
RESEARCH ARTICLE

The Role of Human Transportation Networks
in Mediating the Genetic Structure of
Seasonal Influenza in the United States
Brooke A. Bozick1,2*, Leslie A. Real2,3

1 Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, Georgia, United States of
America, 2 Center for Disease Ecology, Emory University, Atlanta, Georgia, United States of America,
3 Department of Biology, Emory University, Atlanta, Georgia, United States of America

* bbozick@emory.edu

Abstract
Recent studies have demonstrated the importance of accounting for human mobility net-

works when modeling epidemics in order to accurately predict spatial dynamics. However,

little is known about the impact these movement networks have on the genetic structure of

pathogen populations and whether these effects are scale-dependent. We investigated

how human movement along the aviation and commuter networks contributed to intra-sea-

sonal genetic structure of influenza A epidemics in the continental United States using spa-

tially-referenced hemagglutinin nucleotide sequences collected from 2003–2013 for both

the H3N2 and H1N1 subtypes. Comparative analysis of these transportation networks re-

vealed that the commuter network is highly spatially-organized and more heavily traveled

than the aviation network, which instead is characterized by high connectivity between all

state pairs. We found that genetic distance between sequences often correlated with dis-

tance based on interstate commuter network connectivity for the H1N1 subtype, and that

this correlation was not as prevalent when geographic distance or aviation network con-

nectivity distance was assessed against genetic distance. However, these patterns were

not as apparent for the H3N2 subtype at the scale of the continental United States. Finally,

although sequences were spatially referenced at the level of the US state of collection, a

community analysis based on county to county commuter connections revealed that com-

muting communities did not consistently align with state geographic boundaries, emphasiz-

ing the need for the greater availability of more specific sequence location data. Our results

highlight the importance of utilizing host movement data in characterizing the underlying ge-

netic structure of pathogen populations and demonstrate a need for a greater understanding

of the differential effects of host movement networks on pathogen transmission at various

spatial scales.
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Author Summary

The rapid, long-distance spread of human pathogens such as seasonal influenza A across
modern transportation networks presents a tremendous challenge for public health. Previ-
ous work based on influenza-like illness reports has demonstrated that commuters play an
important role in the transmission of influenza across the United States. However, genetic
structuring of influenza populations within a single season has not previously been de-
tected. Here, we use sequence data collected over multiple seasons to investigate how
human movement along the aviation and commuter networks in the United States con-
tributes to influenza transmission at the regional scale. We confirm that commuters can
play an integral role in interstate influenza transmission, but found that this pattern was
specific to the influenza A subtype under investigation. We additionally show that strong
county-to-county commuter flows do not necessarily fall within state boundaries, empha-
sizing the need for more precise spatial data to be associated with publically available se-
quences. Our results demonstrate that genetic structure does exist for influenza
populations during the course of a single season at the regional scale and highlight the
need to incorporate host movement patterns when studying spatial population structure.

Introduction
When infectious agents invade naïve host populations and are propagated predominantly by
local transmission, we expect to observe wave-like spread across geographic space [1–3]. Local
transmission processes should concomitantly generate patterns of pathogen genetic variation
approximating isolation-by-distance, where the geographic distance between locations and the
genetic distance between pathogen variants is positively correlated [4, 5]. However, for patho-
gens of humans and other hosts that frequently travel long distances or along pathways not de-
termined by local geography (e.g. aviation networks), accounting for species-specific
movement patterns provides an alternative method of defining distance which may better de-
scribe spatial spread. For example, diseases may transmit over a network, spreading first be-
tween well-connected populations through to poorly-connected populations. Populations that
are geographically close to one another may not necessarily be well connected; distance in this
model should instead be defined by the quantity of individuals moving between locations rath-
er than their spatial proximity [6–12].

For human pathogens, transmission between distant populations has become increasingly
common, as modern transportation now frequently allows individuals to move long distances
over short periods of time [13, 14]. Recent work has repeatedly shown that incorporating
human mobility into epidemic models allows for more accurate predictions of the rate and tim-
ing of disease invasion and spread [6, 15]. However, the impact of these various transportation
networks on pathogen genetic structure is strongly dependent on spatial scale. Failure to detect
similar patterns in structure across multiple spatial resolutions suggests that transmission pro-
cesses are scale-dependent. For instance, although connectivity based on air travel volume be-
tween locations often correlates well with the trajectory of pathogen diffusion at the global
scale [6], at finer resolutions, this mobility network may instead facilitate random mixing
among hosts. These contrasting outcomes are influenced by attributes of the mobility network,
which can include its size and span in relation to the geographic scale of interest, the number
of hosts that utilize it and the regularity of host movements along it, as well as by the epidemio-
logical properties of the pathogen.
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Seasonal influenza A, a virus which causes major morbidity and mortality worldwide [16],
provides an ideal system with which to compare the effects of human movement networks on
pathogen population structure across various spatial scales. Although evidence suggests that
the H3N2 subtype of influenza A (H3N2) is genetically structured as a source-sink metapopu-
lation at the global scale [17, 18], it is generally accepted that no structure is present at finer
spatial scales [19]. This is problematic for the design of containment strategies, since it suggests
that the seasonal spread of influenza within countries is determined by stochastic processes
and is therefore unpredictable. However, epidemiological reports and mortality statistics from
influenza-like illness (ILI) data have revealed that spatial patterns do exist, with greater syn-
chronization in epidemic peak timing observed between cities that are geographically close and
exchange many commuters [20].

Studies tracking the intra-continental spread of influenza have thus far utilized ILI and ex-
cess mortality data, which cannot differentiate between the two subtypes of influenza A (H3N2
and H1N1) that circulate each season. Of the two viruses, H3N2 causes the most morbidity
and mortality and has been dominant in six of the past ten influenza seasons in the United
States (US) [21]. Its rapid evolution results in annual lineage replacement so that little genetic
diversity is observed within seasons [22]. In contrast, lower substitution rates are common for
seasonal H1N1, and seasons dominated by this subtype are generally characterized by reduced
mortality and morbidity and increased genetic diversity among co-circulating lineages as com-
pared to H3N2 [22–24]. It follows that these contrasting epidemiological dynamics could lead
to subtype-specific population structure, but this hypothesis has not yet been formally tested.

We explored whether using alternative measures of distance can explain the population ge-
netic structure of seasonal influenza A subtypes within the US. Since it has been shown that air-
line travel is important for the spread of influenza at the global scale [25] and that both
commuter and airline travel contribute to the epidemiological dynamics of influenza within
the US [20, 26], we investigated the roles that these transportation networks play at the regional
scale. We constructed models of the US aviation and commuter networks and quantified inter-
state connectedness based on the daily number of individuals exchanged. If transmission is
dominated by the local spread of influenza across the commuter network rather than long dis-
tance spread over the aviation network, we expect that sequences collected from pairs of states
that are well-connected in terms of commuter flow will be more similar to each other than
those collected from poorly-connected state pairs. To test this hypothesis, we obtained influen-
za sequences collected from 2003–2013 to compare associations of intra-seasonal pairwise ge-
netic distances with geographic and network distance measures. Results indicate that
population structure is indeed detectable, though this pattern is subtype specific.

Results

Transportation Networks
Comparison of the aviation and commuting networks within the continental US revealed sig-
nificant differences in their basic properties, despite the similarity in data resolution (travelers/
day) (Fig 1). The aviation network, composed of 48 nodes connected by 2,160 edges, is highly
homogeneous in terms of the total number of connections per node (degree) and has a high
graph density (density = 0.96), reflecting that most states are directly connected to most other
states. In contrast, connection weights differed greatly across state pairs. During the influenza
season, approximately 1.6 million people travel along the interstate aviation network per day.
In contrast, the commuter network is composed of 49 nodes and only 312 edges. Decreased
graph density (density = 0.13) in comparison to the aviation network reflects that the commut-
er network is highly spatially organized, with connections generally only occurring between
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neighboring states. Over 3.8 million people travel daily across the interstate ground-travel com-
muter network, and interstate connections in the east tend to be stronger than those in
the west.

The community detection algorithm identified an average of 16 communities in the un-
weighted commuter network with an overall mean modularity of 0.55 (sd = 0.003) across the
1000 simulations (Fig 2A). In the weighted commuter network, an average of 135 communities
were identified and mean modularity was 6.03 x 10−4 (sd = 1.33 x 10−5) (Fig 2B). For both net-
works, communities tend to span multiple states.

Influenza A/H3N2
Phylogenetic trees were constructed for nine influenza seasons within the US from 2003–2004
to 2012–2013 (S1–S9 Figs); seven of these seasons contained clades for which we were able to
evaluate population structure. The number of sequences available per season varied from147 in
2005–2006 to 1,276 in 2012–2013 and the number of states represented during a season varied
from 29 in 2003–2004 to 49 in 2010–2011, 2011–2012, and 2012–2013 (S2 Table). The MRCA
for each season existed from 1–3 years before present. Clades fitting the criteria for inclusion
(see Materials & Methods) were not available from the 2004–2005 or 2008–2009 seasons. De-
tailed information on each season and clade tested obtained through the phylogenetic analysis
can be found in S3 Table.

Fig 1. Aviation (A) and commuter (B) network models for the continental US. Edge colors represent the number of individuals traveling between each
state pair per day. Bar plots directly below each network depict the weight (total number of individuals moving in (colored red) and out (colored blue) of a
state; top) and degree (total number of connections in (colored red) and out (colored blue) of a state; bottom) for each of that network’s nodes, ordered from
left to right by the longitude of each state’s population center.

doi:10.1371/journal.ppat.1004898.g001
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We detected a significant correlation between genetic distance and commuter distance for
seven out of the 23 clades tested encompassing six out of seven seasons studied (Table 1). Man-
tel r correlation coefficients ranged from 0.09–0.38. We detected a significant correlation be-
tween genetic distance and geographic distance for five clades in four of the nine seasons
(Mantel r: 0.14–0.33) and between genetic distance and aviation distance for two clades in two
seasons (Mantel r: 0.31–0.42). Temporal distance between sequences, measured as the differ-
ence in number of days between collections, was never a significant predictor of
population structure.

For many clades, more than one distance measurement was significantly associated with ge-
netic distance. After performing partial Mantel tests to account for these interactions, we found
that commuter distance remained significant for four clades in four different seasons. Geo-
graphic distance remained significant for three clades in three different seasons and air travel
remained significant for two clades in two different seasons.

Influenza A/H1N1
Phylogenetic trees were constructed for six influenza seasons within the US from 2006–2007 to
2012–2013 (S10–S15 Figs); five of these seasons contained clades for which we were able to
evaluate population structure. Correlations between genetic distance and commuter travel
were detected for a greater proportion of clades when the analyses were repeated for H1N1 at
the regional scale (Table 2). The number of sequences available per season varied from 165 in
2007–2008 to 371 in 2010–2011 and the number of states represented during a season varied

Fig 2. US commuting communities. Two realizations using the simulated annealing algorithm to partition the US into communities based on an unweighted
network (A) and weighted network (B) of county-to-county commuter flows. Modularity is similar across all realizations for a given network type, although
exact community compositions differ. In all realizations, community boundaries do not neatly coincide with state borders.

doi:10.1371/journal.ppat.1004898.g002
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from 16 in 2008–2009 to 48 in 2010–2011 (S2 Table). The MRCA for each season existed from
1–4 years before present (S4 Table). Detailed information on each season and clade tested ob-
tained through the phylogenetic analysis can be found in S4 Table.

Significant associations between genetic distance and commuter network distance occurred
in all five seasons (Mantel r: 0.17–0.38). Both aviation network distance and geographic dis-
tance were associated with genetic distance in two clades in one and two different seasons, re-
spectively (aviation Mantel r: 0.26–0.32; geographic Mantel r: 0.44–0.56) and temporal
distance appeared significant in one clade from the 2011–2012 season (Mantel r: 0.31). After
performing partial Mantel tests for clades in which more than one distance measure appeared
significant, the commuter network remained significantly associated with genetic distance in

Table 1. Mantel r correlation coefficients measuring the association betweenmatrices of genetic, temporal, geographic, aviation network and
commuter network distance for H3N2 sequences.

Correlation with genetic distance based on:

Season Temporal Geographic Aviation Commuter

2003–2004

clade 1 0.01 (p = 0.43) 0.20 (p = 0.03) 0.29 (p = 0.04) 0.38 (p = 0.0009)

clade 2 0.12 (p = 0.14) 0.07 (p = 0.16) -0.13 (p = 0.89) 0.09 (p = 0.15)

2005–2006

clade 1 0.02 (p = 0.39) -0.17 (p = 0.98) -0.01 (p = 0.53) -0.04 (p = 0.67)

clade 2 0.00 (p = 0.48) 0.04 (p = 0.33) 0.31 (p = 0.02)* 0.25 (p = 0.02)*

2006–2007

clade 1 -0.01 (p = 0.51) 0.22 (p = 0.009)* -0.02 (p = 0.57) 0.13 (p = 0.005)

clade 2 0.11 (p = 0.06) 0.04 (p = 0.17) 0.01 (p = 0.45) 0.04 (p = 0.05)

2007–2008

clade 1 -0.05 (p = 0.76) -0.03 (p = 0.77) 0.12 (p = 0.07) 0.04 (p = 0.06)

clade 2 -0.15 (p = 0.88) -0.08 (p = 0.74) 0.31 (p = 0.04) -0.10 (p = 0.85)

clade 3 0.11 (p = 0.03) -0.04 (p = 0.81) 0.06 (p = 0.21) 0.04 (p = 0.11)

clade 4 0.15 (p = 0.02) 0.16 (p = 0.0007)* 0.06 (p = 0.23) 0.09 (p = 0.0001)
clade 5 -0.02 (p = 0.70) 0.00 (p = 0.50) 0.00 (p = 0.49) 0.01 (p = 0.25)

2010–2011

clade 1 -0.26 (p = 0.96) -0.06 (p = 0.64) -0.33 (p = 0.96) -0.10 (p = 0.91)

clade 2 0.00 (p = 0.49) -0.11 (p = 0.84) -0.11 (p = 0.84) -0.05 (p = 0.72)

2011–2012

clade 1 -0.15 (p = 0.94) 0.14 (p = 0.0002) 0.27 (p = 0.03) 0.14 (p = 0.02)

clade 2 -0.07 (p = 0.80) 0.07 (p = 0.17) 0.08 (p = 0.23) 0.06 (p = 0.15)

clade 3 0.11 (p = 0.09) 0.16 (p = 0.005) 0.10 (p = 0.14) 0.22 (p = 0.0001)*
clade 4 0.19 (p = 0.13) -0.15 (p = 0.84) 0.06 (p = 0.39) 0.03 (p = 0.40)

2012–2013

clade 1 -0.06 (p = 0.65) -0.13 (p = 0.76) -0.10 (p = 0.69) -0.15 (p = 0.91)

clade 2 -0.04 (p = 0.57) 0.13 (p = 0.28) -0.16 (p = 0.77) 0.11 (p = 0.25)

clade 3 0.24 (p = 0.06) -0.04 (p = 0.61) -0.19 (p = 0.90) 0.05 (p = 0.23)

clade 4 0.01 (p = 0.44) 0.33 (p = 0.005) 0.42 (p = 0.003)* 0.32 (p = 0.006)
clade 5 0.03 (p = 0.33) 0.10 (p = 0.10) -0.10 (p = 0.82) 0.15 (p = 0.001)

clade 6 -0.15 (p = 0.94) 0.07 (p = 0.09) -0.07 (p = 0.70) 0.01 (p = 0.42)

Significant p-values are based on a Bonferroni correction, computed to account for multiple clade comparisons within a single season. When more than

one distance metric is correlated with genetic distance, asterisks denote those metrics that remained significant after partial Mantel tests were conducted

(at the p = 0.05 level).

doi:10.1371/journal.ppat.1004898.t001
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five clades over four different seasons. In the 2012–2013 season, both commuter distance and
aviation distance were significantly associated with genetic distance, although partial Mantel
tests showed that neither remained significant when accounting for the other.

Discussion
We have shown here the first evidence, to our knowledge, that population structure for season-
al influenza A is detectable at the scale of the continental US. Although all distance metrics
were correlated with genetic distance for at least one clade, we found that the commuter net-
work was more often associated with genetic distance than any other measure of spatial or net-
work distance for the H1N1 subtype. Further, the association between genetic distance and the
commuter network often remained significant after geographic distance was taken into ac-
count, demonstrating that the relative magnitude of host movement over space has a greater
influence on the route of pathogen spread than the geographic proximity of sampling locations.
In contrast, population structure was not detected in the majority of clades tested for H3N2,
even though both geographic distance and commuter distance were, at times, correlated with
genetic distance. This discrepancy suggests that epidemiological differences between H3N2
and H1N1 affect our ability to detect population structure of influenza within a season at this
spatial scale.

Striking differences in the epidemiological dynamics of seasons dominated by H3N2 and
H1N1 have been previously documented [20]. The rapid bicoastal spread of H3N2 should ob-
scure our ability to detect patterns based on geography or commuting if long distance trans-
mission (through the aviation network, for example) quickly moves the virus between spatially
distant localities. Models of the effect of Ro on the spread of influenza across the US and its

Table 2. Mantel r correlation coefficients measuring the association betweenmatrices of genetic, temporal, geographic, aviation network and
commuter network distance for H1N1 sequences.

Correlation with genetic distance based on:

Season Temporal Geographic Aviation Commuter

2006–2007

clade 1 0.11 (p = 0.19) 0.56 (p = 0.0001)* 0.32 (p = 0.005) 0.36 (p = 0.0003)

clade 2 -0.09 (p = 0.76) 0.44 (p = 0.001)* -0.21 (p = 0.98) 0.38 (p = 0.0001)*
clade 3 0.07 (p = 0.32) 0.13 (p = 0.12) -0.17 (p = 0.86) 0.20 (p = 0.002)

2007–2008

clade 1 -0.11 (p = 0.80) 0.07 (p = 0.23) 0.15 (p = 0.20) 0.20 (p = 0.04)

2010–2011

clade 1 0.17 (p = 0.12) 0.28 (p = 0.03) 0.08 (p = 0.29) 0.28 (p = 0.005)

clade 2 -0.11 (p = 0.79) -0.09 (p = 0.75) -0.04 (p = 0.61) 0.03 (p = 0.30)

clade 3 0.00 (p = 0.49) -0.16 (p = 0.99) -0.12 (p = 0.92) -0.04 (p = 0.83)

2011–2012

clade 1 0.31 (p = 0.0002) 0.09 (p = 0.08) 0.04 (p = 0.35) 0.17 (p = 0.007)

clade 2 -0.08 (p = 0.93) 0.00 (p = 0.50) 0.01 (p = 0.46) 0.02 (p = 0.30)

2012–2013

clade 1 -0.13 (p = 0.88) 0.04 (p = 0.37) 0.26 (p = 0.04)+ 0.22 (p = 0.03)+

Significant p-values are based on a Bonferroni correction, computed to account for multiple clade comparisons within a single season. When more than

one distance metric is correlated with genetic distance, asterisks denote those metrics that remained significant after partial Mantel tests were conducted

(at the p = 0.05 level).
+ Neither metric remained significant after a partial mantel test was performed (at the p = 0.05 level).

doi:10.1371/journal.ppat.1004898.t002
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implications for spatial synchrony have previously shown that ILI cases in cities across the en-
tire US tend to peak around the same time when influenza spread is rapid [20]. In contrast, sea-
sons dominated by H1N1 tend to be milder and characterized by slower dispersal. The slower
nationwide spread of H1N1 may facilitate the detection of population structure if H1N1 is al-
lowed to diffuse over short-range connections once it is introduced into a new geographic area.
Differences in the rate of spread between multiple clades from the same season could possibly
account for our failure to consistently detect these patterns across all lineages. The degree of
matching between vaccine strains and circulating lineages could also potentially act to reduce
transmission so that the commuter network would be able to exert a sufficiently strong influ-
ence in structuring the influenza population. However, there are multiple other factors that
vary seasonally which could confound this relationship including, for example, vaccine efficacy,
availability, population coverage, or age structure of vaccinated individuals. Models combining
genetic and epidemiological data may be able to shed light on this proposed relationship but
have only recently been utilized [22, 27–29]; adding a spatially explicit component to these
models remains an area for future research [30].

An investigation into the two circulating lineages of influenza B, a virus which causes milder
disease than either subtype of influenza A [31], would provide an interesting point of compari-
son to our findings. As population structure based on commuter travel is more pronounced for
A/H1N1, we might expect it to also be evident for influenza B. However, as influenza B primar-
ily affects children [31], the role of commuters in transmission may be reduced such that struc-
ture is instead based on geographic distance. Interestingly, recent work on the epidemiology of
influenza B in China showed that the Yamagata lineage tends to infect older age groups than
the Victoria lineage [30]; examining these lineages separately may reveal differences in popula-
tion structure patterns and/or modes of spread within the US. So far, little research to date has
been done on the spreading patterns of influenza B and unfortunately, few sequences are pub-
licly available on GenBank, as compared to either influenza A subtype.

Apart from biological explanations, uneven sampling may also be responsible for our inabil-
ity to detect population structure in more seasons, or across all clades within a season. Differ-
ences in the number of sequences available for each season are a product of inconsistent
sampling among states within a season and differential severity of the influenza virus across
seasons. For example, the number of testing facilities differs by state and the quantity of sam-
ples sequenced has historically been a function of individual laboratory capacity [32]. Addi-
tionally, seasons that are characterized by more severe influenza subtypes or poor vaccine
performance tend to yield more sequences [33]. Furthermore, seasons dominated by H3N2
generally result in higher rates of morbidity and mortality than those dominated by H1N1 or
influenza B [34]. Better virologic surveillance in less populous locations that are not travel hubs
(i.e. in states outside of New York or Texas for example, which often contributed an excess of
sequences per season) would enable us to better catalog influenza diversity outside of major cit-
ies and potentially increase our power to detect spatial patterns in this genetic data.

The correlations we detected are not as strong as those observed between these same dis-
tance metrics and epidemiological data [20]. First, we caution against the interpretation of the
Mantel r value as a standard correlation coefficient such as that calculated from a linear regres-
sion. Mantel r correlation coefficients are typically much lower than those reported for other
statistical tests, owing to the comparison of distances between variables rather than their abso-
lute values. Further, due to differences in the calculation of the sum of squares statistic, a stan-
dard R2 cannot be derived from this value for use as a measure of the variation in the
dependent variable explained by the predictor variable [35]. However, the discrepancy in corre-
lation strength may be due to differences in the underlying processes producing these associa-
tions. For example, epidemics in different locations could follow similar trajectories in terms of
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peak timing if one directly seeded the other; however, this could also result if the epidemics
were initiated at similar times due to similarities between states in population size or climate.
In contrast, correlations between locations based on genetic distance should only arise if epi-
demics in one location were directly seeded by the other. In systems such as this, where long
distance dispersal is prevalent, noise due to the circulation of multiple lineages in a single loca-
tion likely obscures fine scale signatures of diffusion [19]. We have attempted to account for
this noise by using phylogenetic methods to aggregate samples by clade so that only sequences
derived from the same introduction, and therefore the same genetic lineage, are compared.
However, uncertainty surrounding divergence dates always exists; that we are able to detect
any correlation at all is surprising, as none have been found previously [19].

At this spatial scale, the ability of the commuter network to exert a structuring influence on
regional influenza populations is directly counteracted by the aviation network, which instead
acts to create a randomly mixed viral population. These opposing effects stem from differences
in the predictability of transmission processes within the two transportation networks. The
commuter network is highly spatially organized, with 99% of commutes occurring over dis-
tances less than 150 miles (242 km). Individuals travel along the commuter network on a daily
basis, increasing both the probability of transmission to coworkers and any others with whom
an infected individual encounters regularly. These movements along the network lead to a ge-
notypic cline; viral sequences collected from nodes separated by less traveled paths appear less
similar than those collected from node pairs that are well connected. In contrast, movement
along the aviation network is less predictable. Although individuals traveling by air are likely to
remain at their destination for several days, these trips are not likely to reoccur multiple times
within a season, thus counteracting the structuring effects of routine commuting. That we find
any structure at all is an indication that daily travel to and from work is an important route of
interstate spread for seasonal influenza. Although infection pathways can be linked to air travel
at the global scale [25], at the regional scale, air transportation likely functions to move the
virus long distances into new areas that have not yet been invaded [15] where it then undergoes
short-range dispersal by commuters.

In our characterization of the US commuting network, we were able to partition the US into
communities of high modularity based on county-to-county connections. While partitioning
these communities using daily total commuter flow estimates (weighted networks) resulted in
weakly supported subdivisions that provided little information about human mobility, analyz-
ing county-to-county connections based on the presence or absence of commuter movements
(unweighted networks) resulted in subdivisions of high modularity. These communities tended
to span multiple states, lending further support to the hypothesis that interstate commuter
travel is a viable means of influenza transmission. More importantly, states tended to be part of
multiple communities, suggesting that aggregation of sequences by state may be somewhat ar-
bitrary and that finer scale location data for sequences is needed. Our results are in good agree-
ment with previous characterizations of US community structure [36], which have used
currency movement as a proxy for human mobility. Since human movement tends to be limit-
ed to spatially compact groups of counties and repeated studies have shown that commuters
are responsible for a significant portion of transmission, grouping sequences by commuting
community rather than by state may provide a more accurate method of determining which se-
quences are most likely to be closely related [25]; comparing these sequences sets with network
distance may then yield stronger and more consistent relationships between genetic distance
and the commuter network. Further, these communities may in fact provide a measure of the
spatial extent over which commuting is responsible for the majority of transmission, with air
travel operating to transfer influenza lineages between communities. Unfortunately, the spatial
data associated with most publicly available sequences is currently limited to the US state of
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collection. Since commuting communities are defined by county-level associations, the avail-
ability of only state-level reporting hinders our ability to analyze the data at this alternative res-
olution. Clearly, there is a need for more informative spatial data to be made publicly available
in order to facilitate analyses using more natural geographic groupings, rather than those arbi-
trarily imposed by political boundaries.

The results from our study complement recent findings that the aviation network plays an
important role in the world-wide transmission of seasonal influenza. While the aviation net-
work is undoubtedly of importance in structuring populations at the global scale, we find that,
when population structure is detectable, it is the commuter network that is of greater impor-
tance at more regional scales. Host movement governs disease transmission patterns, and dis-
tinct modes of movement by discrete segments of the population can have varying levels of
importance. While the magnitude of the correlations we detected was not overly strong, this
may not be the case at finer geographic resolutions, such as within commuting communities or
at the state-wide level, or at finer temporal resolutions, such as during the onset of an epidemic
before any appreciable long distance transmission has occurred. While commuters living near
state borders likely accounted for much of the interstate connectivity measured by our metric,
at the intrastate scale, commuters moving between counties may comprise a larger segment of
the population. However, local movement networks, such as that of children being transported
to and from school, may prove more important in structuring influenza populations at this
scale. Previous work has suggested that children are responsible for much of the transmission
within communities [37]. Future work is needed to further elucidate the scales at which differ-
ent movement patterns contribute most to disease transmission.

Materials and Methods

Sequence Data
In total, 3,063 influenza A/H3N2, and 1,366 A/H1N1hemagglutinin sequences collected from
2003–2013 in the continental US were obtained from the National Center for Biotechnology
Information Influenza Virus Resource for use in this analysis [38]. Collection date was used to
assign each sequence to a season, with seasons defined as occurring from Oct 1 to May 31. We
restricted our analyses to seasons containing more than 90 sequences that were collected in at
least 10 different states. This criterion was based on a natural break in the data, as seasons that
did not fit this criterion tended to have fewer than 30 sequences that were restricted in their
geographic distribution. This criterion was therefore necessary to achieve representative sea-
sonal datasets in terms of sequence diversity and geographic coverage. For example, only 11
H3N2 sequences were available from the 2009–2010 season since the H1N1 subtype was domi-
nant; this season was therefore excluded from all analyses of H3N2 data. Using this criterion,
we were able to evaluate influenza phylogenetic structure in nine seasons for H3N2 (2003–
2004 to 2012–2013, excluding 2009–2010), and six seasons for H1N1 (2006–2007 to 2012–
2013, excluding the 2009–2010 pandemic; see below). For each subtype, isolates came from all
locations within the 48 continental states and the District of Columbia. The specific set of states
represented varied seasonally and with each subtype. GenBank accession numbers for all se-
quences used in this study, as well their location and collection dates are listed in S1 Table.

Phylogenetic Analysis
Sequences were aligned using MUSCLE in Geneious [39] and the HA1 domain was extracted
for use in all analyses (H3N2: 987 nt, H1N1: 1701 nt). Seasonal influenza is introduced into the
US multiple times over the course of the season [19]. To account for these multiple introduc-
tions, phylogenetic trees were inferred separately for each season using a bayesian framework
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in the program BEAST [40, 41]. To construct phylogenies, we used the SRD06 codon position
model to accommodate different substitution rates for the first and second versus the third
codon position, with the HKY85 substitution model applied over these two codon positions
[42]. For two seasons for which an extremely large number of sequences were available, H3N2
2007–2008 and H3N2 2012–2013, we down-sampled from states that contributed exceptional-
ly large numbers of sequences. For the H3N2 2007–2008 season, the GTR+I+G model used, as
convergence could not be achieved using the codon position model. Trees were constructed
using a strict molecular clock, with an exponential growth tree prior and relatively uninforma-
tive priors on all phylogenetic parameters except for the substitution rate, for which we used a
lognormal prior with mean = 0.0055 (sd = 0.7) substitutions/site/year for H3N2 sequences [43]
and mean = 0.0018 substitutions/site/year (sd = 0.4) for H1N1 sequences [22]. MCMC chains
were run until convergence was reached and a maximum clade credibility tree was annotated
after removing the first 10% of the sampled trees as a burn-in. We defined clades as groups of
at least 20 sequences stemming from a node with a posterior probability of> 0.9. We corrected
for independent introductions into the US by choosing clades for which the entire HPD inter-
val for the divergence time of the MRCA did not fall more than three months before the begin-
ning of the flu season. This time limit was chosen as it was generally the most recent time
period for which high posterior support could be obtained for clades. Since several clades fit-
ting these criteria were often identified within a single season, we used a Bonferroni correction
within seasons, based on the number of clades identified for a season to account for these
multiple comparisons.

For each clade analyzed, pairwise genetic distances were calculated as the proportion of sites
that differed between each pair of sequences. To ensure that the choice of genetic distance met-
ric did not affect our results, analyses were repeated using the evolutionary substitution models
available in the R package APE [44]. The results remained the same regardless of the distance
metric chosen, so we chose to present those results obtained using the raw pairwise distance
measure. Pairwise spatial distances were calculated based on the great circle distance between
state population centers.

The 2008–2009 and 2009–2010 seasons presented a special case for H1N1, as a new pan-
demic lineage emerged in the spring of 2009 that differed markedly from the currently and pre-
viously circulating H1N1 lineages. As epidemiological dynamics of influenza pandemics differ
substantially from those of annual seasonal epidemics [24], sequences from the pandemic line-
age in the 2008–2009 season, as well as the entire 2009–2010 season, were excluded from all
analyses. To distinguish between antigenically distinct pandemic isolates and the previously
circulating H1N1 viruses, a phylogenetic tree was inferred for the 2008–2009 season using a
neighbor-joining algorithm. Two clades were immediately obvious, each encompassing distinct
time periods during the influenza season that corresponded well with the circulation times of
the epidemic and pandemic lineages. Using the A/California/07/2009 strain of pandemic
H1N1 (GenBank accession: FJ981613) as a reference, sequences were classified and
excluded accordingly.

Transportation Network Models
Data on the origin, destination and passenger volume of airline routes within the continental
US during October to March from 2003–2012 were obtained from the Office of Airline Infor-
mation, Bureau of Transportation Statistics, Research and Innovative Technology Administra-
tion [45]. Data were restricted to this time period to best represent human movement during
the US influenza season, which occurs during the fall and winter and generally peaks anytime
from late November to March [46]. Passenger movement data for each airport were aggregated
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by state, so that each state was considered a node in each season-specific aviation network
model. Data on intra-state passenger movement was excluded. Each seasonal aviation network
model therefore contained 48 nodes (all continental US states), with directed edges weighted
by the number of daily passengers traveling between each unique state pair during the influen-
za season. Because there are no airports located within the District of Columbia, sequences
from this location were excluded for the aviation analysis. To ensure that this did not affect our
results, we repeated the analysis with sequences from the District of Columbia coded as being
fromMaryland or from Virginia; no qualitative differences in the Mantel test results were ob-
served. To facilitate summary comparisons with the commuter network model, a single avia-
tion network model was also constructed based on the average number of passengers
exchanged per day between states over all ten winter seasons

Data on the origin, destination and commuter volume between all US county pairs collected
during the 2000 census were available from the US Census Bureau [47]. Commuter volume es-
timates were based on census participant responses when questioned on the county location
worked in most often during the preceding week. As commuting data are intended as a proxy
for long-distance influenza transmission occurring by means other than airline travel, com-
mutes exceeding 150 miles (242 km) were excluded from the final commuter network (and ac-
counted for only 0.07% of county-to-county movements). To assess the sensitivity of our
results to this assumption, the analyses were repeated using the full commuter network, which
included journeys of all distances. For all but one H3N2 clade, and two H1N1 clades tested, re-
sults were similar regardless of whether the full or reduced commuter network was used; we
therefore only present the results using the reduced commuter matrix. Intra-state commutes
were also excluded. Data on commuter movements between counties were aggregated by state
so that the final commuter network model contained 49 nodes (all continental US states and
the District of Columbia) with directed edges weighted by the number of daily commuters trav-
eling between each unique state pair.

For each transportation network model, each node corresponds to a single state, and each
edge represents the total daily number of either commuter or air travel passengers moving be-
tween those states. To compare the basic properties of the two different transportation net-
works, node degrees and graph density metrics were calculated. Node degree is defined as the
total number of connections per node and graph density is calculated as the proportion of
edges present in the graph out of the maximum number of edges possible.

To assess the validity of aggregating sequences by state, a community detection algorithm
based on simulated annealing [48–50] was run for both unweighted and weighted networks of
county level commuter movements. We used the methods described by Thiemann and col-
leagues [36] to compute 1000 partitions of high modularity to determine the underlying com-
munity structure for each network. Communities in this context refer to groups of nodes
which have stronger ties internally than externally. The community structure of a network can
be summarized by network modularity, Q, which measures the overall magnitude of difference
between partitions [49]. The modularity value of a particular set of partitions is calculated by
taking the difference between the fraction of total connections occurring within communities
and the expected value of the fraction of total edges occurring within communities in a network
of identical community partitions with randomized connections between nodes. Q is bounded
between 0–1, with Q = 0 indicating that that the community subdivisions provide no more in-
formation than that of a random partitioning of nodes.

Associations between pairwise genetic distances and measures of geographic and network
distance were assessed individually for each season through the use of Mantel’s test [51]. In
order to conduct these tests, connection weights between states for each of the transportation
networks were symmetrized by taking the sum of both connecting edges. Mantel tests were
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performed on both the raw connectivity distance matrices (constructed using the raw number
of people traveling between states) and connectivity distance matrices constructed using the ef-
fective distance metric developed by Brockman et al. [6]. This metric is based on the proportion
of individuals commuting between states in relation to the total number of commuters in the
entire US. Results were similar regardless of the connectivity metric chosen; all results pre-
sented are those results obtained using raw connectivity. To account for multiple comparisons,
a Bonferroni correction was applied to the results when multiple clades were tested from a sin-
gle season. When multiple distance metrics (geographic, aviation or commuter distances) were
significantly correlated with genetic distance for a single clade, partial Mantel tests were per-
formed to account for these interactions. Partial Mantel tests allow for the comparison of two
matrices while controlling for the effects of a third by regressing the two matrices of interest on
the third matrix, and performing a standard Mantel tests using these residuals. Results of the
partial Mantel tests were used to identify the distance metric responsible for driving patterns of
population structure.

Supporting Information
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S3 Table. Summary of epidemiological and evolutionary dynamics of H3N2 epidemics
based on phylogenetic analyses of each influenza season. ‘Root Height’ is measured in years
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in substitutions/site/year. ‘Sequences’ represents the number of sequences analyzed per clade
and ‘Locations’ represents the number of states these sequences were collected from.
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S4 Table. Summary of epidemiological and evolutionary dynamics of H1N1 epidemics
based on phylogenetic analyses of each influenza season. ‘Root Height’ is measured in years
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S1 Fig. Phylogenetic tree estimated using influenza A/H3N2 HA sequences sampled from a
single subtype within the 2003–2004 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)

S2 Fig. Phylogenetic tree estimated using influenza A/H3N2 HA sequences sampled from a
single subtype within the 2004–2005 influenza season in the US using a Bayesian method.
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S3 Fig. Phylogenetic tree estimated using influenza A/H3N2 HA sequences sampled from a
single subtype within the 2005–2006 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)

S4 Fig. Phylogenetic tree estimated using influenza A/H3N2 HA sequences sampled from a
single subtype within the 2006–2007 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)

S5 Fig. Phylogenetic tree estimated using influenza A/H3N2 HA sequences sampled from a
single subtype within the 2007–2008 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)

S6 Fig. Phylogenetic tree estimated using influenza A/H3N2 HA sequences sampled from a
single subtype within the 2008–2009 influenza season in the US using a Bayesian method.
Horizontal axis is measured in years.
(PDF)

S7 Fig. Phylogenetic tree estimated using influenza A/H3N2 HA sequences sampled from a
single subtype within the 2010–2011 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)

S8 Fig. Phylogenetic tree estimated using influenza A/H3N2 HA sequences sampled from a
single subtype within the 2011–2012 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)

S9 Fig. Phylogenetic tree estimated using influenza A/H3N2 HA sequences sampled from a
single subtype within the 2012–2013 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)

S10 Fig. Phylogenetic tree estimated using influenza A/H1N1 HA sequences sampled from
a single subtype within the 2006–2007 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
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are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
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S11 Fig. Phylogenetic tree estimated using influenza A/H1N1 HA sequences sampled from
a single subtype within the 2007–2008 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)

S12 Fig. Phylogenetic tree estimated using influenza A/H1N1 HA sequences sampled from
a single subtype within the 2008–2009 influenza season in the US using a Bayesian method.
Horizontal axis is measured in years.
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S13 Fig. Phylogenetic tree estimated using influenza A/H1N1 HA sequences sampled from
a single subtype within the 2010–2011 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)

S14 Fig. Phylogenetic tree estimated using influenza A/H1N1 HA sequences sampled from
a single subtype within the 2011–2012 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)

S15 Fig. Phylogenetic tree estimated using influenza A/H1N1 HA sequences sampled from
a single subtype within the 2012–2013 influenza season in the US using a Bayesian method.
Clades used for association tests are highlighted in green. Posterior probability values (>0.9)
are labeled for nodes leading to clades used in the correlation analysis. Horizontal axis is mea-
sured in years.
(PDF)
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