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Malaria is a hemolytic disease that, in severe cases, can compromise multiple organs.

Pulmonary distress is a common symptom observed in severe malaria caused by

Plasmodium vivax or Plasmodium falciparum. However, biological components involved

in the development of lung malaria are poorly studied. In experimental models of

pulmonary malaria, it was observed that parasitized red blood cell-congested pulmonary

capillaries are related to intra-alveolar hemorrhages and inflammatory cell infiltration.

Thus, it is very likely that hemolysis participates in malaria-induced acute lung injury.

During malaria, heme assumes different biochemical structures such as hemin and

hemozoin (biocrystallized structure of heme inside Plasmodium sp.). Each heme-derived

structure triggers a different biological effect: on the one hand, hemozoin found in lung

tissue is responsible for the infiltration of inflammatory cells and consequent tissue

injury; on the other hand, heme stimulates heme oxygenase-1 (HO-1) expression and

CO production, which protect mice from severe malaria. In this review, we discuss

the biological mechanism involved in the dual role of heme response in experimental

malaria-induced acute lung injury.
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INTRODUCTION

Malaria remains one of the major public health problems. In 2018, 228 million cases and 405,000
deaths from malaria were estimated worldwide (1). Malaria is particularly prevalent in tropical
and subtropical low-income regions of the world such as the African region, which accounts for
93% of the cases, followed by the Southeast Asia region with 3.4% and the Eastern Mediterranean
region with 2.1% (1). The World Health Organization’s (WHO) mission is to reduce global
malaria mortality rates by 90% by 2030 (2). Malaria is caused by at least six known species of
Plasmodium infecting humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae,
Plasmodium ovale, Plasmodium knowlesi (3), and the more recently described Plasmodium
simium (4). Its transmission occurs by female anopheles mosquito bites, transfusion of infected
blood, or transplacentally, from infected mother to fetus [reviewed in (5)]. The vast majority of
human malaria worldwide is uncomplicated resulting in fever, and factors involved in disease
complications are unknown.

Severe malaria is a complication that affects multiple organs, including lungs (6). (7)
reviewed the incidence of lung dysfunction in malaria patients and showed data ranging
from 2 to 29%. The wide range is related to different methods to diagnose dysfunction
severity. Considering the classification of pulmonary complications, it is worth mentioning that
malaria is most prevalent in poor countries where methods of diagnoses, documentation, and
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reporting are weak. Furthermore, a large proportion of severe
malaria illnesses and deaths occur in people’s homes without
coming to the attention of a formal health service. In accordance,
although the Berlin definition is a robust and reproducible
tool for identifying acute respiratory distress syndrome (ARDS),
it could not be applied in low-income countries because
of inaccessibility of mechanical ventilators, arterial blood gas
diagnostics, and chest radiography. For instance, none of the
patients with malaria in the studies of Leopold et al. (8)
could be diagnosed with ARDS using the conventional Berlin
definition because the requirements for positive end-expiratory
pressure criteria were not known since patients were managed
outside of the intensive care unit (ICU). This limitation could
have the unintended consequence of underestimating and
undertreating the burden of malaria-induced ARDS in many
countries (9). Thus, available data concerning malaria induced-
ARDS incidence worldwide may be underestimated. Herein, we
use the term malaria-induced respiratory distress (MA-RD) to
present studies in which ARDS has not been formally diagnosed.

Almost all Plasmodium species that infect humans can induce
MA-RD [reviewed in (10)], including P. malariae (11), P. ovale
(12), and P. knowlesi (13); however, this syndrome is more
common in P. falciparum and P. vivax malaria (14–17). MA-
RD can be observed at early time points after diagnosis or even
when the parasitemia decreases or disappears [reviewed in (7)].
Besides, antimalarial treatment can also lead to lung dysfunction.
For instance, during quinine therapy, it is possible to observe
pulmonary exacerbated inflammatory response and reduced
alveolar-capillary gas exchange (18). Primaquine treatment also
leads to hemolysis and consequent ARDS in malaria patients that
present G6PD deficiency (19).

The most common pathologies associated with MA-RD are
pulmonary edema, dyspnea, reduction in the capacity of gas
exchange, and increased levels of inflammatory mediators (7).
Autopsies in patients who have died of severe malaria and
ARDS symptoms showed pleural and pulmonary hemorrhages,
sequestered parasitized red blood cells (PRBC), neutrophils, and
monocytes containing malarial pigment in lung tissue (20).
Nevertheless, the biological process that triggers MA-RD is not
clear. In this way, animal models have been an indispensable
tool to understand lung dysfunction during malaria. However,
since most experimental studies did not evaluate all factors
that characterize ARDS, it is more appropriate to use the
term malaria-induced acute lung injury (MA-ALI) to depict
experimental results. Unlike cerebral malaria, which is mainly
studied in P. berghei-infected C57BL/6 mice (21), lung malaria
can be observed in P. berghei ANKA-infected C57BL/6 (22,
23), P. berghei NK65-infected C57BL/6 (24, 25), P. berghei
ANKA-infected DBA mice (26), P. berghei ANKA-infected
CBA mice (27), among others (28). These models show that
malaria-induced experimental lung dysfunction is characterized
by vascular dysfunction induced by CD8+ T cells, presence
of PRBC, hemorrhages, neutrophils, and monocytes containing
malarial pigment. On the other hand, it has been shown that,
at 24 h after infection, a time point at which inflammatory
mediators are not yet detected, it is possible to observe PRBC,
neutrophils, and mononuclear cells in the lung tissue (29, 30).

Thus, it is unclear whether inflammatory cells, PRBC, blood,
and pigment from malaria are a consequence or trigger the
pulmonary pathology seen during malaria.

THE ROLE OF HEME DERIVATIVES IN
LUNG PATHOLOGY DURING MALARIA

The study of heme and its derivatives in MA-RD is not
elementary. The complex named heme (protoporphyrin IX+ Fe
II) is an important cofactor in several biological processes such as
oxygen transfer, storage and activation, and electron transfer (31).
During the respiratory process, the hemoglobin (Hb) containing
heme captures and releases the oxygen without modifying iron
oxidative state (32). However, 1–3% of Hb undergoes auto-
oxidation, and oxygen is reduced to superoxide anion (O2

•−) and
generates methemoglobin [Hb plus hemin (Fe III)] (32).

Heme and its analogs localize differently on erythrocyte
membranes and exhibit distinct roles in its partitioning,
leakage, and fusion (33). Under physiological conditions,
when intravascular hemolysis occurs during the destruction of
senescent erythrocytes and/or enucleation of erythroblasts, some
hemoglobin, free heme, or hemin can be released into the plasma
where they bind to soluble haptoglobin (Hp) or hemopexin (Hx)
(reviewed by 27; 28). In the liver, the complexes are recognized by
specific receptors on Kupffer cells such as CD163 and CD91/LRP-
1, respectively, and metabolized by heme oxygenase-1 (HO-1) to
iron, carbon monoxide, and biliverdin that will be stored or act
as antioxidant molecules (34–36) (Figure 1A).

However, in hemolytic diseases, intravascular hemolysis
increases, becoming a serious pathological complication (37).
During the intraerythrocytic stage, parasites lyse the erythrocyte
to release merozoites that rapidly invade new host cells (38). This
lytic process also releases the infected red blood cell contents
into the host bloodstream, including undigested hemoglobin,
free heme, and hemozoin. The augment of extracellular levels of
hemoglobin may reduce levels of available free Hp, making this
pathway ineffective (39), while the large content of heme and
hemin circulating in plasma can exhaust the binding capacity
of Hx and their metabolism by HO-1. These events result in
the increase in oxidation from heme to hemin and consequently
methemoglobin (hemoglobin plus hemin) formation (40). It is
important to note that the binding affinity of globin to hemin is
weak and can lead to free heme release (32). The free heme leads
to oxidative damage by the generation of reactive oxygen species
(ROS) [e.g., superoxide (O2

•−), hydrogen peroxide (H2O2), and
hydroxyl radical (HO•)], reactive nitrogen species (RNS) (e.g.,
nitric oxide (•NO), nitrogen dioxide (•NO2)], and peroxynitrite
(ONOO−) (41). These reactive species mediate the activation
of inflammatory pathways and tissue damage, in addition to
the loss of erythrocyte deformation ability and the endothelial
barrier integrity by inducing lipid peroxidation of the membrane
(42–44). Therefore, the consequences of heme derivative release
might depend on their concentration and the environment in
which they are found (38, 40).

As mentioned above, malaria is a hemolytic disease;
thus, free heme and hemin released during hemolysis due
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FIGURE 1 | Hemolysis under physiological conditions and malaria infection. (A) During hemolysis, hemoglobin (HB) and free heme/hemin are captured by haptoglobin

(Hp) and hemopexin (Hx), respectively, in blood vessels. These complexes (HB-Hp and Heme-Hx) target macrophages CD163+ and CD91/LRP-1+ in the liver and

spleen to be metabolized by heme oxygenase 1 (HO-1) to biliverdin, carbon monoxide (CO), and iron (Fe). (B) The hemolysis increases during the release of

merozoites saturates the activity of haptoglobin (Hp) and hemopexin (Hx), leading to heme, hemin, and hemozoin (Hz) circulating in plasma. These heme derivatives

increase ROS and RNS production and activate leukocytes to produce cytokines and chemokines that damage lung tissue and endothelial barriers. HO-1 induction

would decrease leukocyte activation and migration, reduce inflammatory mediators production, and restore the integrity of the endothelial cell barrier in lung tissue.

to erythrocyte rupture during the plasmodium life cycle
exert effects that contribute to malaria pathology. Beyond
the free heme and hemin, heme can also be found in a
biocrystallized structure named hemozoin in the Plasmodium
sp. Plasmodium digest ∼65% of total erythrocyte hemoglobin
during intraerythrocytic development. Part of the hemoglobin’s
amino acids is incorporated in parasite proteins; however,
since free heme released during hemoglobin digestion is a
toxic by-product, Plasmodium biocrystallizes heme to hemozoin
to store it as a nontoxic molecule in the digestive vacuole
(45, 46).

The erythrocyte content (cytoplasm, parasite components,
hemozoin, and free heme) released during hemolysis is engulfed
by phagocytes such as macrophages, neutrophils, and dendritic
cells (47). The accumulation of hemozoin in these immune
phagocytic cells reflects the parasite burden and coincides with
periodic fevers and high circulating levels of proinflammatory
cytokines. In this way, this pigment is used to measure
malaria severity and identify parasite developmental stages (6).
Adult patients who died of severe P. falciparum malaria had
significantly higher proportions of neutrophils and monocytes
containing hemozoin than surviving patients (48). In addition,
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patients with MA-RD demonstrated high lung deposition of
hemozoin and internal alveolar hemorrhage compared with
those with non-MA-RD lungs (49). The same group also showed
that hemozoin leads to loss of alveolar integrity by increasing the
production of interleukin (IL)-1β by monocytes, which induces
pneumocytes type II apoptosis (50). These observations are also
seen in mouse lungs. The C57BL/6 mice infected with P. berghei
NK65 showed a grayish-brown discoloration due to hemorrhages
and hemozoin deposition, in addition to tissue edema and a
marked inflammatory cells influx (24, 51).

The use of purified hemozoin has already been proposed to
access its pathological role in vitro and in vivo (52). However,
the method used to extract hemozoin is not effective in
purifying it, since biological effects observed were attributed
to a DNA contamination in hemozoin extract (53). In this
context, some authors resort to the use of β-hematin, a
compound produced in vitro using parasite lysate to provide
necessary enzymes to biocrystallization. However, the artificial
process to produce β-hematin results in substances different
in shape and size from the natural ones, which could mask
the results [reviewed in (46)]. Despite the immunological
activity of synthetic hemozoin being controversial, several studies
have demonstrated that both parasite-derived hemozoin and
synthetically produced hemozoin, once phagocytized, activates
both mouse and human leukocytes to produce proinflammatory
cytokines such as tumor necrosis factor alpha (TNF-α) and IL-
1β (54) and macrophage inflammatory protein (MIP)-1α/CCL3,
MIP-1β/CCL4, MIP-2/C-X-C Motif Chemokine Ligand 2
(CXCL2), and MCP-1/CCL2 chemokines through oxidative
stress-dependent and stress-independent mechanisms (55).
Besides, Huy and coworkers showed that the treatment with β-
hematin increased myeloperoxidase activity of peritoneal cells in
vivo and neutrophil chemotaxis in vitro (56).

Despite the compelling data showing the deleterious effects
of heme during malaria, in the last decade, several studies have
shown that heme pathway could be beneficial to host outcomes.
Balb/c mice, a resistant strain to multiorgan dysfunction (MOD)
triggered by P. berghei-ANKA infection, expressed HO-1 in
brain tissue during P. berghei infection. In addition, HO-1
knockout Balb/c mice succumb to P. berghei infection, through
a mechanism that can be reversed by CD8+ T cell depletion,
which suggests that heme metabolism is involved in malaria
resistance by modulating immunological response. Interestingly,
studies with C57BL/6mice, a susceptible strain toMOD triggered
by P. berghei-ANKA infection, also produced HO-1 in brain
tissue, however, correlated with parasite inoculum. It is well
established that parasite inoculum modulates disease outcome
(57). Additionally, the 105 P. berghei pRBC inoculum did not
induce HO-1 expression in the brain tissue (58), while the 106

P. berghei pRBC inoculum induces HO-1 expression in the brain
4 days postinfection (59). It is noteworthy that parasite inoculum
did not interfere in increased levels of free heme in plasma, which
suggests that heme in malaria-susceptible hosts is not enough
to induce HO-1; HO-1 is insufficiently produced/activated to
induce free heme clearance, or the produced HO-1 is saturated.
For instance, C57BL/6 P. berghei-infected mice treated with

cobalt protoporphyrin, a pharmacological intervention that
stimulates HO-1 production and activity, reduced brain edema
and microvascular congestion (58). The authors also gave CO,
a downstream metabolite in the heme clearance pathway, and
further observed a reduction in CD8+ T cells in the brain tissue,
showing that the appropriate amounts of HO-1 are effective
to protect susceptible mice from MOD. In accordance, the
balance between free heme and HO-1 production is important
to improve the outcome of P. berghei-infected mice that carry
hemoglobin beta-chain mutation, named sickle Hb (HbS). The
authors observed that mice with HbS phenotype did not develop
cerebral malaria by two differentmechanisms, and both pathways
depend on low levels of free heme on the bloodstream. The
first mechanism involves the stimulation of HO-1 production,
and the second one involves heme-induced immunoregulatory
roles. The authors suggest that there is a pathogenic and
a protective concentration of circulating free heme during
malaria (60).

In recent reviews by Frimat et al. (61) and Immenschuh
et al. (40), the heme clearance pathway has been proposed as
targets to treat hemolytic diseases. Frimat suggests that two
different approaches should be considered to treat hemolytic
disease: first, by modulating molecules from the heme clearance
pathway as by administering hemopexin or inducing HO-
1, and second, by treating oxidative stress and inflammation
induced by heme (61). In addition, Immenschuh and colleagues
state that heme exerts different effects depending on the target
cell. Endothelial cells rapidly respond to heme by means of
HO-1 production, which suggests that the lung, as a highly
vascularized organ, is an important organ to study therapeutic
interventions aiming at heme clearance. Compounds such as
desoxyrhapontigenin, statins, curcumin, hemin, quercetin, and
cobalt protoporphyrin have already been used to attenuate
experimental lung dysfunction by inducing HO-1 expression
(40). However, few studies have been dedicated to assessing
whether HO-1 induction would attenuate malaria-induced ALI.
Pereira et al. (62), using the P. berghei-infected DBA/2 mice
model of MA-ALI, gave hemin to infected mice and observed an
increase in HO-1 production correlated with attenuation of lung
dysfunction and inflammatory response associated to alteration
in lung histoarchitecture. As well, Liu et al. (59) showed that
HO-1 expression in the lung tissue during experimental malaria
depends on CXCL10 and signal transducer and activator of
transcription 3 (STAT3). The authors further show that free heme
is detectable in plasma since the second day of infection. At the
same time point, they also observed HO-1 expression in the lung
tissue but not in the brain tissue, supporting the idea that the
lung is one of the most important organs for the heme clearance
pathway (Figure 1B).

Thus, considering the biological mechanism by which HO-
1 induction attenuates brain dysfunction during experimental
cerebral malaria, we can speculate that during experimental
MA-ALI, the induction of HO-1 downmodulates CD8+ T
cell activation and migration to lung tissue, reduces the
production of inflammatory mediators, and restores endothelial
cell barrier integrity.
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CONCLUSION

Free heme and heme derivatives have been widely recognized
as pathological molecules in several hemolytic conditions. The
participation of heme in malaria is very peculiar because
it exerts its effects through different molecular structures as
free heme, hemin, and hemozoin. Several studies concerning
malaria-induced lung dysfunction show that heme derivatives
affect alveolar integrity, induce the production of inflammatory
mediators, and accumulate the inflammatory cells in the lung
tissue. On the other hand, more recent studies propose that
heme exerts a beneficial role duringmalaria infection by inducing
cytoprotective pathways such as HO-1 production. Indeed,
more studies are necessary to define the role of heme during

malaria-induced lung dysfunction. Overall, we can conclude that
the imbalance between free concentration, production/saturation
of HO-1, and the activation of coexisting anti-inflammatory
pathways dictate if heme is a friend or foe to malaria patients.
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