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Abstract

Background: Cardiovascular diseases are a leading cause of death worldwide and result in significant economic costs to health
care systems. The prevalence of cardiovascular conditions that require monitoring is expected to increase as the average age of
the global population continues to rise. Although an accurate cardiac assessment can be performed at medical centers, frequent
visits for assessment are not feasible for most people, especially those with limited mobility. Monitoring of vital signs at home
is becoming an increasingly desirable, accessible, and practical alternative. As wearable devices are not the ideal solution for
everyone, it is necessary to develop parallel and complementary approaches.

Objective: This research aims to develop a zero-effort, unobtrusive, cost-effective, and portable option for home-based ambient
heart rate monitoring.

Methods: The prototype seat cushion uses load cells to acquire a user’s ballistocardiogram (BCG). The analog signal from the
load cells is amplified and filtered by a signal-conditioning circuit before being digitally recorded. A pilot study with 20 participants
was conducted to analyze the prototype’s ability to capture the BCG during five real-world tasks: sitting still, watching a video
on a computer screen, reading, using a computer, and having a conversation. A novel algorithm based on the continuous wavelet
transform was developed to extract the heart rate by detecting the largest amplitude values (J-peaks) in the BCG signal.

Results: The pilot study data showed that the BCG signals from all five tasks had sufficiently large portions to extract heart
rate. The continuous wavelet transform–based algorithm for J-peak detection demonstrated an overall accuracy of 91.4% compared
with electrocardiography. Excluding three outliers that had significantly noisy BCG data, the algorithm achieved 94.6% accuracy,
which was aligned with that of wearable devices.

Conclusions: This study suggests that BCG acquired through a seat cushion is a viable alternative to wearable technologies.
The prototype seat cushion presented in this study is an example of a relatively accessible, affordable, portable, and unobtrusive
zero-effort approach to achieve frequent home-based ambient heart rate monitoring.

(JMIR Rehabil Assist Technol 2021;8(2):e25996) doi: 10.2196/25996

KEYWORDS

ballistocardiography; heart rate; ambient health monitoring; zero-effort technology; continuous wavelet transform

Introduction

Cardiovascular diseases are a leading chronic illness and are
cited as the cause of death for nearly 17.9 million people

worldwide every year [1]. In Canada alone, 2.4 million people
are living with a diagnosed heart condition [2]. Cardiovascular
diseases have large associated costs, which are estimated to
exceed US $1 trillion by 2035 [3]. Population aging is one of
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the most significant social changes of the century, in part
because the number of older adults with chronic health
conditions who are living independently is increasing [4]. Most
chronic conditions require frequent and continuous monitoring
of vital signs and other health information to support ongoing
treatment. The rapidly increasing number of older adults, who
have a higher prevalence of chronic conditions, is leading to an
unavoidable and significant increase in health monitoring for
our global population [4,5].

The most important step toward the prediction, prevention, and
treatment of cardiovascular diseases is cardiac vital monitoring,
as it provides important information about a person’s cardiac
health, which, in turn, supports ongoing management and care
[6,7]. This is performed through routine visits to a clinic to
record vital signs (ie, measures of the state of one’s body,
including heart rate, blood pressure, temperature, and
respiration). In addition to the financial cost and resources
required to conduct a clinical assessment, accessing a clinical
setting on a regular basis is not feasible for many people. This
is especially true for people with limited mobility, who live in
rural or remote areas or who have cognitive decline (eg,
dementia). These situations can make frequent trips to a clinic
for vital sign measurements expensive, difficult, and unrealistic.

To address this need, there is an increasing demand for
technologies that enable the monitoring of vital signs from one’s
home. The most common method for at-home vital sign
monitoring is wearables [8-13]. Wearables are smart electronic
devices that can be worn as accessories or integrated into
clothing, such as smartwatches or smart clothing. Although
wearables can be effective, they are not an ideal or feasible
solution for everyone. Incorrect usage, noncompliance, and
instances where users forget to use them can cause these
technologies to be ineffective. These considerations are
especially relevant for older adults, as they tend to have a lower
adoption rate of monitoring technologies and have more
difficulties using them. Older adults also have a much higher
prevalence of cognitive impairment, such as dementia, which
can make it difficult or impossible to intentionally and reliably
interact with, wear, or charge a technology.

Ambient assisted living (AAL) is increasingly being used to
support independent living, namely, information and
communication technologies that support healthy living and
well-being. AAL systems can monitor a person’s health status
using sensors installed in their environment (eg, their home).
Zero-effort technologies (ZETs) are a special class of
technologies relevant to this area that are designed to require
minimal or no explicit effort from the person using them. In
this way, ZETs support users in such a way that they do not
need to make modifications to their daily life activities nor do
they need to focus their attention on the ZET to get support
from it [14]. There has been some development in textile-based
clothing for vital monitoring using textile electrodes, conductive
fibers, and optical sensors [8-13]. However, these systems are
not yet feasible because of issues related to cost, comfort, and
durability. Therefore, given the increased costs and decreased
feasibility of clinical monitoring and the problems associated
with technologies such as wearables, there is room for

improvement in at-home cardiac monitoring with easy-to-use
technologies that operate autonomously.

While clinical monitoring and wearable technologies use
electrocardiography (ECG) and photoplethysmography (PPG),
another method of obtaining cardiac vital signs is through
ballistocardiography (BCG). BCG is a cardiovascular signal
that corresponds to the measurement of recoil forces generated
by the body in response to blood flowing through a person’s
vascular system [15,16]. Every time the heart beats, blood is
pumped throughout the body, leading to a change in the center
of mass. Microforces are then generated in the body as a
response to the heart pumping blood to maintain the overall
momentum. BCG is a recording of these micromovements and
can be obtained using appropriate transducers, such as
displacement, force, or acceleration.

BCG was first observed in 1877 [17], but ECG became the
fundamental cardiovascular signal for clinical assessment
because the noisy nature and hardware requirements of BCG
were not practical during most of the last century. Since the
1990s, the scientific community has revisited BCG because of
its simpler and more compliant instrumentation hardware and
modern signal processing methods. This has resulted in the
development of many BCG-based systems for cardiac
monitoring and assessment, which are discussed as follows.

BCG has commonly been acquired in a standing position using
a platform incorporated with force sensors, such as a bathroom
scale [17], force plate [18], or custom-built floor tiles [19].
Although the standing upright position provides the least
distorted BCG signals [20], a disadvantage of this approach is
that the noise caused by the person moving to maintain balance
is far greater than the BCG signal itself; therefore, the
balance-induced noise masks the BCG signal. The measurement
duration is often limited, as a person generally only stands still
for only a few seconds at a time, even in specific locations such
as in front of a sink. Wearable BCG systems have been reported
in the literature. These systems use low-noise accelerometers
to obtain BCG [21,22]. Wearable BCG systems are prone to
the same noise issues as standing-position BCG systems as well
as compliance and maintenance issues related to wearables, in
general.

There has been some progress in BCG acquisition methods in
the seated position. Most of these systems use electromechanical
film sensors to obtain BCG, which is a charged polypropylene
film that undergoes changes in the charge when pressure is
applied to its surface [23]. Most chair-based systems have
sensors embedded in the back or seat of a chair [24-27]. A toilet
seat–based cardiovascular monitoring system has been reported
to obtain BCG, ECG, and PPG from sensors embedded within
the seat [28]. The seated position mitigates much of the noise
interference problems associated with the standing position, as
people tend to remain still in a seated position for a long period.
However, current BCG systems in the seated position have
disadvantages; most of these systems have used films, which
are costly and have very limited commercial availability, and
these systems are usually installed in a piece of furniture, which
is less practical to do and not portable (ie, you need a special
chair and it cannot be moved easily).
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There is a need for novel solutions for cardiac monitoring that
are autonomous, portable, and cost-effective. This research
focuses on the development of an unobtrusive, portable,
zero-effort seat cushion that uses BCG for cardiac monitoring.

Methods

Overview
To develop a method for BCG acquisition that is portable, easy
to integrate into most environments, and requires minimal effort
from the user, a seat cushion was chosen as the form factor of
the proposed prototype. As BCG corresponds to recoil forces
in the body due to blood flow, load cells are commonly used to
sense and convert these forces to electrical signals and are a
robust, well-understood sensor. To ensure minimal cost and

relative ease of development for the prototype, a commercial
weighing scale (with load cells installed underneath) was
modified and inserted into the seat cushion, as described in the
following section.

Seat Cushion Prototype
Figure 1 shows the seat cushion prototype. The seat cushion
was constructed by modifying an ObusForme Gel Seat cushion
and consists of three layers. The top layer is a polyurethane
foam wrapped over and around a modified weighing scale
(NY-H05), which forms the second layer. The weighing scale
has four strain gauge–type load cells, one mounted on each
corner of the bottom of the scale. The third and bottom layer is
a custom-built thin (0.8 mm) metal plate placed under the
modified weighing scale, so that the load cells were placed on
a solid surface.

Figure 1. The developed prototype seat cushion (left) and a participant seated on the cushion (right).

Signal Conditioning and Data Acquisition
The four load cells were connected in a bridge configuration
and excited by a 9V direct current (DC) power source. As the
microforces in the body in response to blood flow
(corresponding to the BCG) are very low in magnitude, signal
amplification was required. An analog signal-conditioning
circuit was developed, which consists of three stages, as shown
in Figure 2. The first stage is an alternating current

(AC)–coupled instrumentation amplifier (acting as a high-pass
filter with fc of 0.15 Hz) to ensure that the time-varying
component (the BCG) from the load cell voltage is enhanced,
and the DC component corresponding to the body weight is
suppressed. The BCG signal has most of its power in the
frequency range of 1-10 Hz [29]; therefore, the second stage is
a low-pass filter with fc of 25 Hz. The third and final stage
further amplifies the filtered signal. The circuit has an overall
gain of 88 dB and a passband of 0.15-25 Hz.
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Figure 2. The analog signal-conditioning circuit. BCG: ballistocardiography; IN-AMP: instrumentation amplifier; REF: reference; Vout: output voltage.

The filtered and amplified signal output was then converted to
digital form using a data acquisition system (National
Instruments USB-6351). A digital bandpass filter (0.5-15 Hz)
was applied before further processing for heart rate calculation.

Study Protocol
The physical movement exerted by the person being monitored
dominates the signal, leading to the BCG information being
unrecognizable. It was hypothesized that a few seconds of
relative stillness per minute would be sufficient to obtain a BCG
signal and that there would be appropriate windows during
typical activities that people do while seated (eg, reading and
watching television). To evaluate the prototype efficacy, a study
was conducted to emulate real-world activities to determine
whether usable BCG data could be extracted from the seat
cushion prototype. Five daily life activities were selected: (1)
sitting as still as possible, (2) watching a video on a computer
screen, (3) reading a magazine, (4) surfing the internet on a
computer, and (5) having a conversation with another person.

After obtaining ethical approval from the University of Waterloo
Office of Research Ethics (ORE #40503), recruitment for 20
participants aged ≥18 years was determined. Each participant
completed a demographic form asking for their age, sex, weight,
and height. The participant was then asked to sit on the prototype
seat cushion, which was placed on a chair. ECG electrodes were
attached, and the ECG recorded to serve as a gold standard
comparison for validating BCG data; ECG was captured using
a Finapres Medical Systems ECG Module in a Lead-II
configuration. Participants were asked to perform each of the
five activities for 5 minutes each while BCG and ECG were
recorded simultaneously.

Postprocessing: BCG Data During Activities
Data segments containing identifiable BCG were isolated from
segments that were overwhelmed by motion artifacts using a
variance-based method. This method was used because the
signal voltage undergoes a large variation when there is
movement compared with when the participant was sitting still.
A moving windowed variance (Varmov) with a window size of
1 second was computed for the BCG signal, and after trying
different thresholds between mean(Varmov) and ¼ mean(Varmov),
a threshold value equal to ½ mean(Varmov) was found to be the
most appropriate in distinguishing signal segments with motion
artifact. All signal segments (windows) with variance above
this threshold had too many motion artifacts and were discarded.
Of the data that had identifiable BCG, only signal segments
with a duration of 5 seconds or longer were kept to ensure that
enough consecutive heartbeats were obtained to calculate
heartbeats as slow as 40 beats per minute (ie, a bottom threshold
that is lower than anyone’s resting heart rate would be).

Figure 3 shows 5 minutes of BCG data obtained from a
participant during the study and the moving windowed variance
applied to the signal. It can be observed that the selected moving
variance function is able to detect noisy segments (with motion
artifacts) in the BCG data, as they have significantly large
variance. This method was applied to BCG recordings of all
participants for four activities; the sitting as still as possible
activity was excluded, as all participants were still during this
activity; therefore, most of the data contained a signal that could
be directly analyzed.
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Figure 3. Five minutes of ballistocardiography data obtained from a participant (top). The moving windowed variance function applied to the signal.
Signal segments above the threshold were discarded (bottom). BCG: ballistocardiography; Var: variance.

Postprocessing: BCG J-Peaks Detection for Heart Rate
Calculation
Similar to the R-peaks in an ECG signal, the largest signal
amplitude in the BCG during a heartbeat is referred to as the
J-peak. A count of these J-peaks can be used to estimate heart

rate; however, as J-peaks do not stand out as much from the
rest of the signal as R-peaks do in ECG, it can be difficult to
detect them (Figure 4). Most J-peak detection methods reported
in the literature have extracted heartbeat segments in the BCG
signal by using ECG R-peaks as reference [30-32].

Figure 4. Electrocardiography (top) and ballistocardiography (bottom) recordings obtained simultaneously from a participant. BCG: ballistocardiography;
ECG: electrocardiography.

J-Peak Detection Using Continuous Wavelet Transform
As the aim of this study was to calculate heart rate information
solely from the BCG acquired through the seat cushion, methods
that do not require ECG had to be considered, such as
beat-to-beat heart rate estimation methods [33,34]. An algorithm
based on the continuous wavelet transform (CWT) was
developed, as wavelet analysis has been performed extensively
on heart rate signals [35-38]. CWT is a method that helps in
analyzing local variations in frequency in a time series by
decomposing the signal into time-frequency space. It provides
essential information about the dominant frequencies and how
they locate in time. Although the Fourier transform provides
accurate information about the frequency content of a signal, it

does not provide information about how these frequencies are
located in time. The windowed Fourier transform can provide
some localized frequency information, but it is not efficient for
signals with abrupt changes, such as in the case of BCG [39].
The CWT is an efficient tool in this instance, as it can help
identify when (or at what scale of the analyzing wavelet)
dominant frequencies are present in the BCG signal. Therefore,
the CWT can be used to identify the locations of the heartbeat
segments in a BCG signal.

The CWT can be described as follows: Let xn be a discrete-time
signal with a length of N (n=0, 1, 2, 3, ..., N−1), where all n
points have the same time spacing δt. The CWT of xn, denoted
by Wn(s), is defined as
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where Ψ* is the complex conjugate of Ψ(n), which is the
analyzing wavelet function, and s is the scaling factor. The
equation mentioned earlier shows that the wavelet transform is
obtained by the convolution of xn with scaled and translated
versions of Ψ(n) [40], depending on the parameter s. The
analyzing wavelet Ψ(n) has two important properties, that is, it
is limited in time and has zero mean [41]. The choice of the
analyzing wavelet depends on the analysis being performed;
for this case, a Morlet wavelet was used because of its similarity
to the BCG waveform and its wide use in biomedical analysis
[42-45].

In the methods described in the literature, wavelet transforms
have been used for noise cancelation, followed by template
matching [35] and the use of different CWT scales for different

subjects [36]. However, in this study, the same CWT scale was
used for all participants to keep the algorithm autonomous.

Wavelet analysis was performed on the BCG using MATLAB
to determine which scales in the CWT provided the most useful
information about the time localization of heartbeat segments.
A scalogram of the CWT was plotted to observe the scales that
contributed the most energy during heartbeat segments. Figure
5 shows a scalogram for a BCG recording obtained during the
study, describing the energy for each wavelet coefficient for
each scale in time. The figure shows that scales 27-31 provide
the most differentiable heartbeat information in the BCG
(distinguishable by green, yellow, and red areas in the scalogram
image). After testing these five scales, it was observed that scale
30 worked best for all participants, as it provided the largest
magnitudes during heartbeat segments. The magnitude plot of
the CWT coefficients at scale 30 (CWT30) is also shown in
Figure 5.

Figure 5. Ballistocardiography (BCG; top) recording with the J-peaks labeled and the continuous wavelet transform (CWT) for the recording with the
400-ms window for heartbeat extraction labeled. Scalogram for CWT of the BCG recording (bottom). BCG: ballistocardiography; CWT: continuous
wavelet transform.

It can be observed in Figure 5 that CWT30 has a repetitive pattern
with a series of peaks directly related to heartbeat segments in
the BCG, indicating that the maximum energy in the BCG lies
in the areas around these peaks (in time). Therefore, these peaks
of the CWT30 can help identify BCG heartbeat segments. It was

observed that for most participants, the typical BCG waveform
was approximately 400 ms in duration; therefore, 400 ms
windows (corresponding to heartbeats) from the BCG were
extracted using time indices obtained from the locations of the
peaks in CWT30. J-peaks were then autonomously searched for
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only during these segments, thereby decreasing the chances of
incorrectly labeling J-peaks in the BCG. J-peaks were labeled
by setting an amplitude threshold equal to the mean of all
heartbeat segments. In addition, a time-based threshold was
also set, where a J-peak was labeled only if it was at least 500
ms apart from the previous J-peak. This allowed the calculation
of heart rates as high as 120 beats per minute, which is well
within the normal resting heart rate limit [46].

The CWT analysis and J-peak detection were performed for 1
minute of BCG data obtained from the 60- to 120-second portion
of the Sitting Still activity for all 20 participants. This segment
was chosen because some participants spent a few seconds
adjusting their posture and then remained seated still for the
rest of the activity; therefore, data after the first 60 seconds were
taken to be representative of the sitting still activity. The
performance of the algorithm for J-peak detection was compared
with the corresponding R-peaks in the ECG.

Estimating Signal-to-Noise Ratio
The signal-to-noise ratio (SNR) for the BCG was estimated
using the method presented in a study by Bialasiewicz [44],

which was also used in the studies by Inan et al [30], Shao et
al [47], and McCall et al [48]. The SNR is estimated using the
following equation:

In the abovementioned equation, E1 is the subensemble average
of the first 10 seconds of the BCG signal, and E2 is the same
for the next 10 seconds. N is the total number of samples in the
subensemble average. A subensemble average is the average
of all the heartbeat segments in a BCG for a certain duration
(in this case, 10 s).

Results

Participant Demographics
Table 1 gives an overview of the demographics of the study
population.

Table 1. Participant demographics (N=20; 13 female and 7 male).

Weightc (kg)Heightb (cm)Agea (years)SexParticipant ID

6117141Female1

5616323Female2

5916834Male3

5616024Female4

7218223Female5

6517824Male6

7518324Male7

7518024Male8

5616527Female9

9016073Female10

4916022Female11

10018326Male12

6515827Female13

9517829Male14

12817343Male15

7516881Female16

6515775Female17

6316784Female18

7217875Female19

5915980Female20

aMean 42.9 (SD 24.2).
bMean 169.5 (SD 9.1).
cMean 71.8 (SD 18.8).
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BCG During Activities
Figure 6 shows 15 seconds of BCG recordings for each of the
five activities obtained from participant 1. Table 2 summarizes

the results for four simulated activities (the sitting still activity
was excluded because all participants remained seated still and
did not perform any voluntary movement during the recording;
therefore, it had long segments of detectable data).

Figure 6. Example data obtained from participant 1 for all five activities. Circles mark J-peaks in the ballistocardiography. Dotted boxes mark noisy
signal segments due to motion artifact. BCG: ballistocardiography.

Table 2. Results for four simulated activities for 5 minutes each for 20 participants for segments ≥5 seconds.

Total recording containing clean bal-
listocardiogram data, %

Total duration of seg-
ments (s), mean (SD)

Total number of seg-
ments, mean (SD)

Longest segment
(s), mean (SD)

Shortest segment
(s), mean (SD)

Activity

88.2264.6 (24.9)9.3 (3.6)78.1 (42.4)13.1 (13.5)Watching a video

59.3177.9 (50.5)12.5 (2.5)38.5 (18.6)5.9 (1.3)Reading

32.397.1 (41.3)9.8 (3.3)20.8 (11.1)5.4 (0.4)Conversation

29.789.1 (56.1)9 (3.9)18.5 (11.2)5.4 (0.6)Using a computer
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As shown in Figure 6, the J-peaks are readily identifiable when
a person is seated still on the prototype. During the watching a
video activity, all participants remained seated still for most of
the time (an average of 88.2% of the time). For the reading
activity, large motion artifact was observed, as turning a page
while reading led to significant movement, causing the average
duration containing clean BCG to be as low as 59.3%. Similar
results were obtained when using a computer activity, as typing
on a keyboard leads to significant movement. For the
conversation activity, a large variation in time spent sitting still
was observed throughout all participants because of different
behaviors during a conversation, as some participants used body
gestures more often than others. On average, across the four
activities, the participants remained seated still for almost
one-third of the time.

CWT-Based J-Peak Detection Method
The results for the CWT-based J-peak detection algorithm for
all 20 participants are summarized in Table 3; the R-peaks in

the ECG are included for comparison. A true J-peak positive is
a J-peak that was correctly identified by the algorithm. A false
positive is a peak that was incorrectly identified as a J-peak. An
undetected true J-peak positive is a true J-peak that was not
detected (missed) by the algorithm. A visual analysis was
conducted to compare the results of the J-peak detection
algorithm with the ECG data to establish true positives, false
positives, and undetected J-peaks. The sixth column in Table 3
shows the percentage of true J-peak positives compared with
the corresponding ECG R-peaks. Overall, the CWT-based
algorithm achieved an average accuracy of 91.4% for J-peak
detection. The accuracy was more than 90% for 14 participants,
whereas for 3 participants (participants 4, 15, and 20), the
accuracy was less than 80%. For illustrative purposes, Figure
7, Figure 8, and Figure 9 show 7 seconds of BCG and ECG data
from participants 6, 20, and 4, respectively.

Table 3. Performance analysis of the continuous wavelet transform–based J-peak detection algorithm.

Signal-to-noise ra-

tiob, dB

True J-peak posi-

tivesa, %

Undetected true J-
peak positives

False J-peak posi-
tives

True J-peak posi-
tives

Total R-peaksParticipant ID

36.398.61072731

33.595.22280842

43953177813

19.966.641946694

25.788.43561695

38.21000077776

26.6816860747

41.21000067678

30.7962173769

34.897.211717310

26.494.313677111

28.897.211717312

35.595.721677013

43.598.310596014

19.676.9216607815

27.996.502565816

28.895.903717417

25.980.6111506218

37.498.201575819

30.176.1015486320

aMean 91.4 (SD 9.4).
bMean 31.7 (SD 6.9).
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Figure 7. Seven seconds of electrocardiography and ballistocardiography (BCG) recordings for participant 6. The BCG signal is clean, and the algorithm
is able to detect all J-peaks correctly. BCG: ballistocardiography; CWT: continuous wavelet transform; ECG: electrocardiography.

Figure 8. Seven seconds of electrocardiography and ballistocardiography recordings for participant 20. The signal visually appears to be of good
quality, but J-peaks amplitudes are not significantly greater than the signal around them, causing the algorithm to label some J-peaks incorrectly. BCG:
ballistocardiography; CWT: continuous wavelet transform; ECG: electrocardiography.

Figure 9. Seven seconds of electrocardiography and ballistocardiography recordings for participant 4. The signal is of poor quality visually, and the
J-peaks are not easily distinguishable. This signal also had a very low signal-to-noise ratio. BCG: ballistocardiography; CWT: continuous wavelet
transform; ECG: electrocardiography.
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Discussion

Principal Findings
The results in Table 2 indicate that there is a substantial number
of signal segments (longer than 5 s) during all activities where
the person is seated still, resulting in high-quality BCG data.
The presence of a large number of these clean heartbeat
segments enables the extraction of heartbeat data, which
suggests that the seat cushion can be an effective method for
continuous monitoring of heart rate using BCG.

Visual analysis of the data in Table 1 was performed for possible
correlations between BCG signal shape and age, sex, or weight;
none were found.

The CWT-based algorithm performed well for the participants
in this study. For example, for participant 6, the CWT-based
method was able to correctly identify all J-peaks in the BCG
trace, as shown in Figure 7. The amplitudes of the J-peaks are
larger than the signal segments around them, which is also
evident from the high SNR obtained for the BCG signal (Table
3). The BCG for participant 20 (Figure 8) shows that the signal
visually appears to be of good quality, with an SNR just below
average. However, the amplitudes of the J-peaks for this
participant were not much larger than the other peaks in the
signal around them. This caused the algorithm to label some
J-peaks incorrectly and correctly identify only 76% (48/63) of
true J-peak positives. As shown in Figure 9 for participant 4, it
can be observed that the signal quality is poor; the J-peaks are
not clearly discernible because they have low amplitudes
compared with the signal around them during a heartbeat. This
is corroborated by the low SNR obtained for this signal (19.9
dB). The accuracy of J-peak detection was the lowest for this
participant. For participant 20, as mentioned earlier, a low J-peak
detection accuracy was obtained for a relatively high SNR. This
is a limitation of the algorithm, as it can generate inaccurate
values of heart rate because of incorrect identification of J-peaks,
even for BCG signals that are visually robust.

Excluding the three outliers, the algorithm resulted in an average
accuracy of 94.66% (1136/1200). Commercially available
wearable devices that use PPG as the signal to calculate heart
rate have been evaluated in studies for accuracies between
79.8% to 99.1% [49] and 94.04% to 94.14% [50]. This suggests

that the performance of the seat cushion prototype is comparable
with that of commercially available wearable devices.

We note that the detection accuracy for the proposed algorithm
would be increased by using ECG R-peaks as a reference to
detect J-peaks. However, this research focused on calculating
heart rate by having a person simply seated on a cushion without
them having to wear or attach any sensors, which is a
requirement for the acquisition of an ECG signal.

The limitations of the J-peak detection algorithm can be
improved. In this study, the CWT scales were used to highlight
heartbeat segments to detect J-peaks; however, it would be
worthwhile to investigate whether a scale of the CWT can
directly provide heart rate information, as it has a repetitive
nature similar to that of the BCG (Figure 5). This would increase
the algorithm speed while decreasing the computational
resources. Machine learning–based approaches are another area
worth exploring to detect patterns in BCG across various BCG
signals and thus further improve accuracy.

Conclusions
This paper presents research on creating a seat cushion for
ambient heart rate monitoring using BCG. The seat cushion was
developed using off-the-shelf components and resulted in a
cost-effective prototype that performed robust BCG detection.
The CWT-based algorithm we developed for autonomous J-peak
detection achieved 94.6% accuracy (excluding three outliers),
making it a viable alternative to existing health monitoring
technologies. The solution presented here is portable,
unobtrusive, and can be easily integrated into a living
environment for zero-effort heart rate monitoring.

Emerging research that captures ECG without requiring
electrodes attached to the skin, such as coupled capacitance,
could be explored to improve the robustness of detecting heart
rate as well as potentially supporting measurement of other
cardiac information, such as blood pressure. The system
input–referred noise can be calculated to quantify noise and
identify changes in the seat cushion design that could lead to
cleaner BCG signals. To better exclude BCG segments involving
significant physical movement, a sensor fusion approach could
be explored by sensing acceleration using an accelerometer to
detect this movement in real time. Developments such as these
will shape the future of unobtrusive and more pervasive heart
rate monitoring.
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