-elimination of
vinylic hydrogen from 1η-δ-allylic palladium) and allene would be
generated, has not been reported yet (Fig. 1b).

On the other hand, allenes are of great importance due to their
wide existence in natural products12, pharmaceuticals13, and
molecular materials14. The active nature imparted by its unique
orthogonal cumulative π-system also makes them highly versatile
and useful building blocks in organic synthesis15–19. Although
numerous methods for the preparation of allenes have been

developed20–24, they still lag far behind the growing demand in the
application. At present, the majority of the existing methodologies
rely on the utilization of elaborate alkynes. Therefore, it is highly
desirable to develop new approaches via new mechanistic pathways,
which may deliver the allenes efficiently from easily accessible
starting materials and complement the current methodologies25–33.
Therefore, β-hydrogen elimination of allylic palladium from sp2-
carbon represents an attractive new strategy for allene synthesis.

Here, we report the successful application of the β-hydrogen
elimination from sp2-carbon for the allene synthesis. In our
research plan, the desired δ-allylic palladium intermediate is
planned to be produced from the classic allylic alcohol deriva-
tives, which can undergo an oxidative addition/isomerization
sequence in the presence of Pd0 (Fig. 1c, pathway I). A second
pathway was also devised where the cross-coupling of alkenyl
halides and diazo compounds offer the desired δ-allylic palladium
intermediate via migratory of palladium carbene IV (Fig. 1c,
pathway II)34–37. In these two pathways, there is an equilibrium
of 1η-δ- and 3η-π-allylic palladium intermediates. The π-allylic
palladium normally showed higher stability compared with the
corresponding δ-allylic one. However, The lack of a syn coplanar
arrangement of C–H and C-Pd bonds, a key factor for most β-
hydrogen elimination, would make the hydrogen elimination
from π-allylic palladium rather difficult38–40.

Allene synthsis via hydrogen elimination from C(sp2) (this work)
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Fig. 1 Allene synthesis based on β-hydrogen elimination from sp2 hybrid carbon. a β-Hydrogen elimination in palladium catalysis. b Two modes of
β-hydrogen elimination. c Allene synthesis via β-hydrogen elimination from C(sp2) (this work).
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Results
Initial study. With these considerations in mind, we set out to
explore the feasibility of the planned strategy. A small amount of
allene 2 was observed when allyl acetate 1 was treated by Pd
(OAc)2/PPh3 at 100 oC with poor conversion (Fig. 2a). However,
attempts to further improve this reaction were unsuccessful, and a

complicated mixture was observed when a full conversion was
achieved by changing ligands or solvents. Next, we tested the
cross-coupling of 2,2-diarylvinyl bromide 3a and diazoacetate 4a
in the presence of Pd(OAc)2/PPh3 (Fig. 2b). These two model
substrates were selected because the planned elimination is
expected to be promoted by the generation of stable multi-aryl
substituted allenes, and the competitive elimination from a sp3-
carbon will be avoided. Delightfully, the desired allene 5a was
generated in high yield, and its structure was unambiguously
confirmed by X-ray analysis.

Reaction conditions development. Encouraged by the above
results, more reaction conditions were screened for a higher
reaction yield (Table 1). Other mono-phosphine ligands, with
either electron-withdrawing fluorine (L2) or electron-donating
MeO group (L3), gave reduced reaction yields (entries 2 and 3).
Bis-phosphine ligands were also competent to promote this
reaction, and the ligand bearing a linkage of six carbon atoms
further improved the reaction yield to 87% (entries 4–7). Instead
of CsOAc, several other bases were also examined, but offered
inferior results (entries 8–10). The reaction also went well in
other ether solvents, but was rather sluggish with toluene or DCE
as solvent (entries 13 and 14). While a comparable result was
obtained in an elevated reaction temperature of 90 oC (entry 15),
an obvious loss in reaction yield was observed at a lower tem-
perature (entries 16 and 17).

OAca

b

+

CO2Me

N2
CsOAc, THF, 80 oC CO2Me

Br

3a

4a

5a

Pd(OAc)2/PPh3

21

base, THF,100 oC

CsOAc 2% yield
K3PO4 7% yield

80% yield

Pd(OAc)2/PPh3

Fig. 2 Initial studies. a Allene synthesis starting from allyl acetate 1. b
Allene synthesis starting from vinylbromide 3a and diazoacetate 4a.

Table 1 Optimization of reaction conditions.

+ CO2Me

N2

base, solvent, T (oC) CO2Me

Br Pd(OAc)2 (5 mol %)
ligand (5.5 mol %)

a5a4a3

P

R R

R

L1 R = H
L2 R = 4-F
L3 R = 4-MeO PP

( )n

L4 n = 2, dppe
L5 n = 3, dppp
L6 n = 4, dppt
L7 n = 6, dpph

Entry Ligand T (oC) Solvent Base Yield (%)a

1 L1 80 THF CsOAc 80
2 L2 80 THF CsOAc 60
3 L3 80 THF CsOAc 66
4 L4 80 THF CsOAc 77
5 L5 80 THF CsOAc 82
6 L6 80 THF CsOAc 63
7 L7 80 THF CsOAc 87
8 L7 80 THF CsOPiv 65
9 L7 80 THF Cs2CO3 66
10 L7 80 THF K2CO3 77
11 L7 80 1,4-Dioxane CsOAc 82
12 L7 80 TBME CsOAc 70
13 L7 80 Toluene CsOAc 10
14 L7 80 DCE CsOAc 37
15 L7 90 THF CsOAc 86
16 L7 70 THF CsOAc 78
17 L7 60 THF CsOAc 20

Reaction conditions: 3a (0.20mmol), 4a (0.30mmol, 1.5 equiv), Pd(OAc)2 (0.02mmol, 0.1 equiv), ligand (0.06mmol for L1–L3 or 0.03mmol for L4–L7), CsOAc (0.30mmol, 1.5 equiv), THF (2 mL).
THF tetrahydrofuran, TBME tert-butyl methyl ether, DCE 1,2-dichloroethane.
aDetermined by 1H NMR spectroscopy using CH2Br2 as an internal standard.
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Substrate scope of 2,2-diarylvinyl bromides with diazo carbo-
nyl compounds. With the optimal reaction conditions in hand,
we began to explore the generality of this cross-coupling reaction
(Fig. 3). First, a variety of 2,2-diarylvinyl bromides 3 were used in
the coupling with phenyl diazoacetate 4a. All of them afforded

high yields, with a deleterious effect on the reaction outcome by
introducing electron-withdrawing groups to the phenyl ring, or
moving the substituents from para- to meta- or ortho- position
(5d–i). Vinyl bromide with a flat terminal fluorene substitution,
instead of two separate aryl groups, also proceeded well (5l).

Fig. 3 Cross-coupling of 2,2-diarylvinyl bromides with diazo carbonyl compounds. aReactions conditions: 3 (0.20mmol), 4 (0.30mmol, 1.5 equiv), Pd
(OAc)2 (0.02mmol, 0.1 equiv), dpph (0.03mmol, 0.15 equiv), CsOAc (0.30mmol, 1.5 equiv), THF (2mL), 80 oC. Isolated yields.
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Next, the variation of the aryl diazoacetates 4 was also investi-
gated. The methyl ester could be successfully replaced by an ethyl
or benzyl ester, as well as an ethyl ketone (5m–o). Introduction of
different substituents onto the para- or meta- position of the
phenyl ring was well tolerated, albeit in slightly reduced reaction
yields (5p–w). Compared with the vinyl bromide substrates, the
diazoacetate part was more sensitive to the steric properties, as
the ortho-methyl substituted phenyl ring completely blocked the
coupling reaction (5x). Delightfully, other aromatic rings, like 2-
thienyl or naphthyl group, could provide the desired products in
good yields (5y and 5z).

Substrate scope of 2,2-diarylvinyl bromides with N-tosylhy-
drazones. Encouraged by the above success, we sought to use
diaryldiazomethanes to produce tetra-aryl-substituted allenes,
which showed some unique properties in material science41,
catalysis42,43, and molecular recognition44,45. Although a pre-
liminary experiment with diphenyldiazomethane furnished the

tetra-phenyl-substituted allene 7a in moderate reaction yield
under the standard reaction conditions, further efforts were
hampered by the relatively lower stability of this kind of diazo
compounds. Therefore, we switched to the corresponding N-
tosylhydrazones 6, a family of stable carbene precursors46–48.
Gratifyingly, the slight adjustment of the base and ligand to
cesium pivalate and dppe could lead to the desired cross-coupling
products in good to excellent yields (Fig. 4). While electronic
variation on the phenyl ring of the 2,2-diarylvinyl bromides
showed marginal effect on the reaction outcome (7a–h), the
introduction of electron-withdrawing groups to the diaryl ketones
derived N-tosylhydrazones gave slightly reduced yields (7j–l).
Ortho-substituted phenyl rings on either vinyl bromides or N-
tosylhydrazone part resulted in an obvious loss in reaction yield,
consistent with results from diazoacetate species (7g and 7n).

Conversion of the obtained product. The conversion of allene 5a
was tested (Fig. 5). In the presence of a rhodium catalyst, the
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Fig. 4 Cross-coupling of 2,2-diarylvinyl bromides with N-tosylhydrazones. aReaction conditions: 3 (0.20mmol), 6 (0.30mmol, 1.5 equiv.), Pd(OAc)2
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allenic esters can be selectively borylated by B2(pin)2 to afford
vinyl boronate pinacol ester 8a in 78% yield. According to the
previous report49, the allenic esters can also undergo a sequential
nucleophilic attack/cyclization process to give polysubstituted α-
naphthol 8b in moderate yield. Treatment of 5a with TfOH
afforded allenic carboxylic acid 8c in 78% yield, which may be
used to attach this unique allene architecture to other molecules.

Control experiments. To probe the mechanism of this catalytic
reaction, palladium complex 9 was prepared and subjected to
several control experiments (Fig. 6). Palladium complex 9 was
prepared by reaction of 2,2-diphenylvinyl bromide 3a and Pd

(PPh3)4, and the structure was verified by X-ray crystallographic
analysis. See SI for details.

When the mixture of complex 9 and diazoacetate 4a in THF
was heated at 80 oC for 2 h, the reaction solely afforded olefin 10
(Fig. 6a). The reaction mixture was also analyzed by SAESI-
HRMS, which is a direct and reliable method for the
characterization of reaction intermediates in situ through a
gentle ionization process50–53. The obtained MS spectrum
showed a signal of palladium complex [C59H49O2P2Pd]+. The
peaks in MS spectrum labeled as experimental m/z-relative
percentage abundance matched the theoretical shown in brackets,
unambiguously indicating the existence of allylic palladium
species 11. The relative abundance of the isotopic ion at m/z
959.2242 was higher than the theoretical value due to the
influence of the background signal nearby.

A small amount of allene 5a could be observed upon elevation
of reaction temperature, with olefin 10 still as the major product
(Fig. 6b). However, the preference of reaction products was
completely inverted when cesium acetate was added, and only
allene 5a was produced even at 80 oC (Fig. 6c). These experiments
hint that the reaction generated an allylpalladium intermediate,
which could undergo either protodepalladation54 to afford olefin
10, or hydrogen elimination to give allene 5a. Such a hydrogen
elimination step can be facilitated by the basic carboxylate salts.

KIE and deuterium-labeling experiments. To gain more
mechanistic insights, two deuterium labeling experiments were
carried out (Fig. 7). The kinetic isotope effect (KIE) was measured
in two parallel reactions using 3a and deuterium-labeled d1-3a. A
KIE value of 1.02 implicated that the final hydrogen elimination
was not involved in the rate-limiting step55. In the presence of 4
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equivalents of D2O, the reaction of complex 9 and diazoacetate 4a
afforded deuterated olefin d1-10 with 71% D incorporation,
showing the possibility of the protodepalladation by the moisture
of the reaction system in the absence of a carboxylate salt.

Proposed reaction mechanism. Based on the above investiga-
tions and literature precedents, a plausible mechanism is outlined
in Fig. 8. Initially, oxidative addition of vinyl bromide 3a to the
Pd0 catalyst offers the PdII species A. Then the PdII species A
reacts with the diazoacetate 4a to form PdII carbene species B. A
subsequent migratory insertion of carbene into the Pd−C bond
affords π-allylpalladium species C56–59, which is followed by a
hydrogen-elimination to provide the desired product 5a.

DFT calculations. To gain a deeper understanding of the
palladium-catalyzed cross-coupling of vinyl bromides with diazo
compounds, DFT calculations were carried out for the envisioned
reaction intermediates and related transition states (Fig. 9, see
computational details in the Supplementary Information).

As can be seen from Fig. 9a, the oxidative addition of
vinylbromide 3a to the Pd(0)L2 complex (L= PPh3), which is
exergonic by 9.1 kcal/mol with an energy barrier of 12.7 kcal/
mol, initiates the reaction and offers bromide coordinated
species Int2. Isomerization of Int2 by exchanging the positions
of vinyl ligand and PPh3 ligand forms a more stable isomer Int3.
We also explored the reaction pathway initiated by the addition
of diazo compound with Pd(0)L2. However, as the dediazona-
tion process in this pathway requires a high free energy barrier
of 33.2 kcal/mol (see Supplementary Fig. 4 in Supplementary
Information), such a mechanism will not be further considered.
The subsequent addition of diazoacetate 4a to Int3 with
simultaneous dissociation of one PPh3 group is endergonic by
22.3 kcal/mol and leads to Int4 in which diazoacetate weakly
occupies the vacant site of Pd(II). Further reaction of
diazoacetate with Pd(II) center releases a molecule of nitrogen
and leads to a Pd(II) carbene intermediate Int5. This step is
calculated to be 18.8 kcal/mol exothermic with an energy barrier
of 9.8 kcal/mol. A subsequent migratory insertion of the
generated carbene into the Pd−C bond of Int5 affording the
π-allylpalladium species Int6 is further exothermic by 47.7 kcal/
mol without any energy barrier. We also investigated an
alternative reaction pathway for π-allylpalladium species
formation, in which ligand exchange of bromide with the base
CsOAc happens before dediazonation and migratory insertion
(see Supplementary Fig. 2 in Supplementary Information).
However, with an overall energy barrier of about 36.4 kcal/mol,
this reaction pathway seems to be unfavorable in practice and
thus will not be discussed further. Nevertheless, as shown in
Fig. 9b, the ligand exchange indeed takes place after the
formation of Int6 to produce base coordinated π-allylpalladium
species Int7 with an endergonic reaction energy of 3.2 kcal/mol.
The so-generated Int7 then undergoes β-hydrogen elimination
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to provide the desired allene product. At this stage, two
alternative pathways, of which one involves the coordinated base
(path A in Fig. 9b) while the other involves the palladium center
(path B in Fig. 9b), were investigated respectively. As depicted in
path A, isomerization of Int7 to δ-palladium tetra-coordinated
intermediate Int8 is endergonic by 11.2 kcal/mol, with the base
AcO− acting as a bidentate chelate ligand and β-hydrogen of
allyl ligand getting close to one of the oxygen atoms of AcO−.
The resulting Int8 then undergoes base promoted β-hydrogen
elimination through a bicyclo[4.1.0] transition state (TS4) to

afford allene coordinated complex (Int9) with a small energy
barrier of 7.8 kcal/mol accompanying with an exothermicity of
6.1 kcal/mol. Finally, the Pd(0)L2 coordinated with allene is
restored by ligand exchange between the coordinated AcOH of
Int9 and PPh3 with an exergonic reaction energy of 12.6 kcal/
mol indicating that the whole reaction is thermodynamically
favorable. In contrast, due to the sterically more crowded
structure possessed in the isomer Int10 and the larger tension of
the four-membered ring transition state (TS5), the reaction
mechanism via path B is energetically unfavorable. As such, the

Fig. 9 Energy profiles and geometries of key species for the tentative reaction pathways. a Energy profiles and geometries of key species for the
formation of allylpalladium species. b Energy profiles and geometries of key species for β-hydrogen elimination mechanism. All results are calculated at the
SMD (tetrahydrofuran) M06/def2-TZVP//B3LYP/6-31G(d)(LANL2DZ) level of theory. Relative free energies are in kcal/mol and bond lengths are in Å.
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results from our DFT calculations suggest that palladium-
catalyzed cross-coupling of 2,2-diarylvinylbromides with diazo
compounds to produce allenes involves base promoted β-
hydrogen elimination mechanism. The rate-determining step is
found to be dediazonation with the overall energy barrier of
32.1 kcal/mol (TS2 vs Int3 in Fig. 9a), which is somewhat high
considering the reaction temperature of 80 oC, possibly due to
the insufficient accuracy of DFT methods in some cases. The
experimentally observed small KIE supports the DFT results
that β-hydrogen elimination is not the rate-determining step
(for computational details, see Supplementary Data 1).

In summary, We have developed a highly efficient palladium-
catalyzed cross-coupling of 2,2-diarylvinyl bromides with diazo
compounds for the modular synthesis of tetrasubstituted allenes.
The reaction can be promoted by either mono- or bis-phosphine
ligands, and ligand dpph with a flexible six-carbon linkage proved
to be the optimal choice. Under optimized conditions, both aryl
diazoacetates and N-tosylhydrazones are competent coupling
partners. To gain insight into the reaction mechanism, control
experiments, KIE studies, and DFT calculations were carried out.
The key step in the catalytic cycle is believed to undergo a β-
vinylic hydrogen elimination from allyl palladium intermediate,
where acetate anion acts as an inner base to form a bicyclo[4.1.0]
transition state. The computational study also indicates that the
rate-determining step is dediazonation with the overall energy
barrier of 32.1 kcal/mol. Notably, the β-hydrogen elimination
mode revealed by the present work deepened our understanding
of this elementary step in palladium catalysis and paved a new
way for the allene synthesis.

Methods
Typical procedure for coupling of 2,2-diarylvinyl bromides with diazo car-
bonyl compounds. To a 25 mL Schlenk tube charged with a stir bar, 2,2-diarylvinyl
bromides (3) (0.2 mmol), α-diazoesters (4) (0.3 mmol), Pd(OAc)2 (4.48 mg, 0.02
mmol), dpph (13.6 mg, 0.03 mmol) and CsOAc (58 mg, 0.3 mmol) were added.
After filled with argon, anhydrous THF (2 mL) were added via a syringe. The
mixture was stirred at 80 °C in an oil bath for 2 h. Upon completion, the reaction
mixture was washed with brine (15 mL) and extracted with EtOAc (3 × 10 mL).
The combined organic phases were dried over anhydrous Na2SO4, filtered, and
concentrated under reduced pressure. The crude products were purified by
silica gel chromatography (petroleum ether/EtOAc= 20:1 ~ 5:1) to afford
pure products (5).

Typical procedure for 2,2-diarylvinyl bromides with N-tosylhydrazones. To a
25 mL Schlenk tube charged with a stir bar, 2,2-diarylvinyl bromides (3) (0.2
mmol), N-tosylhydrazones (6) (0.3 mmol), Pd(OAc)2 (4.48 mg, 0.02 mmol), DPPE
(11.9 mg, 0.03 mmol) and CsOPiv (234 mg, 1 mmol) were added. After filled with
argon, anhydrous THF (5 mL) was added via a syringe. The mixture was stirred at
80 °C in an oil bath for 4 h. Upon completion, the reaction mixture was washed
with brine (15 mL) and extracted with EtOAc (3 × 10 mL). The combined organic
phases were dried over anhydrous Na2SO4, filtered, and concentrated under
reduced pressure. The crude products were purified by silica gel chromatography
(petroleum ether/EtOAc= 100:1 ~ 20:1) to afford pure products (7).

Data availability
Detailed experimental procedures and characterization of compounds can be found in
the Supplementary Information. The X-ray crystallographic coordinates for structures
reported in this study have been deposited at the Cambridge Crystallographic Data
Centre (CCDC) under deposition numbers CCDC 1918015 (5a), 1918277 (9).
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