
NAR Genomics and Bioinformatics , 2023, 5 , 1–11 
https://doi.org/10.1093/nargab/lqad109 
Advance access publication date: 23 December 2023 
Methods Article 

Semi-r efer ence based cell type decon v olution with 

application to human metastatic cancers 

Yingying Lu 

1 , Qin M. Chen 

2 , 3 and Lingling An 

1 , 4 , 5 , * 

1 Interdisciplinary Program in Statistics and Data Science, University of Arizona, Tucson, AZ, USA 

2 College of Pharmacy, University of Arizona, Tucson, AZ, USA 

3 Cancer Biology Program, University of Arizona, Tucson, AZ, USA 

4 Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA 

5 Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA 

* To whom correspondence should be addressed. Tel: +1 520 621 1248; Email: anling@arizona.edu 

Abstract 

Bulk RNA-seq experiments, commonly used to discern gene expression changes across conditions, often neglect critical cell type-specific 
information due to their focus on average transcript abundance. Recognizing cell type contribution is crucial to understanding phenotype and 
disease v ariations. T he adv ent of single-cell RNA sequencing has allo w ed detailed e xamination of cellular heterogeneity; ho w e v er, the cost 
and analytic ca v eat prohibits such sequencing f or a large number of samples. We introduce a no v el decon v olution approach, SECRET, that 
emplo y s cell type-specific gene expression profiles from single-cell RNA-seq to accurately estimate cell type proportions from bulk RNA-seq 
dat a. Not ably, SECRET can adapt to scenarios where the cell type present in the bulk data is unrepresented in the reference, thereby offering 
increased flexibility in reference selection. SECRET has demonstrated superior accuracy compared to existing methods using synthetic data 
and has identified unknown tissue-specific cell types in real human metastatic cancers. Its versatility makes it broadly applicable across various 
human cancer studies. 

I

B  

a  

t  

d  

e  

a  

c  

s  

d  

i  

e  

d  

n  

t  

e  

s  

p  

a
 

m  

c  

r  

m  

a  

T  

t  

y  

b  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
©
T
(
o

ntroduction 

ulk RNA-seq experiments are routinely employed to char-
cterize gene expression patterns by aggregating the informa-
ion from a tissue or organ containing various cell types. Stan-
ard methods such as differentially expressed gene analysis or
QTL studies rely on a population level relationship that lever-
ges an overall gene abundance for each sample but neglects
ell type specific information ( 1 ) . Notably, cell type compo-
itions and proportions for each sample exhibit considerable
iversity. Comprehending the existence of such diversity and

nteractions between cell types is vital since these may influ-
nce variations in gene expression. For instance, individuals
iagnosed with the same disease might exhibit different phe-
otypes or drug responses, a heterogeneity potentially linked
o variations in cell type proportion or cell type-specific gene
xpression levels ( 2 ) . Investigating cell type heterogeneity is es-
ential for deeper understanding of tissue characteristics, pin-
ointing biological alterations or treatment options in disease
nd dysfunction, such as in cancers ( 2–4 ) . 

Traditional technologies such as flow cytometry or im-
unohistochemistry ( IHC ) are standard methods to capture

ell type specific information ( 5 ) . However, these techniques
equire specialized costly equipment, are labor intensive, and
ost importantly can only measure a limited number of char-

cteristics concurrently in a defined two dimensional space.
hese methods lack scalability and adaptability compared to

he current sequencing based data generation ( 6 ) . In recent
ears, single-cell RNA sequencing technologies have emerged,
ecoming increasingly popular for addressing biological ques-
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tions. Despite their potential to derive cell type information,
these methods have their own biases and limitations ( 7 ) . Pri-
marily, they necessitate highly trained laboratory technicians
and individual cell separation technologies, thereby intro-
ducing potential human errors. Second, the procedures and
equipment are expensive and time-consuming, rendering this
method unsuitable for large-scale clinical applications. Fur-
thermore, certain types of tissues are not suitable for single
cell sequencing, such as solid tissue ( 8 ) , or tightly packed stro-
mal cells. In contrast, the bulk RNA-seq studies over the past
decade have generated an abundance of datasets; and these in-
valuable resources can be utilized to investigate various medi-
cal conditions, drug effects, or time-series studies. Under most
circumstances, the biological tissues or samples used in RNA-
seq are not duplicated for laboratory experimental testing ( 9 ) .
The relatively low cost and high throughput capacity of bulk
RNA-seq exceed that of single cell RNA-seq. As a result, the
population based RNA-seq data are increasingly abundant,
supporting the importance of developing advanced methods
for determining cell type composition. 

Cell type proportion estimation, often referred to as
cell type deconvolution, can generally be divided into two
categories based on their input data: reference-based and
reference-free ( 10 ) . Reference-free methods do not require ac-
tual cell type identification as a reference, and instead di-
rectly decompose the bulk data. This approach, suffers from
a high error rate and can lead to ambiguity in subsequent cell
type annotation ( 6 ) . In contrast, reference-based methods uti-
lize information from predefined cell type expression datasets
er 11, 2023. Accepted: December 13, 2023 
enomics and Bioinformatics. 

ons Attribution-NonCommercial License 
al re-use, distribution, and reproduction in any medium, provided the 
rmissions@oup.com 

https://doi.org/10.1093/nargab/lqad109
https://orcid.org/0000-0001-8273-0776


2 NAR Genomics and Bioinformatics , 2023, Vol. 5, No. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unknown elements. 
or well-established marker genes, therefore are heavily re-
liant on the accuracy of the reference dataset. Comparative
studies evaluating these two methods have revealed that us-
ing a reference can enhance accuracy and provide meaningful
cell type explanations ( 6 ,11 ) . However, sometimes, not all cell
type information in the reference may be available or precise,
especially when predicting cell types in cancer samples due to
the ununiform nature. Utilizing healthy donors or even tumor
samples as references could overlook information about spe-
cific cancer cells or miss certain cell types due to progression
stages ( 12 ) . Further complications include that primary tumor
sites host cells with diverse genetic, epigenetic, and phenotypic
characteristics, resulting in a mixed population with different
molecular characteristics and vulnerability to treatment ( 13 ) .
When these cells metastasize, they carry this heterogeneity and
may acquire new traits that further diversify the cell popula-
tion in a metastatic tumor, allowing for adaptation to local
tissue environments. Therefore, a metastatic tumor may con-
tain a cell type not found in the primary tumor or the refer-
ence dataset, pointing to the limitation of current reference-
based methods in comprehensively capturing tumor cell
heterogeneity. 

Currently, most reference based cell type deconvolution
methods struggle to accommodate a situation where a cell
type is present in the tissue for generating the bulk data
but is absent in the reference ( 10 ) . Two published meth-
ods on cell type deconvolution, EPIC ( 14 ) and PREDE ( 10 ) ,
are capable of addressing such scenarios involving missing
cell types. EPIC encompasses a reference curated from RNA-
seq-based gene expression derived from major immune and
other non-malignant cell type. This enables the prediction of
both cancer and immune or other non-malignant cell types
from bulk gene expression data. PREDE, in contrast, can in-
fer proportions of multiple unknown cell types by solving
a Non-negative Matrix Factorization ( NMF ) model. How-
ever, both EPIC and PREDE lack references built from sin-
gle cell sequencing data, which now provide detailed and re-
liable information about cellular heterogeneity and distinct
cell type characterization. Additionally, these two methods
utilize the square error ( L2 loss ) function, which is sensitive
to outliers and less robust compared to the absolute error
( L1 loss ) . 

We propose a novel framework employing SE mi-referen C e
generated from single-cell R NA-seq data to E stimate cell T ype
proportions ( SECRET ) . This semi-reference-based method
leverages partial reference containing gene expression to esti-
mate shared cell types between bulk data and reference, while
also allowing the estimation of unknown cell type ( s ) absent
in the reference. Our method is benchmarked using synthetic
bulk samples simulated from real single-cell data, where true
cell type proportions are predefined, and further applied to
various metastatic cancers. 

Materials and methods 

Overview of SECRET 

A schematic overview of SECRET is presented in Figure 1 . SE-
CRET is built on the commonly used formulation of cell type
deconvolution: Y = CP, where Y represents expression matrix
of M genes in N samples ( 2 ,11 ) . C is the cell type expression
treated as reference data for cell type estimation. C consists of
M genes by K cell types. P is the proportions of K cell types for
N samples. P is our target to be estimated. Sometimes the C
matrix is not complete due to biological differences between 

the bulk samples and the reference samples. For example, if 
primary tumor samples are used to decompose the metastatic 
cancer samples, even with the matched patients, the cell types 
in the metastatic site are expected to be somehow different 
from the primary site due to cell type evolvement by metas- 
tasis ( 15 ) . In practical applications, it’s essential to consider 
the potential presence of unknown cell types, which may be 
specifically associated with certain tissues, when conducting 
cell type deconvolution analyses. 

Cell type proportion estimation 

Assume there are K cell types profiled from reference data, and 

for generality, we assume there is one unknown cell type con- 
tained in bulk tissue but not included in the reference data.
The primary process of SECRET seeks to find the optimal 
proportion estimation for K + 1 cell types. The objective is 
to minimize the discrepancy between the estimated bulk gene 
expression and the observed bulk gene expression ( 10 , 11 , 16 ) .
This can be solved through a weighted constrained nonlinear 
optimization for a bulk RNA-seq sample: 

min 

P 

{ 

M ∑ 

i =1 

w i ∗
∣∣∣∣∣y i −

K+1 ∑ 

k =1 

p k c ik 

∣∣∣∣∣
} 

where y i is the gene i expression, p corresponds to the pro- 
portions, comprising of K + 1 cell types. These include K cell 
types identified from single cell reference and an additional 
unknown cell type found in the bulk sample but absent in 

the reference. Particularly, for each bulk sample, p k ≥ 0 , k = 

1 , . . . , K + 1 , and 

K+1 ∑ 

1 
p k = 1 . When k = 1 , . . . , K, the term

c ik denotes the expression for gene i in cell type constructed 

from single-cell data. When k = K + 1 , the c ik represents the 
gene expression profile for the unknown cell type that needs 
to be estimated. 

SECRET adopts absolute deviation loss due to its resilience 
against outliers. The optimization involves not just minimiz- 
ing the objective function, it’s also constrained by dual condi- 
tions. These conditions ensure that each proportion is nonneg- 
ative and that the total across cell types sums up to one within 

each sample. The optimization phase utilizes the augmented 

Lagrangian method, good for its efficacy in handling non- 
linear inequality constraints. In the context of an unknown 

cell type, our algorithm initiates the process by assigning a 
zero expression profile to accommodate the initial absence 
of data. This initiation is followed by a complexed, iterative 
optimization stage, recursively fine-tuning these preliminary 
values. Throughout this stage, the model is designed to min- 
imize discrepancies between the observed bulk gene expres- 
sions and the estimations based on single-cell data. Further 
elaboration on the reference construction steps is available in 

the supplementary file. Central to this stage is the enforcement 
of two stringent constraints: each cell type proportion is non- 
negative, and the sum of proportions of all cell types, known 

and unknown, must equal one. The iterations persist until the 
algorithm converges on a solution within a predefined toler- 
ance level. By balancing mathematical rigor with biological fi- 
delity, our approach presents a reliable framework for decom- 
posing cellular compositions, even in scenarios complicated by 
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Figure 1 . Sc hematic o v ervie w of SECRE T. SECRE T uses both bulk RNA-seq and scRNA-seq as input, by solving a constraint nonlinear optimization 
problem to find a set of cell type proportions that minimize the relative error between true gene expression and estimated gene expression. 
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eight assignment 

o differentiate the contribution of each gene, we design to
ssign weight denoted by w i to the gene i ( = 1 , . . . , M ) . The
election of M genes based on such criteria. Any genes shared
etween single-cell data and bulk data that fulfill either of
he subsequent conditions will be retained: ( a ) commonly rec-
gnized cell type markers or frequently referenced markers
rom prior publications, and ( b ) differentially expressed genes
 DEGs ) . In our study, the identification of differentially ex-
ressed genes ( DEGs ) was an important component, achieved
y comparing each cell type to all others within the single-
ell data. This approach, common in the field for its efficacy
n discerning markers that define cell types, was implemented
hrough the ‘FindAllMarkers’ function inherent to the Seu-
at package ( 17 ) . The detect of DEG involved conducting a
ikelihood-ratio test ( 16 ) , focusing on genes observable in a
ertain percentage of cells across the cell types under com-
arison. We imposed a restriction in our analysis to consider
nly those genes that were present in a minimum of 25% of
ells in any of the two comparative groups, ensuring the sta-
istical significance and relevance of the genes analyzed. Be-
ond these specifications, we adhered to the default param-
ters within the function, thereby aligning our methodology
ith standard practices and enhancing the reproducibility of
ur study ( 18 ) . Notably, while some DEGs were cell type-
pecific, others served as more general markers but were no
ess integral to our analysis. 

We calculate weights for gene i as w i = 1 /F i , where F i repre-
ents the frequency of gene i occurrence between cell types. We
dentify a set of markers for each cell type, following the gene
election procedures outlined in the previous section. These
markers are not necessarily unique to a single cell type. If two
cell types are closely related, they may share similar markers.
Consequently, overlapping genes may not serve as effective
discriminators between these two cell types. The underlying
rationale for this weight assignment is that a gene differen-
tially expressed in a unique cell type should carry more infor-
mation for distinguishing that cell type from the others, com-
pared to genes differentially expressed among multiple cell
types. Therefore, the weight we assign to a gene is inversely re-
lated to its frequency of occurrence across different cell types.
For instance, if gene A is a marker for three cell types, also
referred to as a non-specific gene, and gene B, a specific gene,
which is exclusively expressed in a cell type, gene A would
be assigned a less weight than gene B. The weights for gene
A and gene B, therefore, would be 1 / 3 and 1, respectively.
This weighted scheme enables a quantifiable assessment of the
unique contribution of each gene to a cell type. 

Simulation studies 

In order to evaluate the efficacy of our proposed approach,
we conducted simulations using pseudo-bulk samples that
were derived from actual single-cell RNA-seq data of human
metastatic lung adenocarcinoma ( 19 ) . Lung cancer, character-
ized by uncontrolled cell growth in lung tissues, is among the
most common and deadly types of cancer worldwide. Its sever-
ity is exacerbated by its propensity to metastasize or spread to
other parts of the body, with the brain being one of the most
common sites of lung cancer metastasis. Brain metastases oc-
cur when cancer cells detach from the primary lung tumor and
migrate via the circulation system to the brain, where they can
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proliferate and form new, secondary tumors possessing differ-
ent characteristics from the primary lung tumor. The brain
consists of unique cell types, such as oligodendrocytes, which
are absent in the lung ( 19 ) . Hence, our simulation employed
brain metastases to construct pseudo-bulk data by summariz-
ing gene expression across all cell types and subjects. 

The generation of bulk data involved random selection of
eight brain tumors from a total of ten samples. Therefore,
when we repeat the simulation, we are able to construct a va-
riety of sample datasets to validate our algorithm. For each
tumor sample, 70% of the cells from each of the eight cell
types, myeloid cells, T / NK cells, B lymphocytes, fibroblasts,
endothelial cells, MAST cells, epithelial cells, oligodendro-
cytes, were used. By accounting for the number of cells em-
ployed for each tumor, we could ascertain cell type propor-
tions as the ground truth. Subsequently, we aggregated gene
counts from the chosen cells across all cell types to attain
mixed gene expression for each tumor sample. The single-
cell RNA-seq data used to construct the cell type reference
was derived from the same study that consist of 11 pri-
mary tumor samples and 38489 cells. The primary lung tu-
mors contained seven cell types, identical to those from the
brain site, except the oligodendrocytes - a cell type unique to
the central nervous system, inclusive of the brain and spinal
cord ( 20 ) . 

We conducted our evaluation by comparing our new
method to EPIC and PREDE across three different simula-
tion settings. In the first setting, we randomly generated a
pseudo-bulk and use SECRET to estimate its cell type compo-
sition. In the second setting, to account for inherent random-
ness in bulk data generation, we repeated the simulation ten
times using different random seeds, with no additional noise
in this scenario. Thus, each replicate may consist of a differ-
ent tumor samples and different cells from each cell type. In
the third setting, we introduced noise into the synthetic bulk
data. This noise was generated based on a normal distribution
N( 0 , a ∗ Y ) where a takes values c ( 0 , 0 . 05 , 0 . 1 , 0 . 2 , 0 . 4 )
and Y is the synthetic bulk data. To evaluate the performance,
we used the most commonly cited metrics: mean absolute
deviation ( mAD ) , avg ( | p − ˆ p | ) , root mean squared deviation

( RMSD ) , 
√ 

avg ( p − ˆ p ) 
2 
, and Pearson correlation, Cor ( p , ˆ p ) ,

where p is the vector of the true cell type proportions and 

ˆ p
is the vector of the estimated cell type proportions. 

Results 

Performance on simulated lung adenocarcinomas 

For setting 1, we utilized one replicate of SECRET estimation
to compare the estimated cell type proportions with their true
proportions, as illustrated in a scatter plot ( Figure 2 ) . The dots
align well along the 45-degree line, suggesting a strong cor-
relation between the estimated and true proportions. Upon
examining the cell type within each sample, we represented
the results as a heatmap ( Supplementary Figure S1 ). SECRET
exhibits a pattern that closely matches the true proportions,
especially excelling in detecting dominant cell types. 

For setting 2, we regenerated the pseudo-bulk data ten times
without adding any extra noise to evaluate the robustness of
SECRET. Each new bulk data set composed of varied sam-
ples and cell sets from each cell type. As illustrated in Fig-
ure 3 A, each boxplot represents the results of ten replicates
per method, with SECRET consistently outperforming EPIC
and PREDE by displaying the lowest deviance and highest 
correlation. 

For setting 3, an additional four levels of noise were applied 

to the pseudo-bulk data for one replicate to further assess the 
performance of SECRET. Figure 3 B shows that as the noise 
levels increase, the overall performance of both SECRET and 

EPIC experiences a minor decline. Across all noise levels, SE- 
CRET consistently exhibits the lowest mAD and RMSD, while 
maintaining the highest correlation coefficient (R). 

Application to breast cancer brain metastases 

Breast cancer is a leading disease in women, categorized 

into three subtypes: (i) Luminal (ER+), (ii) HER2+ and (iii) 
triple-negative, depending on the status of specific receptors 
(TNBC) ( 21 ). The aggressive metastatic form, breast can- 
cer brain metastases (BCBM), illustrates the adaptability of 
breast cancer cells to different therapeutic pressures and envi- 
ronments, influenced by estrogen receptor (ER) status ( 22 ).
BCBMs show considerable genomic and phenotypic differ- 
ences from their primary tumors, with the genomic variance 
particularly prominent across tumor subtypes ( 23 ). 

To assess the variance in cellular composition between pri- 
mary breast tumors and brain metastases, we leveraged a 
dataset derived from transcriptomics of both primary breast 
tumors and brain metastases, from each subtype of breast can- 
cer ( 23 ). For each of the cancer subtypes, ER+, HER2 + and 

TNBC, we built cell type reference using single-cell RNA- 
seq data from human primary breast tumors, comprising 11,
5 and 10 samples respectively ( 21 ). Using SECRET to decom- 
pose bulk data of both the primary breast tumor and brain 

metastases, Figure 4 shows a consistent decrease in 6 out of 10 

cell types across all subtypes, particularly CAFs cancer associ- 
ated fibroblast cells (CAFs), which significantly impact tumor 
progression from primary breast tumors. These cells promote 
tumor growth, migration, and invasion through extracellular 
matrix remodeling, growth factor secretion, and immune re- 
sponse modulation ( 24 ). Changes in the tumor microenviron- 
ment when breast cancer metastasizes to the brain could result 
in a lower proportion of CAFs ( 25 ). The brain’s microenviron- 
ment includes brain cells like neurons, astrocytes, oligoden- 
drocytes, and microglia, which are absent in primary breast 
tumors and may affect tumor growth and progression in the 
brain ( 26 ). The role of these brain cells in metastatic tumors is 
a valuable avenue for understanding the interaction of breast 
cancer cells with local environment. 

The subtypes of ER+, HER2+ and TNBC have distinct 
immune cell proportions. ER+ has fewer B-cells, T-cells,
and plasmablasts than HER2+ and TNBC, as reported ( 27–
29 ). HER2+ and TNBCs are more immunogenic, attributed 

to their higher mutation rates and increased production of 
neoantigens, drawing more immune cells ( 30 ). ER+ breast 
cancers, less immunogenic with fewer immune cells, are 
influenced by an active hormone receptor pathway, caus- 
ing immunosuppression and diminished immune infiltration 

( 31 ,32 ). 

Application to colorectal cancer liver metastases 

About 25–50% of colorectal cancer (CRC) patients develop 

metastases, often detected during the diagnosis, primarily in 

the liver ( 33 ,34 ). Utilizing bulk samples from a pilot study 
( 34 ), we examined the cell types in metastatic tumors of two 

CRC patients with liver metastases. The first patient unfor- 
tunately passed away from tumor growth despite treatment,

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad109#supplementary-data
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Figure 2. Comparison between estimated and true cell type proportion from simulation study. Each colored dot represents a cell type for a sample, 45 
degree lines indicated the same proportions between estimated and true proportion. 
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hile the second survived. The study employed a single-cell
nalysis of primary treatment-naive colorectal cancer. After
ata filtering, it incorporated 26 samples and identified nine
ain cell types ( 35 ). 
After SECRET estimation, we observed varying immune

ell responses between two distinct patients (Figure 5 A). Pa-
ient 1 displayed reduced immune cells, encompassing B cells,
 cells, innate lymphoid cells (ILCs), plasma cells, and myeloid
ells, all fundamental to immune responses ( 33 , 36 , 37 ). The re-
uced immune cell presence in patient 1 could be attributed to
mmunosuppression, a tumor-induced condition that impairs
mmune cell function and growth ( 38 ). Alternatively, immune
ell exhaustion could be another factor, diminishing the effec-
iveness of cells like T cells against tumors ( 39 ). The different
utcomes between these two patients could be partly due to
atient 1 

′ s lowered immune cell levels, possibly accelerating
ancer progression. 

To investigate whether the unidentified cell type is related
o liver tissue-specific cell types, specifically hepatocytes, we
xamined single-cell RNA-seq data from five healthy human
iver samples ( 36 ). Hepatocytes are the primary functional
ells in the liver, responsible for most of the organ’s metabolic
unctions ( 37 ). The acquired data comprises 8848 cells, span-
ing 14 different cell types. We utilized the same constrained
onlinear optimization framework of SECRET to evaluate the
ell type-specific gene expression, based on the estimated pro-
ortions derived from SECRET and the bulk data. Upon map-
ing the gene expression of this unidentified cell type for pa-
ient 1 onto the UMAP generated from liver samples (Figure
 B), the gene expression corresponding to the unknown cell
ype fell within the hepatocyte range. This finding substanti-
ted our hypothesis that this unidentified cell type is related
o the liver. Additionally, a heatmap was produced using well-
stablished hepatocyte marker genes (Figure 5 C), which re-
ealed the hepatocyte marker genes are highly expressed in
he unidentified cell type for patient 1. Similar results were
obtained for patient 2, as detailed in Supplementary Figure S2
and S3 . 

Application to pancreatic ductal adenocarcinoma 

(PD A C) 

Pancreatic ductal adenocarcinoma (PDAC), making up about
90% of all pancreatic cancers, is notorious for its early metas-
tasis and high mortality rate, particularly due to liver metasta-
sis ( 40 , 41 ). PDA C liver metastases are often immune to stan-
dard chemotherapy and radiation therapy, due to PDAC’s ag-
gressiveness, complex tumor microenvironment, and highly
treatment-resistant nature ( 42 ,43 ). Our aim was to utilize the
information derived from the primary cell types to forecast
the cell type composition in hepatic metastases and to draw
a comparison between primary and metastatic tumors. Infor-
mation regarding cell types was built from the primary tis-
sue ( 44 ), comprising 24 samples and 9 distinct cell types. We
downloaded the bulk data of 13 primary and 14 metastatic
tumors from a previous study ( 45 ). Through the implementa-
tion of cell type deconvolution using the SECRET algorithm,
we noted a contrasting pattern of change between acinar cells
and stellate cells (Figure 6 A). Pancreatic acinar cells, unique to
the pancreas, were unsurprisingly not estimated at metastatic
sites ( 46 ), whereas stellate cells, pivotal in the development of
liver fibrosis were present ( 47 ). A dominant, unidentified cell
type was estimated in liver metastasis, exhibiting a strong cor-
relation with stellate cells and B cells (Figure 6 B). Interactions
were found with certain liver-related cell types, such as hep-
atocytes, which are known to interact with stellate cells, par-
ticularly in the context of liver injury or disease ( 48 ). To test
our hypothesis, we mapped this unidentified cell type onto the
scRNA-seq derived from healthy liver samples ( 36 ). The sub-
sequent UMAP visualization ( Supplementary Figure S4 ) sug-
gested a relationship between this unidentified cell type and
hepatocytes. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad109#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad109#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad109#supplementary-data
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Figure 3. Simulation performance. ( A ) Boxplot comparing the performances of SECRET, EPIC and PREDE when one cell type is unidentified. ( B ) 
Assessment f or v arious noise le v els. T he x-axis represents noise le v els, and the y -axis signifies the values corresponding to each e v aluation metric. Each 
panel illustrates a distinct e v aluation outcome. Results obtained from SECRET, EPIC and PREDE are represented by colored lines in red, green, and blue 
respectiv ely. L o w er v alues are desirable f or metrics lik e mAD and RMSD, while a higher v alue is preferable f or the correlation coefficient, denoted as R. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We analyzed the high-expressed genes in the unknown cell
type with Gene Ontology for biological process, cellular com-
ponent, and molecular function (Figure 6 C). In pancreatic
ductal adenocarcinoma (PDAC) liver metastases, Gene On-
tology shows increased inflammatory responses, metabolic
shifts, and enzyme regulation, all contributing to cancer cell
survival and growth ( 49 ). Cellular components like blood
microparticles, collagen-rich extracellular matrix, and high-
density lipoprotein particles indicate environmental changes
tied to metastasis ( 50 ). Altered binding activity and peptidase
function suggest proteolytic changes involved in metastasis
( 51 ). These findings highlight the interaction of inflammation,
metabolic adaptation, and matrix remodeling in PDAC liver
metastases. 

Discussion 

Cellular deconvolution of bulk RNA-seq data represents a re-
search domain with intense interest. In this field, researchers
are exploring new methods, including deep learning algo- 
rithms ( 52 ,53 ) and Bayesian modeling ( 54 ), to better under- 
stand cell compositions from RNA-seq data. These methods 
are becoming popular because they can analyze complex bi- 
ological data more effectively. For instance, deep learning 
uses artificial neural networks to study large datasets and 

find patterns related to different cell types. Likewise, Bayesian 

methods utilize probability to estimate cell compositions, in- 
corporating uncertainties and leveraging existing knowledge 
to enhance the precision of their findings. Furthermore, we 
conducted an additional comparison, including a Bayesian 

method called BayICE ( 54 ), and the results demonstrate that 
our proposed method continues to outperform all other ap- 
proaches ( Supplementary Figure S5 ). Yet, relatively few algo- 
rithms have been developed that can effectively manage cell 
types not present in the reference dataset. Although reference- 
free methodologies may have the potential to tackle unknown 

cell types, they encounter with challenges related to cell type 
identification in the absence of prior knowledge. Despite these 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad109#supplementary-data
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Figure 4. Cell type proportion inferred by SECRET for breast tumors and brain met ast ases within each breast cancer subtype. 
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Figure 5. Cell type estimation results for colorectal cancer liver metastases. ( A ) Estimated proportion for each cell types for two patients. ( B ) An 
unknown cell type for patient1 is plotted against the single-cell RNA-seq data from five liver samples. The positioning suggests a strong relation 
between the unknown cell type with hepatocytes. ( C ) Heatmap of scaled estimated gene expression for hepatocyte markers in both the referenced cell 
types and the unknown type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
limitations, reference-based methodologies continue to be a
favored approach. Our newly proposed algorithm, SECRET,
optimally fuses the advantages of both reference-based and
reference-free methodologies. This method employs single-cell
RNA-seq data to guide the cellular deconvolution process,
providing identifications for expected cell types. Importantly,
SECRET also makes allowances for unknown cell types not
represented in the reference data, achieved by adjusting algo-
rithmic parameters. 

Simulation studies have underscored the superior perfor-
mance of SECRET, particularly in scenarios with the presence
of unknown cell types. In the context of various metastatic
cancer datasets, single-cell studies have indicated significant
variations in the cellular composition between primary tumor
sites and metastatic locations. Moreover, SECRET’s scalabil-
ity and efficiency are assured. In both simulations and real
data applications, we utilized a range of 8 to 10 cell types,
demonstrating its capability to scale to a larger number of cell 
types. In contrast, EPIC and PREDE limited their methods to 

datasets containing 3–5 cell types. Beyond its scalability, SE- 
CRET stands out for its operational efficiency. Our compari- 
son with well-known methods like EPIC and PREDE, detailed 

in our supplementary table, shows that SECRET performs bet- 
ter. It not only gives the most accurate results, aligning closely 
with the actual proportions, but it also does this faster than 

the others, having the shortest processing time. This combi- 
nation of precision and expedited data processing establishes 
SECRET as an invaluable tool for applications that require 
rapid and reliable insights. By utilizing SECRET, we success- 
fully identified an unknown cell type, correlating it with tissue- 
specific cells, underscoring the algorithm’s vast potential for a 
wide range of biological and clinical applications. 
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Figure 6. Results for pancreatic ductal adenocarcinoma (PD A C) liver met ast ases. ( A ) Estimated cell type proportions of both primary and metastatic 
tumors from SECRET. ( B ) Correlations between cell type proportions for liver met ast ases. ( C ) Top GO terms based on the highly expressed genes from 

unknown cell type. 
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ata availability 

ll datasets used in this study are publicly available. The sin-
le cell RNA-seq of lung adenocarcinoma can be accessed
sing code GSE131907. The bulk and scRNA-seq of BCBM
ave access code GSE184869 and GSE176078. The bulk and
cRNA-seq of Colorectal Cancer Liver Metastases have ac-
ess code GSE162960 and GSE178341. The bulk data of
DAC have accession number GSE151580 and the corre-
ponding scRNA-seq can be found in the Genome Sequence
rchive under project PRJCA001063. An R package has
een developed to implement SECRET available from Zen-
do https:// doi.org/ 10.5281/ zenodo.8157419 and GitHub at
ttps:// github.com/ anlingUA/ SECRET . 
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