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Dynamics of the stochastic 
chemostat with Monod-Haldane 
response function
Liang Wang1,2, Daqing Jiang1,3,5, Gail S. K. Wolkowicz2 & Donal O’Regan4,5

The stochastic chemostat model with Monod-Haldane response function is perturbed by environmental 
white noise. This model has a global positive solution. We demonstrate that there is a stationary 
distribution of the stochastic model and the system is ergodic under appropriate conditions, on the 
basis of Khasminskii’s theory on ergodicity. Sufficient criteria for extinction of the microbial population 
in the stochastic system are established. These conditions depend strongly on the Brownian motion. 
We find that even small scale white noise can promote the survival of microorganism populations, 
while large scale noise can lead to extinction. Numerical simulations are carried out to illustrate our 
theoretical results.

The chemostat, known as a continuous stir tank reactor (CSTR) in the engineering literature, is a basic piece of 
laboratory apparatus used for the continuous culture of microorganisms. It occupies a central place in mathemat-
ical ecology and has played an important role in many fields. In ecology it is often viewed as a model of simple 
lake or an ocean system. It can also model the wastewater treatment process1 or biological waste decomposition2. 
In some fermentation processes, the chemostat plays a central role in the commercial production of genetically 
altered organisms. The theoretical investigation of the dynamics of microbial interaction in the chemostat was 
initiated by Monod3 and Novick et al.4 in 1950. There is also an extensive literature on the chemostat (for exam-
ple, see refs5–11 and the references therein for recent research) concerned with the dynamics of various types of 
chemostat models.

The classic chemostat model with single species and single limiting substrate takes the form
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where S(t), x(t) stand for the concentrations of nutrient and microbial population at time t respectively; S0 denotes 
the imput concentration of nutrient and Q represents the volumetric flow rate of the mixture of nutrient and 
microorganism; the coefficient δ is the ratio of the biomass of the microbial population produced by the nutrient 
consumed. The growth rate of the microbial population is represented by the function μ(S) (μ ≤ < ∞S m( ) ), 
which is generally assumed to be non-negative. That is μ =(0) 0, μ(S) > 0 for S > 0.

Some experiments and observations indicate that not only insufficient nutrient but also excessive nutrient 
may inhibit the growth of a microbial population in the chemostat. To model such growth, Andrews12 suggested 
a non-monotonic response function:
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which is called the Monod-Haldane growth rate (inhibition rate). Parameter m is the maximum growth rate of 
the microorganism, a is the Michaelis-Menten (or half-saturation) constant. The term KS2 models the inhibitory 
effect of the substrate at high concentrations. The chemostat model with Monod-Haldane response function has 
been studied by many researchers (see e.g. Wang et al.13, Pang et al.14, Baek et al.15 and the references there in). 
Taking the non-monotone functional response into account, the chemostat model (1.1) becomes:
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System (1.3) has a trivial equilibrium point (S0, 0). It is an asymptotically stable steady node when 
>
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. In addition, there are two interior equilibria ⁎ ⁎S x( , )1 1 , 

⁎ ⁎S x( , )2 2  and ⁎S1 , ⁎S2  satisfy the equation
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It is not difficult to verify that one of the two interior equilibria is a stable nodal point and the other is a saddle 
point. In mathematical biology, when the orbits tend to the stable nodal point (S*, x*), the continuous culture of 
microorganism is considered to be successful. We refer the reader to Chen16 for more details.

System (1.3) is deterministic with parameters assumed to be constant. Environmental fluctuations are ignored, 
which, from the biological point of view, is unrealistic. Ecosystem dynamics are inevitably affected by environ-
mental noise and it is more realistic to include the effect of stochasticity rather than to study models that are 
entirely deterministic. With respect to chemostat models, even though the experimental results that are observed 
in well-controlled laboratory conditions have been shown to match closely with the prediction of deterministic 
models involving ordinary differential equations, we cannot ignore the difference that may occur in operational 
conditions. Imhof et al.17 derived a stochastic chemostat model by considering a discrete-time Markov process 
with jumps corresponding to the addition of a centered Gaussian term to the deterministic model. With the time 
step converging to zero, they reported that the stochastic model may lead to extinction in some cases in which the 
deterministic model predicts persistence. In18, Campillo et al. considered a set of stochastic chemostat models 
that are valid on different scales. Xu and Yuan19 dealt with the stochastic chemostat in which the maximal growth 
rate m is perturbed by white noise and obtained a new break-even concentration λ

∼
 which completely determines 

the persistence or extinction of the microbial population. Zhao and Yuan20 further computed the probability for 
extinction and persistence in mean of the microbial population in19 using stochastic calculus. Wang et al.21 inves-
tigated the periodic solutions for the stochastic chemostat model with periodic washout rate, on the basis of 
Khasminskii’s theory (see, ref.22 Chapter 3) for periodic Markov processes.

In this paper, the dynamical behaviour of a two-dimensional chemostat model with Monod-Haldane response 
function under stochastic perturbation is investigated. The white noise is incorporated in stochastic system (1.3) 
to model the effect of a randomly fluctuating environment. The substrate and microorganism population are usu-
ally estimated by an average value plus errors (i.e. noise intensities) which are usually normally distributed. The 
standard deviations of the errors may depend on the population sizes. Utilizing the approach used in17 to include 
stochastic effects (readers can also refer to23, Appendix A to see the construction of this kind of stochastic model), 
the stochastic chemostat model with Monod-Haldane response function takes the form:
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where B1(t), B2(t) are independent standard (i.e. with variance t) Brownian motion defined in a complete proba-
bility space  Ω ≥ P( , , { } , )t t 0 , and σ σ >, 01

2
2
2  are their intensities. Since an ODE model is never exact, but only 

an approximation of reality; adding a linear perturbation using Brownian motion (terms σ SB1 1, σ xB2 2) as in model 
(1.5) helps to determine how the dynamics can possibly change by approximating the error in the ODE model, 
and the error is normally distributed, σ σ >( 0)i i

2 , i = 1, 2 are constants that reflect the sizes of error (stochastic 
effects).

Very few other studies have appeared on the stochastic chemostat model with the Monod-Haldane functional 
response. Campillo et al.24 considered a stochastic model of the chemostat, with both non-inhibitory (Monod) 
and inhibitory (Haldane) growth functions, as a diffusion process and used a finite difference scheme to approx-
imate the solutions of the associated Fokker-Planck equation. They considered the stochastic model from a 
‘demographic noise’ point of view. Instead of using S and x in the stochastic terms in model (1.5), they used S  
and x , respectively.

In this paper, our aim is to reveal how the environmental noise affects a microbial population in the chemostat 
with Monod-Haldane response function. First, in section 2 we prove that there is a unique positive solution for 
model (1.5). Then in section 3 we show that for any initial value ∈ +S x( (0), (0)) 2 , there is a stationary distribu-
tion for system (1.5) and it is ergodic under appropriate conditions. Sufficient conditions for extinction of the 
microorganism are presented in section 4. Finally, to illustrate our main conclusions, examples and numerical 
simulations are given in section 5.
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Existence and uniqueness of the positive solution
Before investigating the dynamical behavior of system (1.5), the existence of a global positive solution is proved. 
In order to ensure the stochastic chemostat make sense, we need to show at least not only that this SDE model has 
a unique global solution but also that the solution will remain in +

2  whenever it starts from there. First we give 
the definition of a solution of stochastic differential equation (see25, Chapter 2 for more details). Throughout this 
paper, unless otherwise specified, let Ω ≥ P( , , { } , )t t 0   be a complete probability space with filtration ≥{ }t t 0  sat-
isfying the usual conditions (i.e. it is right continuous and 0  contains all P-null sets). Let 
 = ∈ > ≤ ≤+ x x for all i l{ : 0 1 }l l

i  and = …B t B t B t( ) ( ( ), , ( ))m
T

1 , t ≥ 0 be an m-dimensional Brownian 
motion defined on the space. Let =X t X( )0 0 ≤ < < ∞t T(0 )0  be an t0

-measurable l-valued random variable 
such that | | < ∞X0

2 . Let f:  × →t T[ , ]l l
0  and g:  × → ×t T[ , ]l l m

0  be both Borel measurable. Consider 
the l-dimensional stochastic differential equation of It ô  type
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with initial value X(t0) = X0. SDE (2.1) is equivalent to the following stochastic integral equation:
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Definition 2.1 An l-valued stochastic process ≤ ≤X t{ ( )}t t T0
 is called a solution of equation (2.1) if it has the fol-

lowing properties:

 (a) {X(t)} is continuous and t-adapted;
 (b) ∈f X t t t T( ( ), ) ([ , ]; )l1

0  and  ∈ ×g X t t t T( ( ), ) ([ , ]; )l m2
0 ;

 (c) equation (2.2) holds for every ∈t t T[ , ]0  with probability 1.

A solution {X(t)} is said to be unique if any other solution X t{ ( )} is indistinguishable from {X(t)}, that is

= ≤ ≤ =P X t X t for all t t T{ ( ) ( ) } 1,0

where P denotes the probability of an event.
By utilizing the methods described in25, the coefficients of the equations would be required to satisfy a local 

Lipschitz condition and a linear growth condition. However, the Haldane function μ→ =
+ +

S S( ) mS
a S KS2  is non-

linear, coefficients of system (1.5) do not satisfy the linear growth condition. Thus in this section, using the 
Lyapunov analysis method26, we prove that the solution of the system (1.5) is positive and global.

Theorem 2.1 For given initial value ∈ +S x( (0), (0)) 2 , there is a unique solution S t x t( ( ), ( )) of system (1.5) 
defined for all t ≥ 0, and the solution remains in +

2  with probability one, i.e. ∈ +S t x t( ( ), ( )) 2  for t ≥ 0 almost 
surely.

Proof: Consider the diffusion process as follows
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Since the coefficients of system (2.3) are locally Lipschitz continuous, there is a unique local solution for sys-
tem (2.3). Let S = eμ, x = eμ, Itô’s formula (given in Section 3) implies that system (1.5) has a unique local positive 
solution. Hence it suffices to prove that this unique local positive solution of system (1.5) is global.

On the basis of the discussion above, we know that there is a unique local solution (S(t), x(t)) on τ∈t [0, )e , 
where τe is the blow up time. If we can prove τe = ∞ a.s., then the solution will be global. Choose ≥n 00  big 
enough in order for S(0), x(0) to lie within the interval 





n,
n
1

0
0

. For each integer ≥n n0, define the stopping time:

τ τ= ∈ ≤ ≥ .{ }inf t S t x t
n

or S t x t n[0, ): min{ ( ), ( )} 1 max { ( ), ( )}n e

Throughout this paper, we set φ = ∞in f  (as usual, φ denotes the empty set). Clearly, τn is increasing as 
→ ∞n . Set τ τ=∞

→∞
lim

n
n, where τ τ≤∞ e a.s. If we prove that τ = ∞∞  a.s., then τ = ∞e  and ∈ +S t x t( ( ), ( )) 2  a.s. 

for all ≥t 0. In other words, to complete the proof all we need to show is that τ = ∞ . .∞ a s  If not, there exists a 
pair of constants T > 0 and ε ∈ (0, 1) such that

τ ε≤ > .∞P T{ }

Hence there is an integer n1 ≥ n0 such that
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τ ε≤ > ≥ . .P T for all n n{ } , (2 4)n 1
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where  is the generating operator of system (1.5) and
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C* is a positive constant. Therefore
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where ωΩ1 ( )n
 is the indicator function of Ωn. Letting n → ∞ leads to the contradiction that ∞ > V S x( (0), (0))

+ = ∞⁎C T . Thus we have τ∞ = ∞ a.s. ☐

Stationary distribution and ergodicity
In the study of the dynamics for stochastic systems, ergodicity is one of the most important and significant char-
acteristics. The ergodic property for chemostat implies that the stochastic model has a unique stationary distribu-
tion which predicts the survival of the microbial population in the future. In addition, the ergodic property gives 
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a reason why the integral average of a population system converges to a fixed point whilst the population system 
may fluctuate around as time goes by. Thus research on the ergodicity of population system is essential from a bio-
logical perspective (see27). In this section, before the proof of the ergodicity, several auxiliary results are derived 
for the stationary distribution. For more details, we refer the reader to28. First we introduce the multi-dimensional 
Itô formula.

Theorem 3.1 (The multi-dimensional Itô formula) (Chapter 1)25 Let X(t) be a l-dimensional It ô process on t ≥ 0 
with the stochastic differential

= +dX t f t dt g t dB t( ) ( ) ( ) ( ),

where   ∈ +f ( ; )d1  and  ∈ +
×g ( ; )d m2 . Let   ∈ × +V C ( ; )d2,1 . Then V(X(t), t) is an Itô process with the 
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Assume Y(t) is a regular time-homogeneous Markov 

Process in l (l denotes the l-dimensional Euclidean space) described by the stochastic differential equation

∑= +
.=

dY t b Y dt g Y dB t( ) ( ) ( ) ( ),
(3 2)r

l

r r
1

Brownian motion Br, r = 1, …, l are independent. The diffusion matrix is

∑λ λΛ = = .
=

y y y g y g y( ) ( ( )), ( ) ( ) ( )ij ij
r

l

r
i

r
j

1

Define the differential operator  associated with equation (3.2) by

∑ ∑ λ=
∂

∂
+

∂
∂ ∂

.
= =

b y
y

y
y y

( ) 1
2

( )
k

l

k
k k j

l

kj
k j1 , 1

2


Lemma 3.1 (Rafail Khasminskii, 2011) Assume that there exists a bounded domain ⊂U l with regular bound-
ary Γ, having the following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix Λ x( ) is 
bounded away from zero.

(B.2) If ∈x U\l , the mean time τ for the paths issuing from x to reach the set U is finite, and τ < ∞
∈

Esup
x D

x  for 

every compact subset ⊂D l. Here E means expectation.
Then the Markov process X(t) has a stationary distribution μ ⋅( ). Moreover, let f(x) be a function integrable with 

respect to the measure μ. Then the probability

∫ ∫ μ= =
→∞

P
T

f X t dt f x dx{ lim 1 ( ( )) ( ) ( )} 1,
T

T

E0 l

for all ∈x l.

Remark 3.1 The proof is given in22. To show the existence of the stationary distribution μ ⋅( ) of system (1.5), it is 
enough for us to take +

2  as the whole space. To validate (B.1), we need to prove that for any bounded domain 
⊂ +D 2 , there is a positive number M0such that Rλ ξ ξ ξ ξ∑ ≥ | | ∈ ∈= +x M x D( ) , ,i j ij i j, 1

2
0

2 2  (see29 Chapter 3, p.103 
and Rayleigh’s principle in30 Chapter 6, p.349). To validate (B.2), it is sufficient to show that there exists a neighbor-
hood U and a non-negative C2-function V(S, x) such that for any  U\l , V S x( , )  is negative (for more details see31, 
p.1163).

Definition 3.1 (Regularity, Recurrence) A Markov process X(t) is said to be regular, if for any < < ∞T0 ,

| | = ∞ = .
≤ ≤

P sup X t{ ( ) } 0
t T0

A regular process X(t) described by (3.2) with nonsingular diffusion matrix (i.e., the smallest eigenvalue of Λ(x) 
is bounded away from zero in every bounded domain in l.) is said to be recurrent if there exists a bounded domain 
U such that for all ∈x U\l ,

τ < ∞ =P{ } 1,x

where τ = > = ∈t X x X t Uinf{ 0: (0) , ( ) }x  is the hitting time of U for X(t).
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Remark 3.2 The definition of regularity and recurrence come from32. Let X(t) be a regular temporally homogeneous 
Markov process in l. If X(t) is recurrent with respect to some bounded domain U, then it is recurrent with respect to 
any nonempty domain in l. Since the existence of the positive solution for model (1.5) has been obtained by Theorem 
2.1, it is enough for us to take +

2  as the whole space.
Before proving the ergodicity, we define the notation =

∈ ∞
f f tsup ( )u

t [0, )
, =

∈ ∞
f f tinf ( )l

t [0, )
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 (symbol ∧ means choose the 

smaller one). Then for any initial value ∈ +S x( (0), (0)) 2 , there is a stationary distribution μ ⋅( ) for system (1.5) and 
the system is ergodic.

Proof: For simplicity let S, x stand for S(t), x(t), respectively. We will verify that (B.1) and (B.2) hold under condi-
tion (3.3–3.4), according to Lemma 3.1 on the existence of the stationary distribution. System (1.5) can be written 
as the following system:
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This implies that condition (B.1) is satisfied.
Next we will construct a nonnegative C2-function V(S, x) and a closed set ∈ +U 2  such that
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where R is a positive constant. This assures that condition (B.2) is satisfied.
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2
1 log0 0

0 1
0

2

From the partial derivative equation of H(S, x) we have

δ δ
σ

−
− +

+





− +
− +




 = .

.
MS MS

S Q
S S M S

MS MS
1 1

1
0

(3 5)

0
0 1

0
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We derive the unique solution S0 of (3.5) from the monotonicity property of the left part. Thus the following 
equation

σ δ
=

− +
x

M
S

MS MS11
0

has a unique solution (S0, x0) which is the minimum point of function H(S, x). Here = σ δ

− +
x M S

MS MS0 1
1 0

0
0
. Therefore 

− ≥H S x H S x( , ) ( , ) 00 0 .
Next, we define a nonnegative C2-function ⋅ ⋅V( , ):  →+ +

2  by

σ
δ

=






− − −






+


 − +



 − − .V S x M S S S S

S
x

Q
S S x S H S x( , ) log log 1

2
1 log ( , )0 0

0 1
0

2

0 0

Denote = − −V S x S S S( , ) log S
S1

0 0
0 , σ= −V S x V S x x( , ) ( , ) log2 1 1 , = − +

δ( )V S x S S x( , )
Q3
1

2
0 1 2

.
Hence

= + + − . .V S x M V V S( , ) ( log ) (3 6)2 3   

By Itô’s formula, we obtain that


δ

σ

δ
σ

δ
σ

δ
σ

=
− 





− −
+ +







+

≤ −
−

+
+ +

+

≤ −
−

+ +

≤ −
−

+ +
+ +

V S x S S
S

Q S S mSx
a S KS

S

Q S S
S

mS x
a S KS
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Q S S
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1
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1
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and

− = −
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=
+ + −

+ +

=
− + − + − − − + +

+ +
.

x Q mS
a S KS

Qa QS QKS mS
a S KS
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( log )
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Thus



δ
σ

δ
σ

δ
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≤

−
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+ +

=
+ +
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σ σ σ

σ σ σ
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1
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1
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1
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1
0 2

1
0 0

1
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2

It follows from the condition (3.3) that the discriminant of function G(S) is negative and σ− >Q QK 01 . Then 
for any ∈ ∞S (0, ), function G(S) < 0. Take = <

∈ ∞ + +
C sup 0

S

G S
a S KS(, )

( )
2

, and let λ σ=− − >C 0S
2 1

20
, then we get

 λ
δ

≤ − + .
.

V S x mS
a

x( , ) (3 7)2

0

In addition, since ≤ − +S S S S2( ) 22 0 2 02
, we have
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δ
σ σ

δ

δ δ
σ σ

δ

σ
δ

σ
δ

σ

= − − + + +

= − − − − − + +

≤ − − − − − + +
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V S x S S x
Q

S
Q

x

S S x S S x
Q

S
Q

x

Q
S S

Q
x S x S

Q

( , ) ( 1 )
2 2

( ) 1 2 ( )
2 2

(1 )( ) 1 (1
2

) 2 ,
(3 8)

3
0 2 1

2
2 2

2

2
2

0 2
2

2 0 1
2

2 2
2

2
2

1
2

0 2
2

2
2

2
0 02

1
2



and

 QS
S

Q mx
a S KS

QS
S

Q m
a

x

( logS) 1 1
2

1
2 (3 9)

0

2 1
2

0

1
2

δ
σ

δ
σ

− = − + +
+ +

+

≤− + + + .
.

Substituting (3.7–3.9) into (3.6),

 λ
δ

σ
δ

σ

δ δ
σ σ

≤ − + − − − − −

+ − + + + +

= Φ + Ψ

V S x M mS
a

x
Q

S S
Q

x

S x QS
S

Q m
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x S
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1
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1
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where

σ
σ σ

δ
σ

δ δ
λ

δ











Φ = − − − − + + +

Ψ = − − + + + − + .
.

B
S

Q
S S QS

S
Q S

Q

x
Q

x S x m
a

x M mS
a

x

( )
( ) (1 )( ) 1

2

( ) 1 (1
2

) 2 ( )
(3 10)

1
2

0 2
0

1
2

02

1
2

2
2
2

2
0 0

In view of (3.3) and (3.4), we observe that

Φ + Ψ → − ∞ → + ∞
Φ + Ψ → − ∞ → + ∞
Φ + Ψ → − ∞ → .+

S S
x x

S S

( ) , as ,
( ) , as ,

( ) , as 0

u

u

u

The above cases lead to < −V 1 , respectively. Moreover, by reviewing condition (A) we obtain

λΦ + Ψ → Φ − ≤ − → .+x M x( ) 2, as 0u u

Take ε small enough, and let ε ε= 





× 



ε ε

U , ,1 1 . Therefore

< − ∈ .V S x S x U( , ) 1, ( , ) c

According to Remark 3.1, the conditions in Lemma 3.1 are satisfied. Thus stochastic chemostat model (1.5) has a 
stationary distribution and it is ergodic. ☐

Extinction
In this section, we discuss conditions that predict the failure of the continuous culture of microorganisms both in 
the case of environmental noise is ignored and in the case of big intensities of white noises, i.e. noise may lead to 
extinction of the microorganism in the reactor.

Theorem 4.1 Let σ= +Q Q 1
2 2

2. If one of the following conditions holds
(i) ≥Q m,
(ii) <Q m, and − − + < aK Q Qm m(1 4 ) 2 02 2 .
Then for any given initial value ∈ +S x( (0), (0)) 2 , the solution S t x t( ( ), ( )) of system (1.5) satisfies

< . .
.→∞ t

x t a slimsup1 log( ( )) 0 ,
(4 1)t

which means x(t) tends to zero exponentially almost surely. In other words, the microorganisms die out with proba-
bility one.
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Proof: By Itô’s formula, we have

∫ σ σ= +




 + +

− −






+x t x mS
a S KS

Q dt B tlog ( ) log 1
2

( ),
t

0
0 2

2
2 2

and this implies that

∫ σ=




 + +

− −






. ..
→∞ →∞t

x t
t

mS r
a S r KS r

Q dr a slimsup1 log( ( )) limsup1 ( )
( ) ( )

1
2t t

t

0 2
2

Denote = −
+ +

g S Q( ) mS
a S KS2 . If (i) holds, then = < − <− − − −

+ +


  

g S Q( ) 0QKS Q m S Qa
a S KS

( )2

2 ; if (ii) holds, we 
obtain ≤ <

∈ ∞
g S g S( ) sup ( ) 0

S (0, )
. Thus we conclude that

<
.→∞ t

x tlimsup1 log( ( )) 0,
(4 2)t

that is, x(t) tends to zero exponentially with probability one,

= . .
→∞

x t a slim ( ) 0
t

The proof is complete. ☐

Remark 4.1 We refer to the condition (ii) in Theorem 4.1, which tells us that the microorganism species may die 
out when dilution rate Q and white noise are not large. While if the strength of white noise is large enough such 
that (i) holds, then the microorganism population will also become extinct, which never happens in the deter-
ministic system (1.3) without environmental perturbations. Moreover, if the dilution rate Q is big enough which 
leads to the extinction of the species in the deterministic chemostat while the noise is not big (condition (i)), the 
microorganism species in stochastic chemostat (1.5) will also die out.

From Theorem 4.1, under either condition (i) or (ii), we obtain that there is some constant λ > 0 such that

λ≤ − .
→∞ t

x tlimsup1 log( ( ))
t

That is to say, for a arbitrary small constant ε< < λ{ }0 min ,1
2 2

, there exists a positive constant ω=T T ( )1 1  and 

a set Ωε such that εΩ ≥ −εP{ } 1  and ≤ − λx tlog ( )
2

 for ≥t T1, ω ∈ Ωε. Then ≤
λ−

x t e( )
t

2 . Thus

≤ . .
→∞

x t a slimsup ( ) 0, ,
t

which together with the positive property of the solution of system (1.5) implies that

= . .
→∞

x t a slim ( ) 0,
t

Therefore the microorganism species x will go to extinction exponentially almost surely. In other words, the micro-
organism population will die out at an exponential rate with probability one.

Examples and numerical simulations
Generally, nonlinear stochastic differential equations, such as system (1.5), are usually too complex to be solved 
exactly, we can only theoretically prove the existence and uniqueness of the positive solution (see Theorem 2.1). 
In order to illustrate the analytical results in Section 3 and 4, we need to obtain approximate solutions of stochas-
tic system (1.5) with given initial values and parameter values, via numerical methods and algorithms that can be 
implemented by Matlab. Due to Brownian motion and noise terms σ SdB t( )1 1 , σ xdB t( )2 2 , we use Milstein’s higher 
order method33 to obtain the approximate solutions of stochastic chemostat model (1.5). J. Higham has showed 
the convergence of Milstein’s numerical method for stochastic differential equations (see Section 6, ref.33). We 
consider the following discretization equation in Milstein’s type to iteratively calculate the approximate solutions 
of stochastic system (1.5) in Matlab programs:

δ

σ ξ
σ
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σ ξ
σ

ξ











= +




 − −

+ +





∆
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= +



 + +

−
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where ξ i1,  and ξ i2,  are N(0, 1)-distributed independent Gaussian random variables, σ σ,1 2 are intensities of white 
noise and time increment ∆ >t 0. In this way, the approximate solutions (performance results of (5.1) from 
Matlab) will converge to the explicit solutions of stochastic system (1.5) very fast.

Example 5.1 From Theorem 3.2, we expect that under some appropriate conditions, the stochastic system (1.5) 
has a stationary distribution. Choose the initial value = . .S x( (0), (0)) (1 2, 0 8) and assume that the parameters in 
(1.5) are given by =Q 1, =m 2, =S 20 , = .a 0 2, = .K 0 3, δ = .1 6, and choose σ = .0 051 , σ = .0 12 . Hence 
conditions:

σ σ. = < = . . = < − ∧ = .G C
S

Q0 05 3 1192, 0 0025 2 0 0086,1 0 1
2

0

σ. = <
+ +

= . . = < =~Q mS

a S KS
Q1 0050 1 1765, 0 01 2 2,

0

0 02 2
2

in Theorem 3.2 are all satisfied. Then we conclude that there is a stationary distribution (see the right two sub-
graphs in Fig. 1) of the stochastic system (1.5) and it is ergodic. Numerical simulations in Fig. 1 support this 
conclusion clearly, illustrating that the standard deviation σ keeps processes S(t), x(t) moving around the solution 
of the corresponding deterministic chemostat model.

Example 5.2 To further illustrate the effect of the Brownian motion σ on the stochastic chemostat model, we keep 
all the parameters in Example 5.1 unchanged but increase intensities to σ = .0 11 , and σ = .0 22 . We compute

σ σ. = < = . . = < − ∧ = .G C
S

Q0 1 2 9942, 0 01 2 0 0156,1 0 1
2

0

Figure 1. Numerical simulations of the solutions for system (1.5) and the corresponding deterministic system 
(1.3) with main parameter Q = 1. Both S(t) and x(t) are stationary Markov processes. The subgraphs on the right 
are the density functions of the correspondng stationary distributions for low level intensity Brownian motion 
with σ σ= . = .0 05, 0 11 2 .
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σ. = <
+ +

= . . = < =~Q mS

a S KS
Q1 0200 1 1765, 0 04 2 2,

0

0 02 2
2

which means these parameter values satisfy the ergodic conditions (3.3–3.4). Figure 2 illustrates that the white 
noise still keeps processes S t( ), x t( ) moving around the solution of the deterministic chemostat model, while the 
random oscillations become stronger.

Example 5.3 In order to show how the dilution rate and the random perturbation influence the extinction of the 
microbial population in system (1.5), we choose the initial value = .S x( (0), (0)) (3, 0 5) and assume that = .Q 2 2, 
σ = .0 31 , σ = .0 42  with the other parameters unchanged. Thus

σ. = + = > = .Q Q m2 280 1
2

22
2

We therefore conclude that by Theorem 4.1 (i), the solution of (1.5) obeys

< − < . .
→∞



t
x t Q a slimsup1 log( ( )) 0 ,

t

that is, x(t) tends to zero exponentially with probability one. On the other hand, for the corresponding deter-
ministic chemostat model (1.3), condition

. = >
+ +

= .Q mS

a S KS
2 2 1 1765

0

0 02

is satisfied, so the trivial equilibrium point =S( , 0) (2, 0)0  is a stable nodal point. Therefore for these parameters, 
x t( ) in system (1.3) also dies out. Numerical simulation in Fig. 3 provides clear support.

Figure 2. Numerical simulations of the solutions for system (1.5) and the corresponding deterministic system 
(1.3). The intensity of the Brownian motion is increased to σ σ= . = .0 1, 0 21 2 . The stochastic chemostat model 
still has a stationary distribution, even though the amplitude oscillations are stronger.
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Example 5.4 We decrease the dilution rate Q to 1.6, and choose the same noises densities as that in Example 5.3, 
then

σ. = + = < = − − + = − . < .  Q Q m aK Q Qm m1 680 1
2

2, (1 4 ) 2 0 5750 02
2 2 2

Therefore, by Theorem 4.1 (ii), the solution of (1.5) obeys

< − . < . .
→∞ t

x t a slimsup1 log( ( )) 1 6798 0 ,
t

and so x t( ) tends to zero exponentially with probability one. These results are illustrated in the numerical simula-
tions in Fig. 4. We can observe from Figs 3–4 that under the same random noises, the extinction time of the 
microbial population occurs later when = .Q 1 6 than for = .Q 2 2 for both the deterministic system (1.3) and the 
stochastic system (1.5).

Example 5.5 As a comparison, we reduce the volumetric flow rate Q to .1 1, and increase the intensity of Brownian 
motion B t( )2  to σ = .1 52  with other parameters and initial value unchanged. Condition

Figure 3. The sample paths of S(t) and x(t) for system (1.5) and the corresponding deterministic system (1.3) 
with Q = 2.2. The intensity of Brownian motion is chosen to be σ σ= . = .0 3, 0 41 2 . In the second subgraph, the 
large washout rate leads to the extinction of x(t) both in the deterministic and stochastic chemostat models.

Figure 4. The sample paths of S(t) and x(t) for system (1.5) and the corresponding deterministic system (1.3) 
with Q = 1.6. For the intensity of the Brownian motion chosen to be σ σ= . = .0 3, 0 41 2 . In this case, condition 
(ii) in Theorem 4.1 is satisfied. The microorganism population dies out in both cases.
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σ. = + = > =Q Q m2 2250 1
2

22
2

of Theorem 4.1 (i) is satisfied, so the solution of system (1.5) obeys

< − < . .
→∞



t
x t Q a slimsup1 log( ( )) 0 ,

t

which means x t( ) of system (1.5) will go to extinction with probability one. Note that

. = <
+ +

= . .Q mS

a S KS
1 1 1 1765

0

0 02

In this case, the corresponding deterministic chemostat model (1.3) has only one interior positive equilibrium 
= . .⁎E (0 2715, 2 7657) and E* is a globally asymptotically stable node. The numercial simulations in Fig. 5 con-

firm the extinction of x t( ) in the stochastic system (1.5) and the stability of E* in the deterministic system (1.3), 
and it is clear that with the increasing of the intensity of white noise, the tendency for exponential extinction 
increases.

Discussion and Conclusion
Understanding the effects of environmental stochasticity on the survival of microbial populations is of theoretical 
and practical importance in population biology. In this paper we consider a stochastic chemostat model with the 
Monod-Haldane response function. We first determine when this system has a unique global positive solution. 
Then we show that the stochastic chemostat model admits a unique stationary distribution which is ergodic if 
the scale of the random perturbations is relatively small. Sufficient criteria are provided for the extinction of the 
population of microorganisms. We also find that both strong random noise and a large dilution rate can lead to 
extinction. Our conclusions are all expressed in terms of the system parameters and the intensity of the Brownian 
motion. This means that white noise can have a major impact on the survival or extinction of microorganism 
populations.

How does environmental stochasticity change the predicted outcome for the microbial population in (1.3)? 
Actually, the stochastic chemostat (1.5) has no equilibrium. The stationary distribution shows that the solutions 
of the stochastic system fluctuate in a neighborhood of the positive equilibrium of the corresponding determin-
istic system, which can be regarded as weak stability. In Theorem 3.2, we define a new dilution rate Q which is in 
terms of the original dilution rate Q and the random noise on the microbial population σ2, i.e. σ= +Q Q 1

2 2
2. For 

the parameter conditions in16 and some restrictions on the intensity of the white noise, the stochastic system (1.3) 

Figure 5. The sample paths of S(t) and x(t) for system (1.5) and its corresponding deterministic system (1.3) 
with Q = 1.1, while the intensities of Brownian motion are increased to σ σ= . = .0 3, 1 51 2 . The large scale of 
white noises cause the death for x t( ) in the stochastic chemostat model, while the deterministic one is survival.

Microbial population
Q ↓ (1), 
σ2 ↓ (0.1) Q ↓ (1.1), σ2 ↑ (1.5) Q ↑ (1.6), σ2 ↓ (0.4)

Q ↑ (2.2), 
σ2 ↓ (0.4)

Deterministic system Survival Survival Extinction (slowest) Extinction

Stochastic system Survival Extinction (fastest) Extinction (slowest) Extinction

Table 1. Effects of the dilution rate and stochasticity on the survival-extinction of the microorganism.
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has a unique stationary distribution and it is ergodic, which means the microbial population survives for all time 
regardless of the initial conditions. This result illustrates that random noise in low levels is advantageous for spe-
cies survival. In Figs 1 and 2, numerical simulations show the dynamics of model (1.5) with different σi

2, =i 1,2. 
Comparing Fig. 1 with Fig. 2 we see that with increasing σi

2, the oscillations become stronger, but both figures 
reveal that the microbial population persists and demonstrate the existence of the unique stationary 
distribution.

With increasing Q, Theorem 4.1 shows that x t( ) tends to extinction exponentially. Furthermore, it can be 
observed from Figs 3–5 that the extinction of the microbial population occurs more quickly for system (1.5) with 
σ = .1 52  than that with σ = .0 42 . However, with respect to the corresponding deterministic model, x t( ) in system 
(1.3) with = .Q 2 2 tends to extinction faster than that with = .Q 1 6. That is, if the volumetric flow rate Q is 
increased, the microbial population tends to extinction faster. Thus from the biological point of view, a 
well-controlled volumetric flow rate in the chemostat is also the key to getting a successful continuous culture of 
microorganisms.

We have already shown that if the densities of the environmental noise are small, the deterministic and sto-
chastic systems have similar dynamical behavior, both in the case of persistence and extinction. Taking the dilu-
tion rate = .Q 1 1 in system (1.3) with σ = 0i , =i 1, 2, there exists an asymptotically stable interior equilibrium. 
Increasing σ2, the stochastic trajectory x t( ) will first fluctuate around this equilibrium, then the phenomenon of 
noise-induced extinction occurs when σ2 is big enough. In this stochastic case, the microorganism tends to 
extinction exponentially even faster than in the case of large dilution rate = .Q 2 2. These results are summarized 
in the following Table 1.

To complement our theoretical result we study the global dynamics of the deterministic chemostat system 
(1.3) and the stochastic chemostat system (1.5) in cases that are not counter by our theorems. We set parametric 
values δ= . = . = = = . = .Q S m a K0 7, 2 4, 3, 1, 0 9, 1 60 . In this case, . = > = .

+ +
Q0 7 0 5753mS

a S KS

0

0 02
. Then 

according to the mathematical results in16, the deterministic chemostat model (3) has two interior equilibrium 
points, one an asymptotically stable node = . .E (0 3255, 2 0745)1  and one a saddle point = . .E (1 7281, 0 6719)2 , as 
well as one boundary equilibrium = .E (2 4, 0)0  that is also an asymptotically stable node. The topological struc-
ture of the deterministic chemostat model (1.3) in Fig. 6(a) shows that E0 and E1 are both stable. The microbial 
population will survive if and only if the orbits tend to the interior stable node E1. This means in order for the 
population to survive, we must choose appropriate initial concentrations of nutrient and microbial population. 
For the corresponding stochastic chemostat model (1.5), we set σ = .0 051 , σ = .0 052 . With the same initial con-
ditions and parameter values, Fig. 6(b) suggests that processes S t( ), x t( ) move around the trajectories of the deter-
ministic chemostat model (1.3) with small fluctuations. They have similar properties to that of the deterministic 
model. Note that the existence conditions for a stationary distribution are only sufficient, but not necessary. In 
case of = .Q 0 7, these parameters do not satisfy the hypotheses of Theorem 3.2, and so we cannot estimate 
whether the stochastic chemostat is ergodic or not. This is an open problem.

Figure 6. Vector field and trjactories of deterministic chemostat model (1.3) and the dynamical behavior of the 
stochastic chemostat model (1.5) with Q = 0.7. In this case, the parametric values do not satisfy the conditions 
in Theorem 3.2. In subgraph (a), both the boundary equilibrium E0 and the positive equilibrium E1 are locally 
stable nodes while E2 is a saddle point. Choosing the intensity of Brownian motion to be σ σ= . = .0 05, 0 051 2  
relatively small result in small fluctuations. These solution trajectories in (b) have similar properties to that of 
the deterministic model.
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For biological population models, besides white noise, there is another type of environmental noise called 
color noise, or telegraph noise. Color noise can be illustrated as a switching between two or more environmental 
regimes which differ by factors such as humidity and temperature (see e.g.32,34). For example, the growth rates of 
some species in the dry season will be much different from those in the rainy season. Color noise is utilized to 
describe this phenomenon of environmental regimes. Color noise will disturb the steady-state of a real system 
indirectly by affecting system parameters such as growth rate and death rate. This is different from the perturba-
tions of white noise that directly act on population densities (see system (1.5)). From the observation point of 
view, the random effect of Brownian motion is more visualized (for example, the irregular movement of pollen 
grains). For color noise, the switching is memoryless and the waiting time for the next switch is exponentially 
distributed. Hence the regime switching can be modelled by a continuous-time Markov chain r t( ), ≥t 0 with 
finite-state space  =  n{1, 2, , }. In view of the feasibility of varying the dilution rate in a chemostat (see5), it is 
also realistic to introduce color noise, or regime switching, into Q. Then the value of dilution rate Q r t( ( )) will 
switch according to the law of Markov chain r t( ). For bio-mathematical model, many researchers have studied the 
dynamics under both white and color noise (see27 and the references there in). If color noise is taken into account, 
then we should study the ergodic property of the stochastic chemostat with Monod-Haldane growth function and 
regime switching. The sufficient conditions for ergodicity are supposed to be  π σ π∑ < ∑∈ ∈k G( )k k k k1 0, 

  π σ π π∑ < −∑ ∧ ∑∈ ∈ ∈k Q k( ) ( );k k k k
C

S k k1
2 2

0  a n d  π σ∑ + <∈
+ +

Q k k( ( ) ( )) ,k k
mS

a S KS

1
2 2

2 0

0 02
 

 π σ π∑ < ∑∈ ∈k Q k( ) ( )k k k k2
2 , which are all expressed in terms of system parameters, the intensities of Brownian 

motion and the distribution for Markov chain, i.e. the mathematical conclusions in Theorem 3.2 should be the 
mean value on space average. While in the proof of Theorem 3.2, the key is to make sure that λ is positive, accord-
ing to condition (3.3). For stochastic system (1.5) with switching regime, it would be too difficult to find the mean 
value of λ due to the inhibitory effect. Therefore in this paper, we only introduce white noise into deterministic 
chemostat model (1.3).

Some other interesting topics deserve further investigation. Motivated by the work in5,21, one may extend our 
results to periodic solutions for the periodically forced stochastic chemostat model. One may concentrate on 
simple microbial interactions such as competitive coexistence and predation with stochasticity. We can also take 
other kinds of environmental noise into account, for example Lévy noise (see e.g.35). We leave these questions for 
future researches.
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