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Abstract: Individual differences in the responsiveness of the brain to transcranial electrical stimula-
tion (tES) are increasingly demonstrated by the large variability in the effects of tES. Anatomically
detailed computational brain models have been developed to address this variability; however,
static brain models are not “realistic” in accounting for the dynamic state of the brain. Therefore,
human-in-the-loop optimization at the point of care is proposed in this perspective article based
on systems analysis of the neurovascular effects of tES. First, modal analysis was conducted using
a physiologically detailed neurovascular model that found stable modes in the 0 Hz to 0.05 Hz
range for the pathway for vessel response through the smooth muscle cells, measured with func-
tional near-infrared spectroscopy (fNIRS). During tES, the transient sensations can have arousal
effects on the hemodynamics, so we present a healthy case series for black-box modeling of fNIRS–
pupillometry of short-duration tDCS effects. The block exogeneity test rejected the claim that tDCS is
not a one-step Granger cause of the fNIRS total hemoglobin changes (HbT) and pupil dilation changes
(p < 0.05). Moreover, grey-box modeling using fNIRS of the tDCS effects in chronic stroke showed the
HbT response to be significantly different (paired-samples t-test, p < 0.05) between the ipsilesional
and contralesional hemispheres for primary motor cortex tDCS and cerebellar tDCS, which was
subserved by the smooth muscle cells. Here, our opinion is that various physiological pathways
subserving the effects of tES can lead to state–trait variability, which can be challenging for clinical
translation. Therefore, we conducted a case study on human-in-the-loop optimization using our
reduced-dimensions model and a stochastic, derivative-free covariance matrix adaptation evolution
strategy. We conclude from our computational analysis that human-in-the-loop optimization of the
effects of tES at the point of care merits investigation in future studies for reducing inter-subject and
intra-subject variability in neuromodulation.

Keywords: systems analysis; model predictive control; transcranial electrical stimulation; functional
near-infrared spectroscopy; pupillometry

1. Introduction

Grey-box modeling of the signals from brain–computer interfaces—viz., portable brain
imaging and pupillometry—can provide causal inference of the impairments in neuro-
logical patients [1–3], such as those with Alzheimer’s disease and Alzheimer’s-disease-
related dementias [4]. Specifically, evoked brain responses in a multimodal brain–computer
interface—when combined with cognitive, motor, or transcranial electrical stimulation
(tES)—can enable system analysis and design of therapeutic interventions with human-in-
the-loop optimization [5] using brain-based metrics. Then, multimodal brain imaging can
cross-validate the metrics across different physiological domains. For example, simulta-
neous functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG)
can elucidate neurovascular modulation by tES in health and disease [6], which can be
dysfunctional post-stroke [7]. Here, transient coupling relationships between the changes
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in EEG power spectra and fNIRS hemodynamics signals during tES can be monitored using
Kalman-filter-based online parameter estimation of an autoregressive (ARX) model [8].
Then, a grey-box modeling approach [9] can provide physiological insights based on a
detailed multi-compartmental neurovascular model incorporating vascular smooth muscle,
perivascular space, synaptic space, and astrocyte glial cells. Such computational modeling,
when fitted to individual dysfunction, can allow personalized therapeutic interventions,
e.g., tES with model predictive control using subject-specific fNIRS-based measures of
tES evoked blood volume changes (e.g., total hemoglobin concentration changes)—called
cerebrovascular reactivity (CVR) to tES. However, for model predictive control, computa-
tionally expensive and physiologically detailed nonlinear models need to be simplified
with an appropriate complexity (e.g., based on Akaike information criterion) adequate for
online “real-time” performance. Here, the simplified model needs to capture the inherent
dynamic characteristics of the neurovascular system in the form of natural frequencies
and damping factors, e.g., the changes in the dynamic characteristics from the arterioles
as they transition into cerebral capillaries, with smooth muscle cells replaced by pericytes
and mural cells embedded into the endothelial basement membrane in the smaller vessels.
Mode decomposition approaches [7,10], including dynamic mode decomposition [11], can
be applied to reduce the complexity of the multimodal multichannel data to their dominant
features and essential components. Here, experimental data from multi-distance fNIRS
probes can capture a combination of vessel oscillations from the pial, penetrating, and
precapillary arterioles to the capillaries, based on the inter-optode distance and photon
migration through the neurovascular tissue determined by the fNIRS optode’s point-spread
functions. Moreover, cerebrospinal fluid (CSF) pulsatility in the subarachnoid space due to
pial vessels can be picked up by the near-infrared backscattering using shorter-distance
probes; however, delineating different “dynamic modes” in the fNIRS signal vis-à-vis a
mechanistic understanding of subject-specific dysfunction would require a physiologically
realistic computational model parametrized with the inherent dynamic characteristics of
the neurovascular system. Various physiologically relevant frequency bands have already
been identified in the literature [12], e.g., 0.6–2 Hz and 0.145–0.6 Hz are related to cardiac
and respiratory function, 0.052–0.145 Hz is associated with smooth muscle cell activity, and
0.021–0.052 Hz has been proposed to reflect smooth muscle autonomic innervation [12].
Norepinephrine [13] receptors are present on the pial arterial smooth muscle cells [14,15]. In
fact, vasomotion can be elicited via a contractile stimulation of single-dose norepinephrine
in internal thoracic artery segments [16]. Such evoked responses can provide biomarkers,
e.g., vasomotion is associated with endothelial dysfunction [16], while norepinephrine
deficiency has been linked to the pathogenesis of Alzheimer’s disease (AD), which can be
related to reduced vessel pulsatility and amyloid-beta clearance [17] via the perivascular
pathways [18]. Additionally, 0.01–0.02 Hz oscillations are known to be crucial for sup-
porting higher oxygen concentrations distant from the small vessels [19]. Zhao et al. [20]
found a drop in the oscillatory power in the 0.01–0.02 Hz frequency band during Mini-Cog
assessment for dementia, where this drop was more significant in type 2 diabetes melli-
tus (T2DM) patients than in age-matched normoglycemic elderly controls. Small-vessel
oscillations support nutrient supply, where low-frequency Fahraeus–Lindqvist-driven
(not blood-pressure-driven) oscillations in the small vessels are crucial [19]. Mechanistic
understanding of the causes of diabetic brain fog may be found in terms of the small-
vessel pulsatility in the 0.01–0.02 Hz frequency band and the oxygen diffusion (including
oxygen extraction fraction) distant from the small vessels [19]. Here, modal analysis can
provide the characteristic dynamics of a detailed, multi-compartmental neurovascular
system from its natural frequencies, mode shapes, and damping factors and develop a
simpler mathematical model of the system’s behavior for therapeutic intervention with tES.
Typically, modal analysis methods are prevalently used in structural and fluid mechanics
and can be well applied for biomedical system analysis to derive the modal behavior of the
output responses.
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Investigation of different “dynamic modes” in the vessel oscillations in health and
disease is also crucial, since vascular factors are an essential contributor to cerebrovascular
disease [21], including a role in mild cognitive impairment and dementia [22], which is
predicted to increase to 152 million by 2050 (Alzheimer’s Disease International London, UK,
2019). Here, we postulate that tES-evoked “dynamic modes” [7] may be more informative
than the resting-state ones, and that tES-evoked onset vascular response is partially driven
by the arousal effect via the locus coeruleus norepinephrine (LC-NE) system. Transcranial
direct-current stimulation (tDCS)—a tES modality—can perturb the blood vessels and
evoke regional cerebral blood flow (CBF) [23]. We found that the CVR to tDCS following
a cerebrovascular accident was significantly less in the lesioned hemisphere [24], which
was postulated to be related to neurovascular coupling status. Since stroke is a specific
vascular risk factor for dementia [25], the neurovascular coupling (and oxygen extraction
fraction)_status may be relevant [26] for dosing tES. Then, anodal tDCS-induced neu-
ronal excitation may cause an energetic depletion that can be quantified and validated by
31phosphorus magnetic resonance spectroscopy [27] for tES dosing. Here, tDCS-induced
cerebral energy consumption has been shown to promote systemic glucose tolerance in
a standardized euglycemic–hyperinsulinemic glucose clamp procedure in healthy male
volunteers. In fact, the effects of tDCS may be similar to the cognitive-load-led reduction
in blood glucose [28], where stressor-related norepinephrine release and regulation of
astrocytic and neuronal metabolism are relevant [29]. The LC-NE network is known to
optimize coupling of cerebral blood volume with oxygen demand [30], which can affect the
neurovascular coupling [6,8]. Thus, the vasoconstricting perivascular pathway via nore-
pinephrine [13] receptors on the pial arterial smooth muscle cells [14,15] may be relevant at
the onset (<150 s after tDCS) of tDCS [9]. Then, longer-duration (>150 s) tDCS can modulate
the neurovascular coupling [9], cerebral oxygenation, and synaptic potentiation, likely via
postsynaptic signaling, including nitric oxide and interstitial potassium concentration, as
shown in Figure 1a.

Smooth muscle autonomic innervation can regulate vascular tone [12]. The autonomic
nervous system (ANS) comprises the sympathetic and parasympathetic nervous systems.
ANS neurotransmitters include norepinephrine (NE), adenosine triphosphate (ATP), and
neuropeptide Y (NPY), which function as vasoconstrictors, whereas acetylcholine (Ach)
and calcitonin gene-related peptide (CGRP) can mediate vasodilation. Immediate -onset
effects of tDCS on the blood volume changes (e.g., total hemoglobin concentration changes),
including the “initial dip” [7], may be subserved by the evoked (im)balance of autonomic
effectors, including NE and Ach. Here, direct electrical stimulation of noradrenergic axons
is possible [13], in addition to arousal effects via the LC-NE system. Since prior works have
found coupling between the alpha-band (8–12 Hz) EEG activity and pupil diameter [31],
as well as between log (base-10)-transformed EEG band power (0.5–11.25 Hz) and fNIRS
signals [8], we aimed to investigate the coupling between the pupil dilation and fNIRS
signals during tDCS. Specifically, the Granger causality test was used to assess whether
tDCS waveforms in a 3D vector autoregression (VAR) model would Granger-cause total
hemoglobin changes (i.e., blood volume changes) conditioned on the pupil dilation. This
arousal effect is important to investigate mechanistically, since the peripheral effects of tDCS
on brain circuits involving memory via the ascending fibers of the occipital nerve to the
locus coeruleus [32]—e.g., during cerebellar tDCS [33]—can be beneficial in ameliorating
cognitive impairment. Adrenergic regulation may also be relevant [29] in longer-duration
(20 min) tDCS, which can lead to Ca2+ elevations in the astrocytes and a neurometabolic
biphasic effect on systemic glucose tolerance [27]. Since pupil dilation is a correlate of Ach
and LC-NE activity [34] during arousal, pupillometry with portable brain imaging and
“short-duration (<150 s)” tES may elucidate the autonomic effectors vis-à-vis CBF [6].
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Figure 1. (a) Long-term (≥3 min) transcranial electrical stimulation can change the interstitial
concentration of potassium, modulating the neurovascular system’s sensitivity via Kir channels.
(b) Four-compartment lumped physiological model of the neurovascular unit with nested pathways
(dashed arrows) that can be perturbed by the tES current density, leading to vessel response in terms
of diameter changes.

CBF is known to be regulated primarily by three mechanisms: cerebral autoregulation,
which maintains the CBF under changes in systemic blood pressure; cerebral vasoreactivity,
which is the response to the arterial CO2 partial pressure changes; and neurometabolism,
which is the response to the neuronal activity [35]. A recent study [36] showed that the
spatial distribution of CBF changes was correlated with the tDCS-induced electric field
distribution (<1 V/m) computed using finite element modeling. CBF changes can also
be evoked rapidly (<100 ms) via transcranial alternating-current stimulation (tACS) at
10–20 Hz, albeit at a higher electric field strength (5–20 V/m) [37]. Here, tACS can tar-
get neural oscillations [38]; however, rapid changes in the CBF indicate a direct effect of
the electric field on the vascular neural network [39]. Brain capillaries act as a neural-
activity-sensing network that can be perturbed by tES to identify characteristic natural
frequencies and damping factors from the resulting dynamics of the metabolic and vascular
responses. A multiscale model is needed for mechanistic understanding of the metabolic
responses, e.g., the computational model by Jolivet et al. [40], which captured the con-
centrations of lactate in neuronal, astrocytic, and extracellular compartments that were
coupled as a modulatory feedback [41,42] to neuronal membrane voltage. Then, individual
hemodynamic effects—including neurovascular network resonant frequencies—of the tES
via various neurovascular pathways need to be investigated using a mechanistic-model-
based hypothesis testing that is postulated to be subject-specific [43]. Such model-based
neurometabolic system analysis is important, since mechanistic models can enable human-
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in-the-loop optimization of tES to enhance its metabolic effects for therapeutic applications,
e.g., in T2DM.

Lumped vessel biomechanics play an important role in vessel oscillations [9], where
CBF can be partially modulated by the balance of autonomic effectors on the vascular tone.
However, more detailed grey-box modeling and analysis of the neurovascular coupling
system need to include multiscale vessel biomechanics, where small vessels will have
different characteristic natural frequencies than the pial vessels. Proximal pial arteries
and the descending arteries have the fastest onset time, followed by the capillaries (the
spatiotemporal characteristics of pial, penetrating, and micro-vessels are summarized
in the work of Schmid et al. [44]), which can have several modes of oscillations, with
frequencies ranging from 0.005 to 1 Hz. However, the oscillatory responses can be quite
complex due to the interdependence of the nested spatiotemporal dynamics of the pial
arteries, descending arteries, and capillaries. Moreover, various tES modalities show
differences in the temporal profile of the electric current stimulation, which may perturb
the vessel oscillations differently. In transcranial direct-current stimulation (tDCS), the
current profile has a monophasic, non-oscillating constant value. In contrast, in transcranial
alternating-current stimulation (tACS), the oscillating current reverses rhythmically at
a specific frequency. Thus, tACS differs from tDCS in that it provides a mechanism for
manipulating intrinsic oscillations through the injection of sinusoidal currents. The other
methods are transcranial oscillating-current stimulation (tOCS), which uses tDCS to set
a baseline to the tACS oscillations, and transcranial random noise stimulation (tRNS),
which injects a “noisy” current with bounded stochasticity. Because tES’s modulatory
effects on blood vessels can be mediated by the neuronal and non-neuronal cells in the
neurovascular tissue, a deeper understanding of the signaling pathways is crucial for
human-in-the-loop optimization of the effects of tES, including its effects on the vessel
oscillations [45]. In this study, human-in-the-loop optimization was performed using a
stochastic, derivative-free covariance matrix adaptation evolution strategy (CMA-ES) [46]
that can be used for nonlinear, non-convex optimization problems with noisy measurements
(https://cma-es.github.io/, accessed on 17 September 2020).

The following sections of this computational perspective article provide systems anal-
ysis of the tES effects that are relevant for model-based human-in-the-loop optimization.
Section 2 presents the modal analysis of our published physiologically detailed neurovas-
cular model [9] to elucidate the oscillatory responsiveness of the vasculature, including to
cardiac and respiratory rhythms. Then, Section 3 presents grey-box modeling of the fNIRS
of tDCS’s effects in a chronic stroke case series to elucidate the role of diseased states on the
neurovascular system. Here, an initial dip in blood volume or vasoconstriction following
tDCS perturbation was found in chronic stroke, necessitating the study of the role of tDCS-
evoked arousal in health and disease. In Section 4, we performed black-box modeling of
prefrontal fNIRS–pupillometry of short-duration frontal tDCS effects to elucidate the effects
of tDCS-evoked arousal on hemodynamics in healthy individuals. Here, the variability
in the effects of tES even in healthy individuals—possibly state–trait variability that can
be challenging for clinical translation—motivated feasibility testing of human-in-the-loop
optimization for a reduced-dimensions model (eight poles, two zeros [9]) for the predictive
control of tES-evoked HbT in a healthy individual, as presented in the Section 5.

In Section 2, in order to estimate the mechanistic aspects of the effects of tES, we used a
mathematical model based on the neurovascular tissue physiology of the vascular response
through various pathways that are susceptible to electric fields, as shown in Figure 1.
The simulation model included four compartments based on published literature, where
the tES current density perturbed synaptic potassium released from active neurons for
Pathway 1, astrocytic transmembrane current for Pathway 2, perivascular potassium
concentration for Pathway 3, and voltage-gated ion channel current on the SMC for Pathway
4. The implementation of the detailed model is presented in the work of Yashika et al. [9].
The physiologically detailed models were simulated using the “ode23tb” solver in Simulink
(MathWorks, Inc., Natick, MA, USA). Prior work showed that the models captured the

https://cma-es.github.io/
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interactions between the potassium dynamics and the calcium dynamics in the perivascular
space [6]. In this computational perspective article, we performed modal analysis based on
the workflow shown in Figure 2, using the MATLAB and Simulink packages (MathWorks,
Inc., Natick, MA, USA).
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2. Modal Analysis of the Physiologically Detailed Neurovascular Model

In this study, we used a modal analysis approach to analyze the physiologically
detailed neurovascular unit (NVU) model for evaluation of the oscillatory modes that may
be perturbed by tACS. The physiological model considered the lumped neurovascular
system of vascular smooth muscle (SMC) space, perivascular space, synaptic space, and
astrocyte space; and captured the tES-induced direct and indirect vascular responses. The
detailed physiological NVU model has been shown to simulate vessel oscillations in the
range of 0.05–0.2 Hz governed by the interactions between the Kir 2.1 channels on the
endothelium and the Kir 2.2 channels on the pericytes [6,47]. For modal analysis, we
applied 10 tES perturbations—which were bandpass-filtered (0.01–1 Hz) white noise inputs
of 600 s—to the four physiologically constrained NVU pathways, as shown in Figure 2
(equations are presented in the Supplementary Materials of Yashika et al. [9]). The input
and output time series were stored using a time-domain data object (“iddata” in MATLAB,
MathWorks, Inc., Natick, MA, USA). We excluded the initial 50 s of the transient response
in the time-series data for modal analysis. We used the modal analysis functions “modalfrf”
to determine frequency-response functions for modal analysis, “modalfit” to determine
modal parameters from the frequency-response functions, and “modalsd” to generate a
stabilization diagram for modal analysis of the data object in MATLAB (MathWorks, Inc.,
Natick, MA, USA). First, the frequency-response functions for the four tES pathways of
the NVU system were found using “modalfrf” for a sample rate of 10 samples per second
(10 Hz), where the noise was assumed to be uncorrelated with the input signals. Then, the
natural frequencies of the four tES pathways for the NVU system were found from the
frequency response using the “peak-picking” method (a fast and straightforward procedure
for identifying peaks in the frequency-response functions) available in the “modalfit”
function in the physiological frequency range of 0.01–0.2 Hz. Then, a single set of modal
parameters was generated using the least-squares complex exponential (LSCE) algorithm
by analyzing multiple response signals simultaneously in “modalsd”. Here, a stabilization
diagram was used to identify the physical modes by examining the stability of the poles as
the number of modes increased. Then, the linear model of the four physiologically detailed
tES pathways in the NVU was found using the Model Linearizer tool in the Simulink
(MathWorks, Inc., Natick, MA, USA) linear analysis package. The damping ratio, the
natural frequency, and the time constant of the poles were obtained using the “damp”
function from the linear model system.
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Table S1 (Supplementary Materials: Modal analysis of the physiologically detailed
neurovascular model) lists the natural frequencies in the physiological frequency range
of 0.01–0.2 Hz obtained using the “peak-picking” algorithm following the modal analysis
of the physiologically detailed nonlinear model of the four tES perturbation pathways,
using 10 different seeds for the white Gaussian noise. The “peak-picking” method is a
local single-degree-of-freedom method where the peaks for each mode are considered
independently. Here, the natural frequencies across all four tES perturbation pathways
were found in the physiological frequency range of 0.01–0.2 Hz. Figure 3 depicts the boxplot
of these natural frequencies within 0.01–0.2 Hz across 10 different runs (with different seeds;
see Table 1) of the modal analysis, which were found to be comparable for the four tES
perturbation pathways—Pathway 1: tES perturbing vessel response through the synaptic
potassium pathway; Pathway 2: tES perturbing vessel response through the astrocytic
pathway; Pathway 3: tES perturbing vessel response through the perivascular potassium
pathway; and Pathway 4: tES perturbing vessel response through the SMC pathway.
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Figure 3. Boxplot of the natural frequencies in the physiological frequency range of 0.01–0.2 Hz
obtained through modal analysis for the four tES perturbation model pathways. On each box, the
central mark indicates the median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data points not considered
outliers, and the outliers are plotted individually using the red “+” symbol.

Table 1. Post-stroke subject characteristics and the tDCS target.

Name Age (years) Gender Post-Stroke
Period (years)

Affected Hemisphere
(Middle Cerebral Artery Stroke) tDCS Target

P1 44 Male 2 Left Cerebellar

P2 53 Male 3 Left Cerebellar

P3 40 Male 1 Right Cerebellar

P4 38 Male 1 Left Cerebellar

P5 32 Male 1 Left Cerebellar

P6 50 Male 2 Right Cerebellar

P7 31 Male 6 Right M1

P8 63 Male 5 Left M1

P9 73 Male 4 Left M1

P10 76 Female 5 Right M1

We also applied a global multiple-degree-of-freedom method, LSCE, where the pa-
rameters for all modes were estimated simultaneously from multiple frequency-response
functions. Figure 4 shows the stabilization diagrams and outputs of the natural frequencies
of the poles that were stable in frequency, which were found for lower (<0.2 Hz) frequencies
mainly for Pathway 4, and for higher (>0.2 Hz) frequencies mainly for Pathways 2 and 3.
Here, many stable modes were found near 1 Hz, mainly for tES perturbation Pathways 2
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and 3. Then, stable modes in the physiological frequency range of 0.01–0.2 Hz were mainly
found for Pathway 4. Since Pathway 4 is the last for the vessel response (see Figure 1b)
so this led to comparable natural frequencies from the modal analysis (see Figure 3) for
the four nested tES perturbation pathways (see Figure 1b) The poles and the damping
parameters associated with the linearized models of the four tES perturbation pathways are
listed in Table S2 (Supplementary Materials: Modal analysis of the physiologically detailed
neurovascular model).
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Our results provide a mechanistic understanding of the four physiologically detailed
tES pathways in the NVU in terms of their frequency-response functions [45]. Specifically,
stable modes (see Figure 4) were found in the 0–0.05 Hz range in tES Pathway 4, which
could be leveraged to develop tES interventions perturbing vessel response via the SMC
pathway, including diffusing nitric oxide from postsynaptic signaling. Vascular factors
contribute to cerebrovascular disease as well as mild cognitive impairment and demen-
tia [22], which are predicted to affect 152 million people by 2050 (Alzheimer’s Disease
International London, UK, 2019). Various physiologically relevant frequency bands have
already been identified in the literature: 0.6–2 Hz and 0.145–0.6 Hz are related to cardiac
and respiratory function, respectively, 0.052–0.145 Hz is associated with smooth muscle
cell activity, and 0.021–0.052 Hz may reflect smooth muscle cell autonomic innervation [12].
Moreover, many stable modes (see Figure 4) were found near 1 Hz for tES Pathways 2
and 3, which could be leveraged to develop tES interventions perturbing vessel response
through the astrocytic and perivascular potassium pathways. Here, increases in interstitial
potassium concentration can modulate the neurovascular coupling [9], which is likely to
change the transfer function model, including its steady-state gain via Kir channels [48]. In
a computational modeling study within the frequency range of 0.1–10 Hz, Yashika et al. [45]
found that the vessel oscillations were more sensitive to transcranial oscillating-current
stimulation than to transcranial alternating-current stimulation, and the entrainment effects
were more pronounced for lower frequencies. Here, Kir 2.1 channels on the endothelium
and Kir 2.2 channels on the pericytes can modulate [6,47] the neurovascular coupling—as
shown in Figure 1a—which may have therapeutic potential in aging and Alzheimer’s dis-
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ease [49]. Therefore, investigation of the tES modulation of neurovascular coupling and the
role of CBF in facilitating neural processing is crucial [50]. Here, prior works [7,8,24] have
found that tDCS can change the neurovascular coupling status, which may be mediated
by the Kir potassium channels in the mural cells [6], thereby changing the neurovascular
system’s sensitivity, leading to aftereffects. Such modulation of the neurovascular system’s
sensitivity can change the transfer function (see Figure 1b) from the tES current density
(input), leading to vessel response in terms of diameter changes (output), which can be
found by tracking the steady-state gain, e.g., using Kalman-filter-based online parameter es-
timation of an ARX model [8]. Then, short-term (<150 s) tDCS can affect the hemodynamic
response [9], including the postulated norepinephrine [32] vasoconstricting perivascular
pathway vis-à-vis the “initial dip” [6]. Since we found stable modes in the 0–0.05 Hz range
for Pathway 4 (tES perturbing vessel response through the SMC pathway) with the Nyquist
frequency at 0.1 Hz, a maximum TR = 10 s is feasible for the functional magnetic resonance
imaging (fMRI)–tDCS studies [51].

3. Grey-Box Modeling of fNIRS of tDCS’s Effects—A Chronic Stroke Case Series

In this study, we aimed to compare the cerebellar tDCS-evoked fNIRS HbT response
with primary motor cortex (M1) tDCS-evoked fNIRS HbT response at the lesional and
the non-lesional hemispheres in chronic ischemic stroke. Prior works in healthy subjects
have shown that tDCS-induced excitability changes in the left M1 are correlated with the
CBF changes in the left sensorimotor region; however, tDCS-induced alterations in CBF
could only partially account for cortical excitability changes [36]. Therefore, although CBF
changes were likely evoked by the electric field, they could not completely account for
the cortical excitability related to neuroplastic changes and their variability [52]. Here,
longer plasticity-inducing tDCS is postulated to result in complex bidirectional commu-
nication in the neurovascular unit (NVU) [53,54] vis-à-vis cortical excitability changes,
which could only be partially accounted for by changes in CBF [52]. Therefore, it is im-
portant to investigate the underlying mechanisms of the hemodynamic response to tDCS-
induced electric fields in the neurovascular brain tissue—i.e., CVR to tDCS [54]—in health
and disease.

In healthy tissue, CVR is a compensatory mechanism where blood vessels respond
to the vasoactive stimulus from tES, which can be related to the neurovascular coupling
(NVC) [55]. This capacity of the blood vessels to dilate in response to the vasoactive stimulus
can be hampered in various cerebrovascular diseases, including chronic stroke [56,57]. In
this study, we investigated CVR during tDCS based on grey-box linear systems analysis [9].
Here, completely data-driven black-box systems approaches can provide a correlate of
neural and hemodynamic response at an abstract level under the assumption of NVC at
the cellular level. However, these black-box system approaches do not aim to explicitly
capture the underlying mechanisms of action. Considering the evidence of modulatory
consequences of tDCS on blood vessels, which can be via neuronal and non-neuronal
cells [58], a deeper understanding of the signaling pathways is important for a mechanistic
understanding [6]. Figure 1b shows the four nested pathways that were physiologically
modeled in our prior work [9].

Pathway 1: tES-evoked synaptic potassium→ vessel circumference
Pathway 2: tES-evoked astrocytic current channel→ vessel circumference
Pathway 3: tES-evoked perivascular potassium→ vessel circumference
Pathway 4: tES-evoked smooth muscle cell→ vessel circumference
Retrospective data [33] from a convenience sample of six male chronic (>6 months’

post-stroke) ischemic stroke subjects who volunteered for the cerebellar tDCS (ctDCS) study
are listed in Table 1. T1-weighted MRI was available from All the India Institute of Medical
Sciences, New Delhi, India, and we selected chronic stroke survivors with cerebral lesions
but with an intact cerebellum. Written informed consent was obtained from each subject,
and the multicenter research protocol was approved by the institutional reviews boards of
the All India Institute of Medical Sciences, New Delhi, India (IEC-129/07.04.2017) and the
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Indian Institute of Technology Gandhinagar, India (IEC/2019-20/4/UL/046). Retrospective
data [7] from four chronic (>6 months) ischemic stroke survivors (one female) were used
for the M1 tDCS analysis, as listed in Table 1.

M1 tDCS was delivered with the anode (SPONSTIM-8, Neuroelectrics, Spain) placed
at Cz (international 10–20 system of scalp sites [59]) and the cathode (SPONSTIM-25, Neu-
roelectrics, Barcelona, Spain) over the left supraorbital notch, and conducted at an anode
current density of 0.526 A/m2. Cerebellar tDCS (ctDCS) was delivered at PO9h–PO10h
(international 10–05 system of scalp sites [59]) with a 3.14 cm2 (PISTIM, Neuroelectrics,
Barcelona, Spain) circular anode placed at the contralesional side, while the cathode (PIS-
TIM, Neuroelectrics, Barcelona, Spain) was placed at the ipsilesional side at a higher current
density of 6.4 A/m2. With 0.526 A/m2, M1 tDCS was postulated to affect the neurovascular
tissue mainly at the surface of the cortex while, with 6.4 A/m2, focal ctDCS was postulated
to reach the deep dentate nuclei of the cerebellum [60] and affect neurovascular tissue at the
M1 region via cerebrocerebellar connections. Therefore, the fNIRS signal was sampled at
10 Hz and analyzed from the M1 region with the source (760/850 nm) placed at Cz and the
detectors placed at FC1, FC2, CP1, and CP2 (~2.5 cm inter-optode distance) in the M1 tDCS
study. In the ctDCS study, the detector was placed at Cz and the sources (760/850 nm) were
placed at FC3, FC4, CP3, and CP4 (~3.5 cm inter-optode distance). Computational head
modeling for tES current density distribution was performed using ROAST [61], and the
fNIRS sensitivity analysis was performed using AtlasViewer [62]. Motion artifact detection
and correction were performed using combined spline interpolation and Savitzky–Golay
filtering [63] in HOMER3 (https://github.com/BUNPC/Homer3, accessed on 17 Septem-
ber 2020), which is an open-source software package for MATLAB (MathWorks Inc., Natick,
MA, USA). Then, a modified Beer–Lambert law was used to convert the detectors’ raw
optical data into optical density, and the conversion of optical density to changes in HbT
was performed, followed by downsampling to 1 Hz.

The study used a physiologically constrained linear model [9] to track the HbT changes
due to acute (0–60 s: 0–30 s ramp-up and 30–60 s steady-state tDCS) effects of the tDCS
current density on the neurovascular tissue. Induced current density in the ohmic head
model was assumed to have a vasoactive influence via a linear transfer function mapping
to the vasoactive signal. The process of transforming tDCS current density to a vasoactive
signal was represented by a first-order linear filter, v(s) = K

s/τ+1 Jtdcs, where K is the gain
mapping the current density at the electrode–skin interface (Jtdcs) to that at the neurovascu-
lar tissue, and τ is the time constant to the vasoactive (v(s)) signal (in the s-domain) [64].
Physiologically detailed healthy NVC models from published literature were simulated
using the ODE23TB solver in Simulink (MathWorks, Inc., Natick, MA, USA), as detailed by
Arora et al. [9]. Then, model reduction of the four pathways from physiologically detailed
healthy NVC models was performed using the Simulink (MathWorks, Inc., Natick, MA,
USA) linear analysis tool. This tool allowed linearization of nonlinear models at the baseline
operating point of the physiologically detailed NVC models. Therefore, the linearized
grey-box model was constrained by the individual physiology of the four pathways from
physiologically detailed healthy NVC models published previously [9]. Then, the values of
the free parameters (i.e., poles and zeros) of the grey-box linear model were updated using
the “Refine Existing Model” approach in the System Identification toolbox (MathWorks,
Inc., Natick, MA, USA) to fit to the experimental pathological fNIRS HbT changes (0–60 s)
in response to tDCS in chronic stroke survivors.

After minimizing the mean squared error E(N2[n]) of the parametric grey-box linear
model to fit to the initial 60 s (30 s ramp-up and 30 s steady-state tDCS) fNIRS HbT changes
in response to tDCS, the fNIRS HbT signal without that pathway influence can be written
as Y[n] = X[n]− TF[n] ∗ Jtdcs[n], where TF[n] is the grey-box transfer function, X[n] is the
original fNIRS time series, and Y[n] is the fNIRS time series without the corresponding
pathway influence [65]. Here, the initial 60 s of fNIRS HbT response was assumed to be
unaffected by the cortical excitability changes, since prior works showed that the aftereffects
of neuroplastic excitability (mainly calcium-dependent) start after 3 min following the onset

https://github.com/BUNPC/Homer3
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of tDCS [66]. We also computed the M1 tDCS and ctDCS effect size on HbT before and
after removing the smooth muscle cells’ effects (norepinephrine [13] receptors are present
on the pial arterial smooth muscle cells [14,15]). The CVR to tDCS at the ipsilesional and

contralesional hemispheres was compared based on Cohen’s d = contralesional−ipsilesional√
s3
contralesional−s3

ipsilesional
2

,

where contralesional and ipsilesional are the means of the two hemisphere HbT responses,
and scontralesional and sipsilesional are their standard deviations, respectively. Paired-samples
t-tests were used to measure significant differences in the HbT response between the
hemispheres.

Grey-box model transfer functions from physiologically detailed healthy model: The
linearized grey-box model transfer functions obtained from the physiologically detailed
model [9] are given in the Supplementary Materials (Grey-box modeling of fNIRS of tDCS
effects—a chronic stroke case series), as is the model response to the tDCS pulse. The
response function of Pathway 1 to the known synaptic potassium→ vessel circumference
hemodynamic responses peaked ~5 s [67]. Here, nitric oxide as a postsynaptic signaling
molecule is postulated to be involved later, likely following facilitation of glutamate trans-
mission by longer-duration tDCS. Pathway 4 peaked ~2 s, which may be related to the
cerebral autoregulation time constant [68], and can raise safety concerns vis-à-vis the effects
of tDCS [69]. Here, the dynamic system model is postulated to capture the autonomic
ability of cerebral arterioles to change blood volume (HbT changes) following a vasoactive
tDCS stimulus [69].

Grey-box model transfer functions fitted to the post-stroke HbT—M1 tDCS data: A
Levenberg–Marquardt least-squares search was used for iterative parameter estimation
in MATLAB(“tfest”) to find a stable model where the regularization pulled the parame-
ters towards the parameter values of the initial grey-box model (from the physiologically
detailed healthy model [9]). Boxplots of fNIRS HbT time series from the ipsilesional and
contralesional hemispheres are shown in Figure 5A,B, respectively, with simulated results
from fitted models of the four pathways shown in Figure 5C,D, respectively.

Grey-box model transfer functions fitted to the post-stroke HbT—ctDCS data: Boxplots
of fNIRS HbT time series from the ipsilesional and contralesional hemispheres are shown
in Figure 6A,B, respectively, with simulated results from fitted models of the four pathways
shown in Figure 6C,D, respectively. Iterative parameter estimation was performed for the
fNIRS HbT time series for 0–60 s of ctDCS (0–30 s ramp-up and 30–60 s steady-state) at the
ipsilesional and contralesional hemispheres.

In case of the grey-box model transfer functions fitted to the post-stroke HbT—M1
tDCS data, the mean squared error (MSE) for different pathways are shown in Figure 7A,B,
where Pathway 2 performed the best (lowest MSE) for ipsilesional HbT (Figure 7A),
while Pathways 1–3 performed well for contralesional HbT (Figure 7B). Then, in case
of grey-box model transfer functions fitted to the post-stroke HbT—ctDCS data, the MSE
are shown in Figure 7C,D, where Pathways 2–3 performed well for ipsilesional HbT
(Figure 7C), while Pathways 1–2 performed well for contralesional HbT (Figure 7D). The
HbT response was significantly different (paired-samples t-test, p < 0.05) at the ipsilesional
hemisphere compared to the contralesional hemisphere in the case of M1 tDCS (as shown
in Figures 5A and 7B), and the effect size based on Cohen’s d was found to be very large
(=2.49). Moreover, the HbT response was significantly different (paired-samples t-test,
p < 0.01) at the ipsilesional hemisphere compared to the contralesional hemisphere in
the case of ctDCS with at a very large Cohen’s d (=2.33). Then, the Pathway 4 transfer
function fitted to the post-stroke HbT data (shown in Figure 5C,D) was used for removing
the Pathway 4 effects, i.e., the tDCS effects from smooth muscle cells→ vessel circumfer-
ence. The fNIRS HbT responses without the Pathway 4 effects are shown as boxplots in
Figure 8 across all conditions: M1 tDCS, ctDCS, ipsilesional hemisphere, and contralesional
hemisphere. Here, the removal of the Pathway 4 effects reduced Cohen’s d (=0.36) and the
interhemispheric difference (p = 0.71) in the case of M1 tDCS. Furthermore, the removal of
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the Pathway 4 effects reduced Cohen’s d (=−0.266) and the interhemispheric difference
(p = 0.72) in the case of ctDCS.
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fNIRS HbT time-series data at the (C) ipsilesional and (D) contralesional hemispheres are also shown.



Brain Sci. 2022, 12, 1294 13 of 27
Brain Sci. 2022, 12, x FOR PEER REVIEW 14 of 29 
 

 

Figure 7. Mean squared error (MSE) with M1 tDCS for HbT at the (A) ipsilesional and (B) contrale-

sional hemispheres. MSE with ctDCS for HbT at the (C) ipsilesional and (D) contralesional hemi-

spheres. 

Pathway 4 effects can postulated via norepinephrine [13] receptors on the pial arterial 

smooth muscle cells [14,15], which may be relevant at the onset (<150 s after tDCS) of tDCS 

[9]. Moreover, tES-evoked LC-NE activity via projections innervating the cerebral vascu-

lature can have therapeutic effects, e.g., cerebellar tDCS (ctDCS) electrodes [33] may stim-

ulate the ascending fibers of the occipital nerve [70]. Here, tES can be optimized to stimu-

late the peripheral nerves [32] and the LC-NE system. Activation of the LC-NE system 

lead to a psychosensory pupil response in the dilation of the pupil. Significantly, short-

duration (<3 min) tDCS can have physiological effects, where the biological effects can 

extend beyond the intended transient sensations [71]. In fact, the onset response in the 

case of short-duration (considered sham) tDCS may explain the hidden source of variabil-

ity in its effects [71]. In principal accordance, pupil dilation was investigated along with 

prefrontal fNIRS (see Figure 9a) under 2 mA tDCS, with the anode at FC5 and the cathode 

at FP2 (electrode montage from [72])—as presented below. 

Figure 7. Mean squared error (MSE) with M1 tDCS for HbT at the (A) ipsilesional and (B) contralesional
hemispheres. MSE with ctDCS for HbT at the (C) ipsilesional and (D) contralesional hemispheres.

Brain Sci. 2022, 12, x FOR PEER REVIEW 15 of 29 
 

 

Figure 8. Boxplots of filtered HbT (µM) time series for 0–60 s of M1 tDCS at the (A) ipsilesional and 

(B) contralesional hemispheres, and for ctDCS at the (C) ipsilesional and (D) contralesional hemi-

spheres. 

(a) (b)  

Figure 9. (a) Sensitivity profile of the optode montage (red dots are sources at long separation and 

short separation from detectors; blue dots are detectors). The sensitivity values are displayed loga-

rithmically, with a default range of 0.01 to 1, or −2 to 0 in log10 units; (b) 30 s ON–30 s OFF tDCS 

paradigm with 10 s ramp-up/10 s ramp-down—repeated 30 times in a block design. 

4. Black-Box Modeling of Prefrontal fNIRS–Pupillometry of the Effects of  

Short-Duration Frontal tDCS—A Healthy Case Series 

Our prior works [6] have presented grey-box modeling results for tDCS-evoked he-

modynamic response; however, tDCS-evoked arousal effects were not explicitly modeled 

physiologically [9]. In the absence of a grey-box model of tDCS-evoked arousal effects, we 

tested the feasibility of a black-box modeling approach in this study. After providing writ-

ten informed consent, five young (aged between 20 and 30 years) and healthy male sub-

jects were recruited. Case study procedures were performed according to the local regu-

lations for research on human subjects at the University at Buffalo. 

Portable brain imaging was performed using four sources and two detectors of a 

portable fNIRS (Octamon+, Artinis Medical Systems, Gelderland, The Netherlands) 

placed at the forehead (see the optode montage from [20]). Figure 9a shows the sensitivity 

profile of the optode montage that covered the middle frontal gyrus (orbital part) and 

Figure 8. Boxplots of filtered HbT (µM) time series for 0–60 s of M1 tDCS at the (A) ipsilesional and
(B) contralesional hemispheres, and for ctDCS at the (C) ipsilesional and (D) contralesional hemispheres.
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Pathway 4 effects can postulated via norepinephrine [13] receptors on the pial arterial
smooth muscle cells [14,15], which may be relevant at the onset (<150 s after tDCS) of
tDCS [9]. Moreover, tES-evoked LC-NE activity via projections innervating the cerebral
vasculature can have therapeutic effects, e.g., cerebellar tDCS (ctDCS) electrodes [33] may
stimulate the ascending fibers of the occipital nerve [70]. Here, tES can be optimized to
stimulate the peripheral nerves [32] and the LC-NE system. Activation of the LC-NE
system lead to a psychosensory pupil response in the dilation of the pupil. Significantly,
short-duration (<3 min) tDCS can have physiological effects, where the biological effects
can extend beyond the intended transient sensations [71]. In fact, the onset response in the
case of short-duration (considered sham) tDCS may explain the hidden source of variability
in its effects [71]. In principal accordance, pupil dilation was investigated along with
prefrontal fNIRS (see Figure 9a) under 2 mA tDCS, with the anode at FC5 and the cathode
at FP2 (electrode montage from [72])—as presented below.
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4. Black-Box Modeling of Prefrontal fNIRS–Pupillometry of the Effects of
Short-Duration Frontal tDCS—A Healthy Case Series

Our prior works [6] have presented grey-box modeling results for tDCS-evoked
hemodynamic response; however, tDCS-evoked arousal effects were not explicitly modeled
physiologically [9]. In the absence of a grey-box model of tDCS-evoked arousal effects,
we tested the feasibility of a black-box modeling approach in this study. After providing
written informed consent, five young (aged between 20 and 30 years) and healthy male
subjects were recruited. Case study procedures were performed according to the local
regulations for research on human subjects at the University at Buffalo.

Portable brain imaging was performed using four sources and two detectors of a
portable fNIRS (Octamon+, Artinis Medical Systems, Gelderland, The Netherlands) placed
at the forehead (see the optode montage from [20]). Figure 9a shows the sensitivity profile of
the optode montage that covered the middle frontal gyrus (orbital part) and superior frontal
gyrus (dorsolateral part) bilaterally [62]. The subjects were seated comfortably indoors in
a windowless room while they looked at an evenly painted non-glossy white wall with
fluorescent lighting (intensity ~4000 lux). The eyes were monitored using the open-source
platform Pupil Core (Pupil Labs, Berlin, Germany). Then, 2 mA tDCS was applied in a 30 s
ON–30 s OFF temporal sequence with 10 s ramp-up/10 s ramp-down, which was repeated
30 times in a block design [54] (see Figure 9b). Stimulation and multimodal data acquisition
were synchronized using Lab Streaming Layer (https://labstreaminglayer.readthedocs.io/
info/supported_devices.html; accessed on 4 August 2022).

Preprocessing of the fNIRS data was performed using the standard open-source
package HOMER3 (https://github.com/BUNPC/Homer3; accessed on 4 August 2022).
The fNIRS preprocessing pipeline was as follows: First, intensity was converted to op-
tical density, and then motion artifacts were detected and filtered with the help of the
Savitzky–Golay filtering method with default parameters. Then, the optical density was
bandpass-filtered in the neurovascular coupling band at 0.01–0.1 Hz, and then converted to
chromophore concentration (oxyhemoglobin: HbO, deoxyhemoglobin: HHb) changes with

https://labstreaminglayer.readthedocs.io/info/supported_devices.html
https://labstreaminglayer.readthedocs.io/info/supported_devices.html
https://github.com/BUNPC/Homer3
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the unit partial pathlength factor. Here, vasoconstriction effects (e.g., due to tDCS-evoked
norepinephrine) on the pial arteries can lead to an initial dip in the blood volume (and total
hemoglobin: HbT) [9] in the long-separation (LS) fNIRS channels, since pial arteries start
the pressure-driven blood pathway to the cortex (reviewed in Schmid et al. [44]). Moreover,
hemodynamics in the short-separation (SS) fNIRS channels can be affected by tDCS, and
skin blood flow artefacts need to be removed from the LS HbT data for NVU modeling.
Pupil Capture (Pupil Labs, Berlin, Germany) recorded videos of the left and the right eyes
at 120 fps in 400 × 400 pixel resolution. Pupil Core reports pupil diameter in mm, provided
by the pye3d model [73]. The time series from the left and right eyes were averaged in the
young and healthy subjects.

Figure 10A shows the postulated relationship between the pupil diameter changes
and the total hemoglobin concentration changes (HbT = HbO + HHb) due to tDCS-evoked
arousal. A state-space model for arousal via reduction of a regularized ARX model (”ss-
regest” in MATLAB) was found between the tDCS trapezoidal waveform input and the
pupil diameter changes output [74], which could account for the carryover effect. More-
over, transfer functions were estimated (“tfest” with the EnforceStability estimation option
as true in MATLAB) for LS and SS HbT responses, and the estimated model responses
(“lsim” in MATLAB) for the tDCS ON–OFF period are shown in Figure 10B. Figure 10B
shows an illustrative example of averaged LS and SS HbT signals across the tDCS ON–
OFF period (total 80 s). The model from tDCS waveform input to LS HbT output (tDCS
=> LS in Figure 10B) was initialized with a reduced-dimensions model (eight poles, two
zeros [9]) for Pathway 3: perivascular potassium→ vessel circumference. The model from
tDCS waveform input to SS HbT output (tDCS => SS in Figure 10B) was initialized with
a reduced-dimensions model (six poles, one zero [9]) for Pathway 4: smooth muscle cell
→ vessel circumference. The model from SS HbT input to LS HbT output (SS => LS in
Figure 10B) was a static gain model. All of the transfer functions are presented in the
Supplementary Materials (Black-box modeling of prefrontal fNIRS–pupillometry of the
effects of short-duration frontal tDCS—a healthy case series).

The transfer function from SS HbT input to LS HbT output provided the estimation of
the skin blood flow artefact that was removed from the LS HbT signal. Then, the transfer
function between the tDCS trapezoidal waveform input and the skin-artefact-free LS fNIRS
HbT output was computed. The state-space model via reduction of a regularized ARX
model between the pupil diameter changes input and the skin-artefact-free LS fNIRS HbT
output provided some insights. For example, an anti-correlation relationship between
tDCS-evoked pupil diameter changes (pupil dilation) and the blood volume changes (HbT)
was found. The impulse response (“impulseplot” in MATLAB) and power spectrum
(“spectrum” in MATLAB) of all of the state-space models of each subject are presented in
the Supplementary Materials (Black-box modeling of prefrontal fNIRS–pupillometry of
the effects of short-duration frontal tDCS—a healthy case series). Then, the step-response
characteristics (“stepinfo” in MATLAB) for the dynamic system model between the tDCS
trapezoidal waveform input and the prefrontal average HbT changes (across all fNIRS
channels) output is shown in Table 2a, between the tDCS trapezoidal waveform input and
the pupil diameter changes output are shown in Table 2b, while those between the pupil
diameter changes input and the average HbT changes (across all fNIRS channels) output
are shown in Table 2c. Here, the rise time—i.e., the time it takes for the response to go
from 10% to 90%—was fastest (2.54 ± 0.44 s) for the model between the tDCS trapezoidal
waveform input and the prefrontal average HbT changes output (Table 2a), followed
by the dynamic system model between the tDCS trapezoidal waveform input and the
pupil diameter changes output (7.16 ± 5.01 s) and the dynamic system model between
the pupil diameter changes input and the average HbT changes output (10.02 ± 3.01 s).
Therefore, it can be postulated that tDCS-evoked hemodynamic response has an immediate
onset that is faster than the effect on the pupil diameter. The immediate onset has the
fastest rise time (2.54 ± 0.44 s)—i.e., ~2 s, comparable to the cerebral autoregulation time
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constant [68]—for the dynamic system model between the tDCS trapezoidal waveform
input and the prefrontal average HbT changes output.
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Figure 10. (A) Transcranial electrical stimulation (tES)–evoked arousal leads to changes in the pupil
diameter as well as the vascular tone, affecting the evoked hemodynamic response. (B) An illustrative
example of HbT responses in long-separation (LS) and short-separation (SS) fNIRS channels. LS
HbT: long-separation total hemoglobin changes, SS HbT: short-separation total hemoglobin changes,
tDCS => LS HbT response: transfer function response with tDCS waveform input and LS HbT output,
tDCS => SS HbT response: transfer function response with tDCS waveform input and SS HbT output,
SS HbT => LS HbT response: transfer function response with SS HbT input and LS HbT output, LS
HbT–(SS HbT => LS HbT): SS HbT => LS HbT response subtracted from LS HbT.
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Table 2. (a) Step-response characteristics for the dynamic system model between the tDCS trape-
zoidal waveform input and the prefrontal average HbT changes (across all fNIRS channels) output—
tDCS2HbT. (b) Step-response characteristics for the dynamic system model between the tDCS trape-
zoidal waveform input and the pupil diameter changes output—tDCS2PD. (c) Step-response charac-
teristics for the dynamic system model between the pupil diameter changes input and the average
HbT changes (across all fNIRS channels) output—PD2HbT.

(a) tDCS2HbT Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Mean stdev
RiseTime 2.4 2.3 2.2 2.5 3.3 2.54 0.439318

SettlingTime 9.6 8.7 9.9 10.4 9.4 9.6 0.62849

SettlingMin 0.2187 0.2544 0.2882 0.1615 0.1351 0.21158 0.063467

SettlingMax 0.5878 0.6019 0.5944 0.587 0.5628 0.58678 0.014687

Overshoot 0.7288 12.9567 7.6098 0.118 0.2432 4.3313 5.757355

Undershoot 0 0 0 0 0 0 0

Peak 0.5878 0.6019 0.5944 0.587 0.5628 0.58678 0.014687

PeakTime 4 4.6 4.1 14.6 14.2 8.3 5.574944
(b) tDCS2PD Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Mean stdev

RiseTime 14.2 3.5 8.3 8.5 1.3 7.16 5.00979

SettlingTime 16.1 11.3 19.2 12 13.9 14.5 3.221025

SettlingMin 0.6813 0.5992 0.7907 0.6583 0.2203 0.58996 0.21797

SettlingMax 0.7559 0.665 0.8782 0.7285 0.7287 0.75126 0.078427

Overshoot 0 0.665 0 0 0.1329 0.15958 0.288339

Undershoot 225.1942 127.3642 14.2983 0 0 73.37134 100.2768

Peak 1.7037 0.8472 0.8782 0.7285 0.7287 0.97726 0.411736

PeakTime 4.5 4.2 53.9 18.6 20.7 20.38 20.25357
(c) PD2HbT Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Mean stdev

RiseTime 11.7 7.5 6.5 10.6 13.8 10.02 3.007823

SettlingTime 20.6 14.1 11 19.3 25.8 18.16 5.77434

SettlingMin 0.6935 0.738 0.568 0.7148 0.6868 0.68022 0.065855

SettlingMax 0.769 0.819 0.629 0.7922 0.762 0.75424 0.073481

Overshoot 0 0 0 0 0 0 0

Undershoot 0.5904 0.4861 0 4.4144 0 1.09818 1.873619

Peak 0.769 0.819 0.629 0.7922 0.762 0.75424 0.073481

PeakTime 33.9 25.6 17.9 50.7 47.9 35.2 14.09503

Granger causality and block exogeneity tests for vector autoregression (VAR) models
were conducted using MATLAB (MathWorks, Inc., Natick, MA, USA) to check whether the
tDCS waveform was block exogenous, i.e., the tDCS waveform does not Granger-cause
changes in pupil diameter (pupil dilation) and blood volume (HbT) in the multivariate
system. First, the time-series analysis of the tDCS-evoked changes in pupil diameter (pupil
dilation) and blood volume (HbT) showed that the autocorrelation function decreased
slowly, while the partial autocorrelation function converged to zero after about eight lags.
An augmented Dickey–Fuller test (“adftest” in MATLAB) confirmed that all signals were
stationary (p < 0.025). The innovation errors were investigated for normality (p < 0.025), and
the remaining autocorrelation structure of the innovation error was found to be negligible.
Then, a VAR model for the tDCS waveform, HbT time series, and pupil dilation time
series was fitted, and the block exogeneity test rejected the claim that the tDCS waveform
is not a one-step Granger-cause of the HbT time series and pupil dilation time series
(p < 0.05). The results of the VAR model analysis are presented for each subject in the
Supplementary Materials (Black-box modeling of prefrontal fNIRS–pupillometry of the
effects of short-duration frontal tDCS—a healthy case series).

It is postulated that VAR models may be leveraged for immediate control of hemo-
dynamics using model predictive control (MPC). MPC uses an internal model for making
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predictions of the system behavior, considering the dynamics over a predefined prediction
horizon, for optimizing the control actions. For online operations, MPC operates in a
receding-horizon fashion, i.e., new system measurements and new predictions into the
future are made at each time step. Here, MPC can be based on a minimal realization of
transfer functions for the four nested pathways for NVU [9], where tES current density
(input) can perturb a state variable at each of the four NVU compartments to perturb the
vessel volume response (output).

5. Human-in-the-Loop Optimization for Model Predictive Control of tES-Evoked HbT

Yashika et al. [45] found that the vessel oscillations were more sensitive to transcranial
oscillating-current stimulation (tOCS) than to transcranial alternating-current stimulation
(tACS), and the effects were more pronounced for lower frequencies within the frequency
range of 0.1–10 Hz. Here, increases in interstitial potassium concentration can modulate
the neurovascular coupling [9], i.e., Pathway 3: tES perturbing vessel response through
the perivascular potassium pathway. Then, a change in the transfer function model from
tDCS waveform (input) to the HbT response (output) can change the steady-state gain of
the system that is postulated via the Kir channels [48]. Therefore, in a healthy case study,
we aimed to test the feasibility of human-in-the-loop optimization of tOCS and tACS with
the electrodes placed at the “FT7” and “FT8” EEG locations (10-10 system) to maximize the
steady-state gain (i.e., moles of HbT change per mA of tES current intensity) of Pathway
3 (reduced-dimensions model [9]), which was fitted (“tfest” with the EnforceStability
estimation option as true in MATLAB) to the tES-evoked skin-artefact-free LS HbT data
from frontal fNIRS optodes (sensitivity profile shown in Figure 9a). The electric fields
computed with the ROAST package [61] are presented in the Supplementary Materials
(Human-in-the-loop optimization for model predictive control of tES-evoked HbT). The
model predictive control scheme is shown in Figure 11, where the skin-artefact-free LS
HbT response was used to optimize tOCS control actions, i.e., the tES waveform was
parametrized by a direct-current (DC) intensity, an alternating-current (AC) amplitude,
and an AC frequency. The amplitude of the AC waveform had a fixed ramp-up time
(=10 s), ramp-down time (=10 s), and duration (=10 s). Repeated measures of the 30 s
epochs of tOCS-evoked skin-artefact-free LS HbT response were used by the CMA-ES
algorithm [46] to optimize the DC intensity, AC amplitude, and AC frequency for the
subsequent iteration of the 30 s tOCS ON period to maximize the steady-state gain of the
system (i.e., the Pathway 3 model fitted to tOCS ON HbT data). Here, the mean of the set of
current intensity perturbations at each iteration—which were evaluated independently—is
the optimal current intensity at that stage of the optimization.
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A case study (male, 44 years old) was performed after the provision of written in-
formed consent according to the local regulations for research on human subjects. Case
report procedures were performed according to the local regulations for research on hu-
man subjects at the University at Buffalo. Portable brain imaging was performed using
four sources and two detectors of a portable fNIRS (Octamon+, Artinis Medical Systems,
Gelderland, the Netherlands) placed at the forehead (see the optode montage from [20]).
Figure 9a shows the sensitivity profile of the optode montage that covered the middle
frontal gyrus (orbital part) and superior frontal gyrus (dorsolateral part) bilaterally [62].
Stimulation and multimodal data acquisition were synchronized using Lab Streaming
Layer (https://labstreaminglayer.readthedocs.io/info/supported_devices.html; accessed
on 4 August 2022). Online preprocessing of the 30 s fNIRS data epoch after the end of
the tOCS ON period was performed in MATLAB using functions from the open-source
HOMER3 package (https://github.com/BUNPC/Homer3; accessed on 4 August 2022).
The fNIRS preprocessing pipeline was as follows: First, intensity was converted to op-
tical density, and then motion artifacts were detected and filtered with the help of the
Savitzky–Golay filtering method with default parameters. Then, the optical density was
bandpass-filtered in the neurovascular coupling band at 0.01–0.1 Hz, and then converted to
chromophore concentration (oxyhemoglobin: HbO, deoxyhemoglobin: HHb) changes with
the unit partial pathlength factor. We averaged all of the long-separation (LS) HbT channels
and short-separation (SS) HbT channels for online model estimation following the 30 s
tDCS ON perturbation, using the MATLAB toolkit MatNIC2 (Neuroelectrics, Barcelona,
Spain). First, the static gain transfer function from SS HbT input to LS HbT output pro-
vided the estimation of the skin blood flow artefact during the tOCS ON epoch, which
was removed from the LS HbT signal. Then, the steady-state gain (“dcgain” in MATLAB)
of Pathway 3 fitted (“tfest” with the EnforceStability estimation option as true in MAT-
LAB) to the 30 s epoch of the tOCS-evoked skin-artefact-free LS HbT data was estimated.
Then, the CMA-ES algorithm [46] computed the DC intensity, AC amplitude, and AC fre-
quency for the next perturbation, and the iterations continued for 150 epochs, as shown in
Figure 12A. Figure 12B shows the case where the DC intensity was set to zero and only
the AC amplitude and AC frequency were optimized (i.e., tACS condition). CMA-ES took
seven epochs of tES perturbation to deliver one iteration of optimization. The change in
the best cost (i.e., the negative of steady-state gain, HbT in µM) from seven epochs for each
iteration of the CMA-ES optimization is shown in Figure 12C,D, for tOCS and tACS, re-
spectively. Here, tOCS reached a higher steady-state gain than tACS for Pathway 3 over 22
CMA-ES iterations (took ~75 min), which was consistent with our computational modeling
results [45]; however, optimal tOCS parameters likely require more epochs of human-in-
the-loop optimization when compared to the lesser parameters for tACS. Notably, optimal
frequency settled around >0.5 Hz for tACS, which aligned well with the stable modes
(see Figure 4) near 1 Hz for tES Pathway 3. Future works should test the feasibility of
human-in-the-loop optimization for model predictive control of other pathways, including
tES-evoked oxidative metabolic substrates that can provide therapeutic intervention in
mild cognitive impairment and T2DM. However, such human-in-the-loop optimization of
metabolic states would require the development of computational models to estimate the
metabolic state of the tissue.

https://labstreaminglayer.readthedocs.io/info/supported_devices.html
https://github.com/BUNPC/Homer3
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Figure 12. Human-in-the-loop optimization using a covariance matrix adaptation evolution strategy
(CMA–ES): (A) tOCS parameters: DC intensity in mA (blue), AC amplitude in mA (red), and AC
frequency in Hz (black). (B) tACS parameters: DC intensity = 0 mA (blue), AC amplitude in mA
(red), and AC frequency in Hz (black). (C) Best cost (i.e., negative steady-state gain of HbT in M) for
tOCS over 22 iterations of CMA–ES. (D) Best cost (HbT in M) for tACS over 22 iterations of CMA–ES.

6. Discussion

Our computational perspective paper focused on systems analysis using our published
physiologically detailed grey-box [9] and black-box models [8] that provided insights
into tDCS-evoked responses in fNIRS data and pupillometry data. We also showed the
single-subject feasibility of human-in-the-loop optimization for model predictive control of
tES-evoked HbT with a case study. Notably, the AC frequency was found to settle around
1 Hz (~0.8 Hz for tACS) after 22 CMA-ES iterations, while the AC amplitude reached
around 2 mA in the tACS condition (see Figure 12B). This “optimal” AC frequency value
from CMA-ES was consistent with the results from modal analysis of the tES pathways
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(see Figure 4), where stable modes were found near 1 Hz, especially for Pathways 2 and
3, meriting mechanistic (vis-à-vis astrocytes, interstitial potassium, etc.) investigation
using animal models [75,76]. Moreover, the relationship between fNIRS and pupillometry
data merits further investigation vis-à-vis arousal mechanisms. Arousal mechanisms have
broad implications for the bedside neuromonitoring of disorders of consciousness [77],
including Alzheimer’s disease [78], where monitoring of the neurovascular coupling [3]
and pupil dilation [1,2] may be feasible. For bedside neuromonitoring, an important aspect
is the neurometabolic state of the brain, which is partially regulated by tonic and phasic
norepinephrine activity [79]. In this computational review paper, we showed that tDCS-
evoked hemodynamic response and pupil dilation can be related in healthy individuals,
postulated to be subserved by arousal mechanisms, and future studies should investigate
this relationship in disorders of consciousness, including Alzheimer’s disease. Moreover,
subject-specific interactions [80] between the tDCS-evoked LC-NE activity and interstitial
potassium concentration, which can modulate neurovascular coupling [9], could provide
insights into the interindividual variability in the effects of tES [6]. Furthermore, tES-evoked
increase in energy demand can uncover abnormalities [7] of cerebral metabolism that can
be elucidated through system analysis of the neuroimaging data. For example, a decreased
availability of oxidative metabolic substrates in the NE-depleted cortex can be partially
responsible for mild cognitive impairment and “brain fog” [81,82]. Thus, human-in-the-
loop optimization for model predictive control of tES-evoked LC-NE activity (measured
by pupil dilation) and metabolic substrates (measured by fNIRS) can provide therapeutic
intervention in mild cognitive impairment and T2DM.

Increases in CBF and oxyhemoglobin concentration during tES need careful inves-
tigation to delineate the two main neurovascular coupling hypotheses—metabolic and
neurogenic. The indirect “metabolic hypothesis” states that an increase in neuronal synaptic
activity causes additional energy and oxygen demand, causing various vasodilation agents
to send signals to the cerebral vasculature for vasodilation, resulting in an increase in CBF
and oxyhemoglobin. The increase in oxyhemoglobin can also be explained through the di-
rect “neurogenic hypothesis”, whereby the direct electric field modulation of neuropeptides
and neurotransmitters causes a discharge of various vasoactive agents for vasodilation.
Hence, the “neurogenic hypothesis” can also be applied to the effects of tDCS on the
perivascular nerves, e.g., in the pial vasculature, which will have a compounding effect
in changing oxyhemoglobin levels. Therefore, early and late hemodynamic responses
to plasticity-inducing tDCS need to be carefully investigated in future works, where the
“metabolic hypothesis” vis-à-vis cortical excitability alterations (i.e., polarity-dependent
effects of M1 tDCS [66]) should be delineated from the “neurogenic hypothesis” vis-à-vis
the effects of tDCS on the perivascular nerves. Here, complex bidirectional interactions can
lead to nonlinear dose effects [83], where lower current intensity at the scalp will primarily
affect the perivascular nerves in the pial vasculature, while higher current intensity at the
scalp may reach deeper in the cortex—a dose–response effect.

We conclude this perspective article with a vision for the future works that need to
investigate human-in-the-loop optimization for model predictive control of non-invasive
brain stimulation that can be based on the hemo-neural hypothesis [50]. Animal studies
have provided some insights into the application of tES, e.g., a study by Han et al. [84]
found that the concentration of oxyhemoglobin increased almost linearly during tDCS and
then decreased linearly immediately after the termination of tDCS, with a similar rate of
change that differed from rat to rat. Han et al. [84] suggested that individual differences in
the neuronal aftereffects of anodal tDCS may be related to individual variability in the rate
of change of hemodynamic response to tDCS. In the study of Han et al. [84], the concentra-
tion of deoxygenated hemoglobin did not show a significant difference during and after
tDCS [84]. Here, direct effects of tDCS on cortical astrocytes with astrocytic regulation of
blood flow [85] can be possible without changes in the local field potential [86], which can
also lead to dilation or constriction of the arterioles [87]. Wachter et al. [88] showed sus-
tained polarity-specific changes in CBF using laser Doppler blood perfusion imaging (LDI),
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where the duration and the degree of CBF changes depended on the intensity of the current
applied. Moreover, Mielke et al. [89], using LDI, showed a regionally limited, long-lasting,
and reversible decrease in hemispheric CBF due to cathodal tDCS, which depended on the
current intensity as well as the size of the stimulation electrode. Our human-in-the-loop
optimization for model predictive control of non-invasive brain stimulation can also be
applied to other modalities, e.g., photobiomodulation [90]. Moreover, patient-derived
cerebral organoids can facilitate the individualization of non-invasive brain stimulation
applications by identifying state–trait differences [91]. Here, patient-derived cerebral
organoids can reveal trait differences and gene expression patterns subserving dysregula-
tion of mitochondrial function [92] and metabolic state that may subserve neurometabolic
reactivity to non-invasive brain stimulation. For example, a “phase zero” cerebral organoid
platform [90] can use dual-polymer sensors in the Matrigel matrix to provide real-time
monitoring of glucose and oxygen [93] during stimulation to capture dose–response rela-
tionship based on systems analysis. Then, organoid-in-the-loop optimization of certain
non-invasive brain stimulation modalities, e.g., photobiomodulation, may be feasible for
subsequent model predictive control of non-invasive stimulation in resource-intensive
human clinical studies. Future invasive animal studies should investigate the plasticity of
the modulation of the mural cells [94] by long-term tES for the mechanistic understanding
of the effects of tES on neurovascular and neurometabolic coupling.

Limitations of the current work include the unavailability of fMRI–EEG data [51] to
demonstrate the long-term effects of tES on the neurovascular coupling in the whole brain.
Here, it is postulated that tES-evoked arousal effects should be more widespread when
compared to the direct electric field related effects on the vasculature (and perivascular
space) that could not be investigated and delineated with the limited sensitivity of fNIRS.
Also, prior works on fNIRS–EEG have shown the feasibility of computational modeling
of the effects of tES via neurovascular coupling [8,9]; however, fNIRS technology cannot
image subcortical areas. Furthermore, the trade-off between bias (in canonical HRF) and
variance (in FIR HRF) that can be achieved by applying mechanistic grey-box modeling of
the NVU pathways [51] was not demonstrated.
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