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a b s t r a c t

The protein sequence-structure gap results from the contrast between rapid, low-cost deep sequencing,
and slow, expensive experimental structure determination techniques. Comparative homology model-
ling may have the potential to close this gap by predicting protein structure in target sequences using
existing experimentally solved structures as templates. This paper presents the first use of force-directed
graphs for the visualization of sequence space in two dimensions, and applies them to the choice of
suitable RNA-dependent RNA polymerase (RdRP) target-template pairs within human-infective RNA
virus genera. Measures of centrality in protein sequence space for each genus were also derived and used
to identify centroid nearest-neighbour sequences (CNNs) potentially useful for production of homology
models most representative of their genera. Homology modelling was then carried out for target-
template pairs in different species, different genera and different families, and model quality assessed
using several metrics. Reconstructed ancestral RdRP sequences for individual genera were also used as
templates for the production of ancestral RdRP homology models. High quality ancestral RdRP models
were consistently produced, as were good quality models for target-template pairs in the same genus.
Homology modelling between genera in the same family produced mixed results and inter-family
modelling was unreliable. We present a protocol for the production of optimal RdRP homology
models for use in further experiments, e.g. docking to discover novel anti-viral compounds. (219 words)

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

Since high-throughput sequencing technologies entered main-
stream use towards the end of the first decade of the 21st century,
there has been an explosion in available protein sequences. By
contrast, there has been no corresponding high-throughput revo-
lution in structural biology. Obtaining solved structures of proteins
at adequate resolution remains a painstaking task. X-ray crystal-
lography is still the gold standard for structure determination more
than 60 years after its first use in determining myoglobin structure
[1]. The result of this discrepancy between the rate of protein
sequence determination and the rate of protein structure deter-
mination is the protein sequence-structure gap [2].
(D.J.T. Mead), s.lunagomez@
c.uk (D. Gatherer).
Homology modelling is a rapid computational technique for
prediction of a protein's structure from (a) the protein's sequence,
and (b) a solved structure of a related protein, referred to as the
target and the template, respectively. Since structural similarity
often exists even where sequence similarity is low [2,3], homology
modelling has the potential to reduce massively the size of the
protein sequence-structure gap, provided the models produced can
be considered reliable enough for use in further research.

The RNA-dependent RNA polymerase (RdRP) of RNA viruses
presents an opportunity to test and expand this approach. RdRPs
are the best conserved proteins throughout the RNA viruses, being
essential for their replication [4]. Conservation is particularly high
in structural regions that are involved in the replication process, for
instance the indispensable RNA-binding pocket [5]. RdRPs are also
of immense medical importance as the principal targets for anti-
viral drugs. Evolution of resistance against anti-viral drugs is a
major concern for the future, and the design of novel anti-viral
compounds is a highly active research area. Solved structures of
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RdRPs are of great assistance to these efforts, as they enable the use
of docking protocols against large libraries of pharmaceutical
candidate compounds [e.g. Refs. [6,7]].

Although some human-infective RNA viruses have solved RdRP
structures, there are still large areas within the virus taxonomy that
lack any. This paper will first identify where the protein sequence-
structure gap is at its widest in RdRPs. Because of the sequence-
structure gap, it is therefore impossible in many genera to
perform docking protocols against solved structures of RdRP for
discovery of novel anti-viral compounds. Under these circum-
stances, replacement of real solved structures with homology
models for docking experiments requires that the homology
models used should be both high quality and also optimally
representative of their respective genera. Our second task is to
present several similarity metrics in sequence space that assist in
the identification of the virus species having the RdRP sequence
that is most representative of its genus as a whole. We then present
the first use of force-directed graphs to produce an intuitive visu-
alization of sequence space, and select target RdRPs without solved
structures for homology modelling. These are then used to perform
homology modelling using template-target pairs within the same
genus, between sister genera and between sister families, moni-
toring the quality of the models produced as the template becomes
progressively more genetically distant to the target sequence being
modelled. Finally, we produce homology models for reconstructed
common ancestral RdRP sequences. In the light of our results, we
comment on the strengths and weakness of homologymodelling to
reduce the size of the protein sequence-structure gap for RdRPs,
and produce a flowchart of recommendations for docking experi-
ments on RdRP proteins lacking a solved structure.

2. Materials & methods

2.1. Taxonomy search

We chose RdRPs from human-infective viruses based on the list
provided by Woolhouse & Brierley [8]. Given the global medical
importance of AIDS, we also included Lentivirus reverse transcrip-
tases (RTs) for analysis. Solved structures for these proteins, where
available, were downloaded from the RCSB Protein Data Bank (PDB)
[9]. Table 1 presents our criteria for selecting suitable homology
modelling candidates.

2.2. Multiple sequence alignment

RdRP and RTamino acid sequences for all virus species satisfying
the criteria of Table 1 were downloaded from GenBank [10].
Alignment of sequence sets for each genus, was performed using
MAFFT [11]. Alignments were refined in MEGA [12] using Muscle
[13] where necessary, and the best substitution model determined.
Alignment of target sequences onto their solved structure tem-
plates for homology modelling was carried out using the Molecular
Operating Environment (MOE v.2016.08, Chemical Computing
Group, Montreal H3A 2R7, Canada).
Table 1
List of criteria used to select RNA-dependent RNA polymerases (RdRPs) for homology m

Criterion

Human-infective virus
NCBI RefSeq annotated genome
RdRP located at the 30 end of polyprotein or on its own segment
At least one solved RdRP at a range of different taxonomic levels, e.g. in same species, sa

same family, same order
2.3. Visualization of sequence space

We define sequence space as a theoretical multi-dimensional
space within which protein sequences may be represented by
points. For an alignment of N related proteins, the necessary
dimensionality of this sequence space is N-1, with the hyperspatial
co-ordinates in each dimension for any protein determined by its
genetic distance to the N-1 other proteins. For N¼ 5, direct visu-
alization of all dimensions of sequence space is impractical at best,
since a 4-dimensional space must be simulated in three di-
mensions, and is effectively impossible for N� 6. The following
methods were used to reduce sequence space to two and three
dimensions for ease of visualization. To simplify calculations, we
allow an extra dimension defined by the distance from each
sequence to itself. The value of the co-ordinate in that dimension is
always zero and our sequence space has N dimensions rather than
N-1.

2.3.1. Two-dimensional visualization of sequence space
The pairwise distance matrix (Md) for each genus, calculated

from the sequence alignment in MEGA, consists of entries Md (i,j)
giving the genetic distance between each pair of sequences i and j
where {i, j}2 {1,2 …. N} and i s j, for a set of N sequences. In our
data set N ranges (see Supplementary Table) from 5 (genus Pico-
birnavirus) to 64 (genus Flavivirus).

For each alignment, the pairwise distance matrix (Md) was
converted into a similarity matrix (Ms) as follows:

Msði; jÞ ¼ 1=ðMdði; jÞ þ 1Þ (1)

The similarity matrix was then used as input for R package
qgraph [14]. The “spring” layout option was chosen, which uses the
Fruchterman-Reingold algorithm to produce a two-dimensional
undirected graph in which edge thickness is proportional to abso-
lute distance in N dimensions and node proximity in two di-
mensions is optimized for ease of viewing while attempting to
ensure that those nodes closely related in the N-dimensional input
are also close in the two-dimensional output [15]. 500 iterations
were performed, or until convergence was achieved.

2.3.2. Three-dimensional visualization of sequence space
For each alignment, the pairwise distance matrix (Md) was used

as input for R package cmdscale, which uses multi-dimensional
scaling to produce a three-dimensional graph from the N-dimen-
sional input, with node proximity again reflecting relative similar-
ity [16]. Spotfire Analyst (TIBCO Spotfire Analyst, v.7.12.0, 2018) was
used to visualize the output of cmdscale.

2.4. Centroid nearest neighbour determination

We define the centroid as a hypothetical protein sequence
located at the centre point of the sequence space of an alignment.
The real sequence closest to the hypothetical centroid is termed the
centroid nearest neighbour (CNN). We calculate the position of the
CNN in three ways.
odelling.

Reason

Importance to human health
Easy retrieval of high quality RdRP sequence
Eliminates unconventional RdRPs

me genus, To be used as the templates in homology modelling at different levels
of genetic distance
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2.4.1. Shortest-path centroid nearest neighbour
For a sequence i2 {1,2…. N} in an alignment of N sequences, its

total path length D(i) to the other N-1 sequences may be calculated
from the distance matrix Md as follows:

DðiÞ ¼
Xj¼N

j¼1

Mdði; jÞ (2)

where i¼ j,Md (i,j) is zero. This may be omitted to enforce a strictN-
1 dimensions for N input sequences, but we leave it in to simplify
subsequent calculations. We define i* as the index that minimizes
D(i).

D
�
i*
� ¼ argmin

1�i�N

Xj¼N

j¼1

Mdði; jÞ (3)

The shortest path CNN is therefore sequence i*. For alignments
where clusters of closely related sequences exist, giving many
values of Md (i,j) close to zero, this method will tend to place the
CNN within a cluster. To overcome this problem, the arithmetic
mean and median, respectively, were used to determine the mean
CNN and the median CNN.
2.4.2. Mean centroid nearest neighbour
The values of D (equation (2)) may be averaged to produce mean

total path distance D:

D ¼
�Xi¼N

i¼1

DðiÞ
�.

N (4)

where again N is the total number of sequences in the alignment.
We now re-define i* as the index that minimizes D(i) - D.

D
�
i*
� ¼ argmin

1�i�N

�
DðiÞ � D

�
(5)

In the event of equation (5) returning zero, the mean CNN and
the true centroid are identical. As with all variables using means,
the mean CNN is liable to skewing by outliers.
2.4.3. Median centroid nearest neighbour
We generate a vector D over i2 {1,2 …. N}, in which each entry

D(i) represents the total path length for sequence i (equation (2)).
The values of vector D are then ranked in ascending order xs(1) to
xs(N) to produce vector Ds.

Ds ¼
n
D
�
i; xsð1Þ

�
;D

�
i; xsð2Þ

�
…D

�
i; xsðNÞ

�o
(6)

The median CNN is the sequence with value D(i) situated in the
middle of the array Ds, at D(m), where D(m) is either D (modd) or D
(meven) for alignments with odd or even numbers of sequences
respectively.

DðmoddÞ ¼ D
�
i; xsððNþ1Þ=2Þ

�
(7)

DðmevenÞ ¼
�
D
�
i; xsðN=2Þ

�
þ D

�
i; xsððN=2Þþ1Þ

��.
2 (8)

We now re-define i* as the index that minimizes D(i) - D(m).

D
�
i*
� ¼ argmin

1 � i � N
ðDðiÞ � DðmÞÞ (9)

Again, in the event of equation (9) returning zero, the median
CNN and the true centroid are identical. As with all variables using
medians, the median CNN is liable to skewing by the presence in
the alignment of multiple sequences with the same value of D(i).

2.5. Homology modelling

The choice of solved structures as templates for homology
modelling, and the choice of targets to be modelled, within each
genus was governed by the following rules:

(1) For each genus the solved structure that covered the highest
proportion of the RdRP or RT sequence was chosen as the
template for that genus.

(2) If more than one candidate template structure was found at
this sequence length, the structure with the lowest resolu-
tion in angstroms was selected. See Table 2 for the templates
satisfying these two criteria.

(3) Within each genus, the sequence with the greatest genetic
distance from the template, was chosen as the target for
homology modelling. See Table 3 for the template-target
pairs satisfying this criterion.

(4) Criterion 3 was applied to find template-target pairs in
different genera (see Table 4) and different families (see
Table 5), thus testing the limits of homology modelling at
high genetic distances.

Homology modelling was carried out using the Molecular
Operating Environment (MOE v.2016.08, Chemical Computing
Group, Montreal H3A 2R7, Canada). Ten intermediate models were
produced using the Amber10:EHT forcefield under medium
refinement. Themodel that scored best under the generalised Born/
volume integral (GB/VI) was selected to undergo further energy
minimisation using Protonate3D, which predicts the location of
hydrogen atoms using the model's 3D coordinates [17,18].

2.6. Model quality analysis

2.6.1. F-J outliers
To assess the stereochemical quality of the homology models

produced, Ramachandran plots were derived in MOE, and used to
calculate the proportion of bad outlier F-J angles in the model,
after subtraction of the number of outlier F-J angles in the tem-
plate. Generally, outlier angle percentage below 0.05% indicates a
very high quality model, and a percentage below 2% indicates a
good quality model [19].

2.6.2. Root-mean-square deviation
Models were superposed with their templates in MOE and root-

mean-square deviation (RMSD) value derived for the alpha carbons
(Ca) in the two structures. Generally, an RMSD below 2 Å indicates a
good quality model [20].

2.6.3. QMEAN Z-score
Qualitative Model Energy Analysis (QMEAN) was used to anal-

yse models using both statistical and predictive methods [21]. The
QMEAN Z-score is an overall measure of the quality of the model
when compared to similar models from a PDB reference set of X-ray
crystallography-solved structures. A Z-score of 0 would indicate a
model of the same quality as a similar high quality X-ray crystal-
lographic structure, while a Z-score below �4.00 indicates a low
quality model [22].

2.7. Ancestral sequence reconstruction and modelling

Maximum likelihood (ML) trees [23] were produced for each
genus in MEGA. The ML tree and the corresponding multiple



Table 2
Solved structures of RdRPs and reverse transcriptase (for HIV-1) selected as templates for homology modelling. All are derived by X-ray crystallography except 5A22
which is a cryo-electron microscopy structure. For protein coverage, indicates that the template covers more than 90% of the sequence, indicates less. ForF-J outliers
and QMEAN Z-score, indicates good-quality, indicates poor-quality, determined by the following thresholds: F-J¼ 2%, QMEAN Z-score¼�4.00.
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sequence alignment were input into the ancestral reconstruction
server, FASTML [24]. The reconstructed sequence for the root of the
tree, i.e. the putative common ancestor RdRP or RT sequence for the
genuswas used as the target for homologymodelling inMOE, using
the template chosen according to the rules in section 2.5. The
reconstructed ancestral sequence was added to the alignment and
the force-directed graph re-drawn. Fig. 1B, showing the target-
template pairs for homology modelling may be compared with
Fig. 1C, showing the ancestor-template pairs.

3. Results

3.1. Areas of the taxonomy that lack solved RdRP structures

Our first observation is that there are still large areas of the viral
taxonomy where no solved RdRP structures exist. No suitable
templates for homology modelling were found within the entire
Nidovirales order of RNA viruses. This order contains several coro-
naviruses important to human health including Severe acute res-
piratory syndrome-related coronavirus (SARS-CoV) and Middle East
respiratory syndrome-related coronavirus (MERS-CoV) [25]. In the
order Mononegavirales, Vesiculovirus was the only genus with a
solved RdRP structure suitable for homology modelling. However,
this order contains many medically important viruses such as Zaire
ebolavirus, Hendra henipavirus, Measles morbillivirus, and Mumps
rubulavirus [26]. In the order Bunyavirales, Phenuiviridae stands out
as an important family lacking a solved RdRP, despite it containing
various human-infective arboviruses such as Rift Valley fever phle-
bovirus and Sandfly fever Naples phlebovirus [27].
Furthermore, some genera have solved RdRP structures which
only cover a small proportion of the protein. For instance, Ortho-
hantavirus, Orthonairovirus and Mammarenavirus only have solved
structures covering less than 10% of the RdRP sequence (Table 1).

3.2. Sequence space visualization

3.2.1. Two-dimensional visualization
Fig.1 shows two-dimensional force-directed graphs of similarity

for each genus with more than four RdRP reference sequences (or
RT sequences in the case of Lentivirus). In principle, it would be
possible to draw force-directed graphs for entire families and even
orders. However, the input to qgraph is the similarity matrix
calculated from the distance matrix, and the distance matrix is
calculated in MEGA from an alignment. Once taxonomic distance
begin to extend beyond genera, alignment becomes progressively
less reliable, with all the downstream statistics tending to degrade
as a consequence. We therefore confine our construction of force-
directed graphs to intra-genus comparisons.

It is evident from Fig. 1 that sequences are not necessarily evenly
distributed in sequence space. Clustering is noticeable in the genus
Flavivirus, with two sub-groups and an outlier sequence evident.
Mammarenavirus also shows division into two sub-groups. By
contrast, Picobirnavirus has only five relatively equidistant refer-
ence sequences, thus producing a highly regular pentagram. Simi-
larly, Rotavirus has eight reference sequences, with four at each end
of a fairly regular cuboid. Fig. 1A also shows how the various
methods equations (2)e(9) for determining the CNN of sequence
space for each genus, are in poor agreement. Only in Rotavirus and



Table 3
Homology modelling at intra-genus, inter-species level. Templates are as given in Table 2. Targets are the RdRP (or reverse transcriptase for Lentivirus) sequences from the
reference genome accession numbers given. RMSD: root mean square deviation in Angstroms between template and model when superposed in MOE. indicates good
quality, indicates poor quality, determined by the following thresholds: F-J < 2%; QMEAN Z-score>�4.00; RMSD <2Å. indicates good quality, but using a partial
template (see Table 1) *Imjin thottimvirus was reclassified in 2018 by the International Committee on Taxonomy of Viruses (ICTV) in a new genus Thottimvirus.

Table 4
Homology modelling at intra-family, inter-genus level. Templates are as given in Table 2. Targets are the RdRP (or reverse transcriptase for Spumavirus) sequences from the
reference genome accession numbers given. RMSD: root mean square deviation in Angstroms between template and model when superposed in MOE. indicates good-
quality, indicates poor-quality, determined by the following thresholds: F-J < 2%; QMEAN Z-score>�4.00; RMSD <2 Å.
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Table 5
Homology modelling at intra-order, inter-family level. Templates are as given in Table 2. Targets are the RdRP (or reverse transcriptase for Lentivirus) sequences from the
reference genome accession numbers given. RMSD: root mean square deviation in Angstroms between template and model when superposed in MOE. indicates good-
quality, indicates poor-quality, determined by the following thresholds: F-J < 2%; QMEAN Z-score>�4.00; RMSD <2 Å.

Fig. 1. Force-directed graph visualisations of similarity of RdRPs (or reverse transcriptase for Lentivirus) within genera.
The genetic distance matrix for each alignment was converted into a similarity matrix Equations (1) and (2). The Fruchterman-Reingold algorithm (500 minimisation iterations) was
implemented in R module qgraph to produce a force-directed graph. Relative similarity is represented by node proximity, and absolute similarity is proportional to edge thickness.
The solved structure and the three types of centroid nearest neighbour (CNN) sequences are highlighted. The species names corresponding to the numbered nodes are listed in the
Supplementary Table. Cardiovirus has less than four reference sequences and is omitted. A: Location of solved structure and the three CNNs in sequence space Equations (3)e(7).
Some genera have two median CNNs.
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Picobirnavirus are mean and median CNNs found in the same
sequence. Fig. 1A also shows that the best solved structure for the
purposes of template choice in homology modelling is rarely close
to the centre of sequence space. Only in Lentivirus is the optimal
template also the mean CNN, and only in Vesiculovirus is the
optimal template a shortest-path CNN. Fig. 1B shows the relations
of the template-target pairs in sequence space, illustrating how
intra-genus homology modelling template-target selection at-
tempts to traverse the largest genetic distance available within the
genus.
3.2.2. Three-dimensional visualization
Figs. 2 and 3 compare, for genera Orthohantavirus and Mam-

marenavirus respectively, the force-directed graphs of Fig. 1 with
the three-dimensional equivalent output of multidimensional
scaling. Fig. 2 shows a sequence clustering within Orthohantavirus
that is not readily apparent in the force-directed graph. The CNNs
are distributed among four clusters, as there is no sequence close to
the geometrical centre of the three-dimensional space, where the
notional centroid is located. The solved structure has 10 other se-
quences in its proximity in the three-dimensional space, roughly



Fig. 2. Visualization of sequence space in two and three dimensions for Orthohantavirus.
Multi-dimensional scaling on the Orthohantavirus similarity matrix was implemented in R module cmdscale and viewed in Spotfire Analyst. Inset: the Orthohantavirus Fruchterman-
Reingold representation from Fig. 1. The solved structure and the three types of centroid nearest neighbour (CNN) sequences are highlighted. The species names corresponding to
the numbered nodes are listed in the Supplementary Table.

D.J.T. Mead et al. / Journal of Molecular Graphics and Modelling 92 (2019) 180e191186
equivalent to the lower right quadrant of the two-dimensional
force-directed graph. Similarly, the shortest-path CNN and mean
CNN are both located within another three-dimensional cluster
also containing 11 sequences, which is roughly equivalent to the
upper right quadrant of the two-dimensional force-directed graph.

Fig. 3 presents a similar picture for Mammarenavirus. The force-
directed graph for Mammarenavirus has more obvious clustering
that for Orthohantavirus, showing a lower-left to top-right split. In
the three-dimensional representation, these are equivalent,
respectively, to the three clusters on the right and two clusters on
the left. As with Orthohantavirus, there is no CNN near the
geometrical centre of the three-dimensional space, but the CNNs
are distributed around two clusters.

Three dimensional representations of all the genera in Fig. 1 are
available from the link in the Raw Data section.
3.3. Homology modelling

Homology modelling was carried out as follows:

(1) Intra-genus, inter-species (11 models, Table 3)
(2) Intra-family, inter-genus (5 models, Table 4)
(3) Intra-order, inter-family (7 models, Table 5)
(4) Intra-genus, on reconstructed common ancestor (12 models,

Table 6)

Table 3 shows that homology modelling with template and
target within the same genus, produced good quality models in
most cases, as judged by percentage of F-J outliers and RMSD
within the high quality range. Only the models for American bat
vesiculovirus and Tamana bat virus have percentages ofF-J outliers
outside of the high quality range. QMEAN, however, is rather more
critical of the output with only the model for Porcine picobirnavirus
falling within the high quality range. The model for Imjin thottim-
virus scores eighth best on percentage of F-J outliers and second
best on RMSD, despite the re-classification (occurring after the
completion of our experimental work) by the ICTV of this virus,
originally in genus Orthohantavirus into a new Thottimvirus genus
[28]. It should be noted that the models for Imjin thottimvirus,
Burana orthonairovirus and Brazilian mammarenavirus were based
on very short template structures (see Table 2).

Table 4 shows that homology modelling with template and
target within the same family but different genera, still produced
good quality models in most cases, as judged by percentage of F-J
outliers and RMSD within the high quality range. Only the models
for Lleida bat lyssavirus and Macaque simian foamy virus have per-
centages of F-J outliers outside of the high quality range. How-
ever, once again, QMEAN assesses all models as outside the high
quality range.

Table 5 shows that homology modelling with template and
target within the same order but in different families, is a far more
difficult proposition than at the lower taxonomic levels. The model
for Mammalian orthobornavirus 1 fails all three quality tests and
only the model for Rift Valley fever phlebovirusmanages to pass two
out of three.

Table 6 shows that modelling the structure of the reconstructed
sequence of the common ancestor of each genus, produces models
of the same standard as intra-genus modelling (compare Tables 3
and 6). By contrast with almost all the other models, the QMEAN
scores are within the high quality range, with only two exceptions,



Fig. 3. Visualization of sequence space in two and three dimensions for Mammarenavirus.
Multi-dimensional scaling on the Mammarenavirus similarity matrix was implemented in R module cmdscale and viewed in Spotfire Analyst. Inset: the Mammarenavirus
Fruchterman-Reingold representation from Fig. 1. The solved structure and the three types of centroid nearest neighbour (CNN) sequences are highlighted. The species names
corresponding to the numbered nodes are listed in the Supplementary Table.
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the common ancestors of genera Rotavirus and Vesiculovirus. Fig. 1C
shows the force-directed graphs with the locations of the ancestral
sequences added.

Table 7 summarises the results of Tables 3e6 inclusive. As the
taxonomical distance increases, production of high quality ho-
mology models becomes more difficult. However, modelling the
reconstructed ancestral sequence of each genus is typically pro-
ductive of a better scoring model even than the real sequence tar-
gets chosen for intra-genus modelling.

Fig. 4 shows representative examples of homology models of
high and low quality superimposed with their template solved
structure along with their corresponding Ramachandran plots and
QMEAN quality scores.

All homologymodels in Tables 3e6 are available from the link in
the Raw Data section.
4. Discussion

The first objective of this study was to identify viral taxa which
are comparatively lacking in solved structures for RNA-dependent
RNA polymerase (RdRP). We observed that the entire order Nido-
virales, the families Bornaviridae, Filoviridae and Paramyxoviridae
within the order Mononegavirales, and the family Phenuiviridae
within the order Bunyavirales, fall into this category. Additionally,
within the genera Orthohantavirus, Orthonairovirus and Mammar-
enavirus, all within the order Bunyavirales, the solved structure
available for RdRP covers less than 10% of the protein sequence.
Given the medical importance of many viruses within these taxa,
and the number of anti-viral drugs that target RdRPs, we suggest
that they are prioritized for X-ray crystallography to close the
“sequence-structure gap”.

Our second objective was to assess how well homology
modelling could provide models that might serve for computer-
assisted drug discovery of novel anti-viral compounds. To assist
in the visualization of sequence space, we produced the first
application of force-directed graphs to protein sequences (Fig. 1).
We also applied multidimensional scaling for comparative pur-
poses (Figs. 2 and 3). Force-directed graphs enable the visualization
of complex data in two dimensions. The three dimensional visu-
alization produced frommultidimensional scaling is visually richer,
but this benefit can only be appreciatedwhen a viewing application
such as Spotfire is available so that the three-dimensional image
can be rotated. Force-directed graphs convey much of the infor-
mation in a single imagewhichmay be printed on a page or viewed
on screen. This two-dimensional collapsing of sequence space also
allows for easy simultaneous comparison of multiple datasets, in
the present case multiple genera, which cannot readily be per-
formed if separate three-dimensional viewers require to be open.

The most common method of visualizing sequence space is the
phylogenetic tree. For instance, starting from a distance matrix,
agglomerative hierarchical clustering, such as the UPGMA method
[29], can be performed to generate a tree. Slightly more sophisti-
cated methods, such as neighbour-joining [30] can generate trees
where the branch lengths are proportional to genetic distance.
Force-directed graphs do not represent genetic distance as accu-
rately as phylogenetic trees, since the distances between nodes,



Table 6
Homology modelling the common ancestor for each genus. Templates are as given in Table 2. Targets are the reconstructed ancestral RdRP (or reverse transcriptase for
Lentivirus) sequences. RMSD: root mean square deviation in Angstroms between template andmodel when superposed inMOE. indicates good-quality, indicates poor-
quality, determined by the following thresholds: F-J < 2%; QMEAN Z-score>�4.00; RMSD <2 Å.
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although optimized to reflect relatedness, are constrained by the
Fruchterman-Reingold algorithm to the best representation in two
dimensions. However, force-directed graphs again allow easier
simultaneous comparison of several data sets than phylogenetic
trees. Fig. 1 would be impossible to create on a single page if trees
were used instead of force-directed graphs. Trees represent
ancestral sequences as nodes on the tree, with only existing taxa as
leaves. Force-directed graphs, by contrast, allow ancestral se-
quences to be represented in the same way as existing ones. Fig. 1C
shows that ancestral sequences do not necessarily appear as out-
liers in force-directed graphs. Indeed, for genera Flavivirus, Hep-
acivirus, Orthobunyavirus and Orthohantavirus in particular, the
insertion of the reconstructed ancestral sequence into the force-
directed graph in Fig. 1C does not overly distort its original shape
in Fig. 1AeB. The reason for this becomes apparent when one
considers a phylogenetic tree represented in unrooted “star”
format. The ancestral sequence is then at the centre of the star
topology and it can be seen that the genetic distance from the root
to any particular leaf sequence may often be less than for many
pairwise leaf sequence combinations. We did not perform calcu-
lation of centroid nearest neighbours (CNNs) for alignments
incorporating reconstructed ancestral sequences, but we are
tempted to speculate that many of the ancestral sequences would
have been CNNs, had they been included.



Table 7
Mean model (or structure) quality. The top line shows the mean quality scores for the solved structures used. The other lines show the mean quality scores for the models
produced at various levels of taxonomic distance between template and target. indicates good-quality, indicates poor-quality, determined by the following thresholds:
F-J < 2%; QMEAN Z-score>�4.00; RMSD <2 Å. Numbers in brackets indicate the revised scores if the model for Imjin thottimvirus is moved out of the intra-genus category
and into the intra-family category in the light of its subsequent transfer into the new genus Thottimvirus.

Fig. 4. Homology models, Ramachandran (F-J) plots and QMEAN Z-scores graphics for the “best” and “worst” intra-genus model.
A: Superposition of Rotavirus I model (orange) on Rotavirus A template 2R7O (pink). B: Superposition of American bat vesiculovirus model (orange) on Indiana vesiculovirus template
5A22 (pink). C: Ramachandran (F-J) plot for Rotavirus Imodel. D: Ramachandran (F-J) plot for American bat vesiculovirusmodel. E: QMEAN Z-scores graphic for Rotavirus I model.
F: QMEAN Z-scores graphic for American bat vesiculovirus model. The F-J plots (C,D) show J on the y-axis and F on the x-axis. Bond angle quality: favoured ( ), allowed
( ), and outliers ( cross, text). The Z-score graphics show model quality on a sliding scale: low-quality ( ), high-quality ( ). QMEAN4 shows the overall Z-score,
“All Atom” shows the average Z-score for all of the atoms in the model, “CBeta” the Z-score for all Cb carbons, “Solvation” is a measure of how accessible the residues are to solvents,
and “Torsion” is a measure of torsion angle for each residue compared to adjacent residues.
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It is important to remember that homology models are theo-
retical constructions and caution must be exercised in treating
them as input material for further experiments. Among the various
statistics for assessment of model quality,F-J outlier percentage is
a measure of the proportion of implausible dihedral angles in the
model, and indicatewhere parts of themodel backbone are likely to
be incorrectly predicted. Nevertheless, it is also important not to
become too dependent on statistics such asF-J outlier percentage,
as “bad” angles do occasionally occur in solved structures. For
instance in the present study, the thresholds of <0.05% for a very
high quality model, and <2% for a good quality model given by
Lovell et al. [19] would suggest that six of the twelve template
solved structures used here (Table 2) would not have been assessed
as “very high quality” had they been models rather than solved
structures. Indeed the templates from Indiana Vesiculovirus and
Rotavirus A have more than 0.5% F-J outliers, and also have the
poor quality scores for QMEAN. These two structures also have the
poorest resolution of any of our templates, at > 3Å. The poor
quality scoring may therefore simply be a consequence of un-
certainties in positioning of atoms in these structures. One might
reasonably posit that the use of template solved structures having
such issues might influence the resulting models to contain the
same outliers. However, the model for Rotavirus I has a lower level
of F-J outliers than its Rotavirus A template (Table 3).

As might be expected, production of high quality models be-
comes more difficult as the genetic distance between target and
template increases, as show in Tables 3e5 Nevertheless, even at the
level of template-target pairs in separate genera (Table 4), the
average performance is acceptable, as summarized in Table 7. We
therefore suggest that homologymodellingmay be used to produce
RdRP models for research use even for genera where no solved
structure exists, provided a template structure exists within the
same family. Here, we provide examples (Table 4) of such successful
inter-genus, intra-family, models for genera Coltivirus and Par-
echovirus. Our inter-genusmodels for Lyssavirus and Spumavirus are
slightly less successful. Moving to the next taxonomic level, models
with template-target pairs in separate families (Table 5) are
generally less successful. One exception is our model for family
Phenuiviridae, which is better than some of the intra-familymodels.
Fig. 5. Flowchart of recommended strategy for choice of RdRP for docking experiments.
Where a solved RdRP structure exists in a genus, it should be used. However, if that solved
produced for comparative purposes. Where no solved RdRP structure exists in a genus, a s
This is encouraging, since Phenuiviridae is a family without any
solved RdRP structure. Homology models have been produced at
much larger taxonomic distances than those dealt with here, for
instance from bacteria to eukaryotes [31], so it should be stressed
that we make no claim for the generality of our findings outside of
the viral orders under consideration, or for proteins other than
RdRP. Multi-domain proteins in particular, may produce higher
quality models for some domains than others.

One surprising result was the high quality of the models of
reconstructed ancestral sequences (Table 6, summarized in
Table 7). As previously discussed, this may be due to the fact that
the ancestral sequence is, assuming a regular molecular clock,
potentially equally related to all descendent members of its genus.
In this paper, we calculated centroid nearest neighbours (CNNs) as
the central points in sequence space for each genus (Fig. 1). A
reconstructed ancestral sequence may also be considered as a
candidate central point. The value of central points is that theymay
serve as targets that could be used to make models representative
of their genus as awhole. For instance, the shortest-path, mean and
median CNNs of genus Orthohantavirus are sequences 16, 22 and 7
(see Supplementary Table for a list of sequences for each genus),
representing Sin Nombre orthohantavirus, Rockport orthohantavirus
and Cao Bang orthohantavirus respectively. The partial solved
structure used as the template for modelling in the genus Ortho-
hantavirus in the present paper is from Hantaan orthohantavirus
(5IZE, see Table 2) and the target used, Imjin thottimvirus (sequence
27 in Orthohantavirus panel of Fig. 1), is now classified as belonging
to a new genus Thottimvirus (Table 3). The three CNNs, Sin Nombre
orthohantavirus, Rockport orthohantavirus and Cao Bang ortho-
hantavirus are 71%, 64% and 75% identical to 5IZE respectively,
whereas Imjin thottimvirus is only 58% identical. The latter was of
course chosen to test the effectiveness of intra-genus homology
modelling over as wide a genetic distance as possible (see Section
2.5). For the performance of subsequent experimental procedures
on Orthohantavirus RdRPs, for instance docking to discover novel
anti-viral compounds, a homology model corresponding to one of
the three CNNs mentioned above or to the reconstructed ancestor
(Table 6) would be the preferred target, along with the existing
solved structure.
structure is not a CNN, a homology model of a CNN or ancestral sequence should be
tructure from another genus in the same family may be used.
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On the basis of our investigations, we recommend a procedural
flowchart for selection of an RdRP structure for further study, for
instance docking to discover novel anti-viral compounds, in any
RNA virus genus of interest (Fig. 5). Where a solved structure exists
within a genus, it is the obvious choice for further experiments.
However, where that solved structure is far from any of the CNN
sequences of the genus, as judged by the force-directed graph, a
CNN may also be homology modelled for comparative purposes,
using the existing solved structure as a template. Any differential
performance of the solved structure and the homology model in,
for instance, a docking experiment, may give clues as to the gen-
erality of conclusions derived from the solved structure alone. A
reconstructed ancestral RdRP may also be used as an alternative to,
or in addition to, a CNN. The limits of homology modelling would
appear, on the basis of the results presented here, to be at the intra-
family, inter-genus level. Template-target pairs in different viral
families are unlikely to be of practical use, as the predicted quality
of the resulting models is low. Our models were produced using
MOE, and we have not performed comparisons using other
modelling tools, such as SWISS-MODEL [31] or Modeller [32]. We
feel that it is unlikely that significant differences in output would be
produced, but when the object of the exercise is drug-discovery, we
recommend that the protocol in Fig. 5 be implemented using
several alternative modelling softwares.

Crystallographic structural genome projects are badly needed to
close the sequence-structure gap. In the meantime, systematic at-
tempts to fill the gaps via homology modelling may be useful.
However, for many taxa e all of the order Nidovirales and much of
Mononegavirales - the paucity of solved structures to act as tem-
plates remains a serious obstacle.

Raw Data

All code, inputs and outputs are available from: https://doi.org/
10.17635/lancaster/researchdata/276.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jmgm.2019.07.014.
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