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Transitions in DNA structure have the capacity to regulate genes, but have been poorly characterised in eukary-
otes due to a lack of appropriate techniques. One important example is DNA supercoiling, which can directly reg-
ulate transcription initiation, elongation and coordinated expression of neighbouring genes. DNA supercoiling is
the over- or under-winding of the DNA double helix, which occurs as a consequence of polymerase activity and is
modulated by topoisomerase activity [5]. To map the distribution of DNA supercoiling in nuclei, we developed
biotinylated 4,5,8-trimethylpsoralen (bTMP) pull-down to preferentially enrich for under-wound DNA. Here
we describe in detail the experimental design, quality controls and analyses associated with the study by
Naughton et al. [13] that characterised for the first time the large-scale distribution of DNA supercoiling in
human cells (GEO: GSE43488 and GSE43450).

© 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Experimental design, materials and methods

Experimental design

Our approach to mapping unrestrained DNA supercoiling utilises the
preferential intercalation of TMP into under-wound DNA helices [2,16].
Using a biotin tagged TMP molecule (bTMP) [14] we are able to enrich
for TMP bound DNA by streptavidin pull-down and identify the relative
en access article under the CC BY-NC
supercoiling across genomic loci byqPCR andmicroarray analysis. Anum-
ber of previous studies have compared TMP binding in the presence and
absence of transcription and topoisomerase inhibitors to identify transi-
tions in unrestrained DNA supercoiling at promoters and over more ex-
tensive regions [1,2,5,7,9–12]. However, these studies were unable to
adequately compare the distribution of unrestrained DNA
supercoiling within samples, as they lack a suitable control for ob-
served TMP bias associated with sequence and chromatin struc-
ture [3,8,17]. In our experiments we have more thoroughly
controlled for the binding and distribution of the bTMP molecule,
using a bTMP pull-down of sonicated genomic DNA and in cells
treated with the nicking agent bleomycin which relieves DNA su-
percoils. These bTMP binding controls are essential to understand
the relative distribution of DNA supercoiling in vivo as they give a
base-line bTMP distribution independent of sequence/chromatin
preference. In our experiments bTMP distribution in bleomycin
treated cells and genomic DNA are comparable and they can be
used interchangeably as the base-level distribution of bTMP
binding.

To characterise the distribution of DNA supercoiling in nuclei, the
base-line bTMP distribution (log2(bTMP genomic/input)) is subtracted
from the bTMP distribution of untreated cells (log2(bTMP control/
input)) or cells treated with transcription and/or topoisomerase inhibi-
tors (log2(bTMP inhibitor/input)). In untreated cells this bTMP distribu-
tion reflects the steady-state distribution of unrestrained DNA
supercoiling in the human genome, with regions of relative under- and
over-winding observed over large domains and around gene promoters
[13]. Changes in DNA supercoiling after treatment with transcription or
topoisomerase inhibitors highlight the dynamic nature of the transitions
in DNA structure.
-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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bTMP pull down data

Retinal pigmented epithelial (RPE1) cells with an almost normal
human karyotype are incubated in the dark with bTMP (500 μg/ml)
followed by 10 minute UV exposure (365 nm) to photo-cross-link
bTMP to the DNA in vivo. The DNA is then purified from cells and the in-
corporation of bTMP confirmed by dotblot using an anti-streptavidin-
HRP antibody. A standard ChIP protocol is then used to isolate bTMP
bound DNA, followed by whole genome amplification of sample/input
DNA and random prime labelling with Cy5 or Cy3 for microarray
hybridisation.

We use customAgilent arrays andNimblegen 2.1Mpromoter arrays
according to standard manufacturer's protocols. Microarray samples
from Naughton et al. [13] are deposited in GEO under accession num-
bers GSE43448 and GSE43450.
Quality control and normalisation

Microarray text files are read, pre-processed and normalised using
the RINGO Bioconductor package in R [18]. Arrays are checked for a uni-
form hybridisation pattern and the signal intensities are compared
across arrays to ensure similarity within fluorophore types (Fig. 1). In
rare cases arrays show scratches, drying marks and other artefacts
that result in them being discarded from subsequent analyses
(Fig. 1a). Furthermore, if the observed signal intensity of the pre-
normalised arrays has a non-normal distribution for one/both of the
fluorophores then this represents a systematic technical bias and
these arrays are discarded.
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Fig. 1. Quality control and data normalisation. a) Establishing the array scan quality. Signal dist
including scratches (right hand panel), drying marks, dust particles, etc. b) Intra- and inter-ar
intensity bias is corrected for by VSN normalisation. MA plot displaying the observed signal r
(a) ((log(R) + log(G))/2) for a single microarray. R is red and G is green.
In addition to technical problems that prevent the interpretation of
microarray data there are inherent biases that can be corrected for
through data normalisation [15]. The difference in signal intensity be-
tween Cy3 and Cy5 for a single array (intra-array variation) and be-
tween individual fluorophores across arrays (inter-array variation)
must be accounted for in order to interpret changes in signal intensity
between experiments (Fig. 1b pre-normalisation). Additionally, there
is a signal intensity bias that is universal to microarray experiments in
which the observed signal intensity ratio (M) varies with the average
signal intensity ratio (A) (Fig. 1c pre-normalisation). To correct these
biases, normalisation is performed using a variance stabilising algo-
rithm (VSN) from the Limmapackage [4] (Fig. 1b and c post vsnnormal-
isation). Other normalisation procedures, such as a sequential loess and
scale normalisation, give almost identical results in the final analyses
(data not shown).

To correct for DNA supercoiling independent differences in bTMP
binding across array samples, the base-line bTMP bound to genomic
DNA is subtracted from bTMP bound in cells. This quantitative measure
of bTMP binding allows the comparison of DNA supercoiling across loci
in vivo, with positive number showing an enrichment of under-wound
DNA and negative numbers showing a depletion of under-wound DNA.
All subsequent analysis is performed on the mean of this corrected
dataset from duplicate experiments for each experimental condition.
Data analysis

The relative distribution of under-wound DNA in each experimental
condition is visualised using the ‘zoo’ package in R [19]. The ‘zoo’ data
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atio (M) (log2(R)/log2(G)) against the average signal intensity of the two fluorophores



Fig. 2. Identification and classification of DNA supercoil domains. a) Data smoothing demarcatesDNA supercoiling domains. Plot of control DNA supercoiling corrected for bTMPbinding to
genomic DNA smoothed using an 11 probe, 31 probe or 101 probe rollingmedian. b) An edgefilter identifies DNA supercoil domain boundaries. Output of the edge filter (black) identifies
peak differences in log2(bTMP control cells/input)− log2(bTMP amanitin treated cells/input) between adjacent 300 probe (~30 kb) windows. The cut-off of 0.2 is used to identify major
peaks. The boundaries (broken red lines) correspondwellwith the smoothed control (‘Con’) and amanitin treated (‘Am’) DNA supercoil distributions. Eachdomain is assigned a type based
on whether control is more under-wound, more over-wound or is stable when compared to the alpha amanitin treated DNA supercoil distribution.
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structure forms an ordered index of observations that is ideal for pro-
cessing tiled genomic data. Using ‘plot’ to view the ordered distribution
of DNA supercoiling across whole loci, domain-scale enrichments and
depletions of under-wound DNA are identified. This distribution is clar-
ified by smoothing using the ‘rollingMedian’ function with a window
size of 11, 31 and 101 probes (Fig. 2a). DNA supercoil distribution fig-
ures are plotted with a 101 probe smoothing (~10 kb) to demarcate
supercoiling domains [13], but it is vital that subsequent analysis is
not performed on heavily smoothed data to avoid a loss of resolution.

To further characterise supercoiling domains observed in the
smoothed data a custom edge filter was designed based on Guelen
et al. [6]. Smoothed data frombTMPpull-down experiments on untreat-
ed cells (‘Con’) and cells treated with the transcription inhibitor α-
amanitin (‘Am) identify consistent domain boundaries, with substantial
changes to the distribution of DNA supercoilingwithin these boundaries
(Fig. 2b). Therefore, edges were defined based on the difference be-
tween ‘Con’ and ‘Am’ DNA supercoil distribution. To define the bound-
aries a comparison was made for 300 probes up- and down-stream of
each probe across a locus, and a cut-off set that matches the most dis-
tinct supercoil boundaries (Fig. 2b). To avoid edge effects the 300 probes
at the start and end of a locus are removed. In the supercoiling data ob-
tained from Agilent arrays, as presented in Naughton et al. [13], the cut-
off was set at 0.2 which captures the most prominent domain bound-
aries (Fig. 2b). In addition this cut-off identifies a number of very narrow
boundaries (b2000 bp) which appear to correspond to CpG islands (not
shown). These boundaries show no relationship to DNA supercoil do-
mains and are removed for subsequent analyses. Therefore, using the
edge filter under these conditions 90 domains are identified in
11.9 Mb of Agilent array data and 607 domains are identified across
chromosome 11 (135 Mb). Domains are then classified based on the
mean change in DNA supercoiling upon transcription inhibition into
under-wound (N0.5), over-wound (b−0.5) and stable (−0.5 to 0.5)
(Fig. 2b). This classification allows for a direct comparison of regions
of the genome with similar DNA supercoil properties in our RPE1 cell-
line. Importantly, when repeating these experiments in a new cell line
or on a new array platform it is essential to re-calibrate the cut-offs
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used to define supercoiling domains and their boundaries through care-
ful observation of the underlying data.
Discussion

We describe here a method for mapping DNA supercoiling in vivo
through an analysis of bTMP distribution by microarray. By properly
controlling for the complex and poorly characterised sequence prefer-
ence of bTMP using genomic DNA and bleomycin controls, our method
can compare the distribution of unrestrained DNA supercoilingwithin a
sample. Using this technique we have identified that ~100 kb DNA
supercoiling domains exist in human cells, which are modulated by
transcription and topoisomerase activity [13]. In future work the
bTMP pull-down technique will be used to further probe the distribu-
tion and function of DNA supercoiling in genome structure and
regulation.
Acknowledgements

This work was funded by the Wellcome Trust 078219/Z/05/Z (N.G.)
and Breakthrough Breast Cancer (N.G.). N.G. is a recipient of a UK
Medical Research Council senior fellowship (MR/J00913X/1).
References

[1] L. Anders, M.G. Guenther, J. Qi, Z.P. Fan, J.J. Marineau, P.B. Rahl, J. Lovén, A.A. Sigova,
W.B. Smith, T.I. Lee, et al., Genome-wide localization of small molecules. Nat.
Biotechnol. 32 (2014) 92–96.

[2] I. Bermúdez, J. García-Martínez, J.E. Pérez-Ortín, J. Roca, A method for genome-wide
analysis of DNA helical tension by means of psoralen–DNA photobinding. Nucleic
Acids Res. 38 (2010) e182.

[3] T. Cech, M.L. Pardue, Cross-linking of DNA with trimethylpsoralen is a probe for
chromatin structure. Cell 11 (1977) 631–640.
[4] R. Gentleman, R.A. Irizarry, V.J. Carey, S. Dudoit, W. Huber, Bioinformatics and Com-
putational Biology Solutions Using R and Bioconductor. Springer Science+Business
Media, New York, 2005.

[5] N. Gilbert, J. Allan, Supercoiling in DNA and chromatin. Curr. Opin. Genet. Dev. 25C
(2013) 15–21.

[6] L. Guelen, L. Pagie, E. Brasset, W.Meuleman, M.B. Faza,W. Talhout, B.H. Eussen, A. De
Klein, L. Wessels, W. De Laat, et al., Domain organization of human chromosomes
revealed by mapping of nuclear lamina interactions. Nature 453 (2008) 948–951.

[7] E.R. Jupe, R.R. Sinden, I.L. Cartwright, Stably maintained microdomain of localized
unrestrained supercoiling at a Drosophila heat shock gene locus. EMBO J. 12
(1993) 1067–1075.

[8] D. Kanne, K. Straub, H. Rapoport, J.E. Hearst, Psoralen–deoxyribonucleic acid photo-
reaction. Characterization of the monoaddition products from 8-methoxypsoralen
and 4,5′8-trimethylpsoralen. Biochemistry 21 (1982) 861–871.

[9] F. Kouzine, A. Gupta, L. Baranello, D. Wojtowicz, K. Ben-Aissa, J. Liu, T.M. Przytycka,
D. Levens, Transcription-dependent dynamic supercoiling is a short-range genomic
force. Nat. Struct. Mol. Biol. 20 (2013) 396–403.

[10] M. Ljungman, P.C. Hanawalt, Localized torsional tension in the DNA of human cells.
Proc. Natl. Acad. Sci. U. S. A. 89 (1992) 6055–6059.

[11] M. Ljungman, P.C. Hanawalt, Presence of negative torsional tension in the promoter
region of the transcriptionally poised dihydrofolate reductase gene in vivo. Nucleic
Acids Res. 23 (1995) 1782–1789.

[12] K. Matsumoto, S. Hirose, Visualization of unconstrained negative supercoils of DNA
on polytene chromosomes of Drosophila. J. Cell Sci. 117 (2004) 3797–3805.

[13] C. Naughton, N. Avlonitis, S. Corless, J.G. Prendergast, I.K. Mati, P.P. Eijk, S.L. Cockroft,
M. Bradley, B. Ylstra, N. Gilbert, Transcription forms and remodels supercoiling do-
mains unfolding large-scale chromatin structures. Nat. Struct. Mol. Biol. 20 (2013)
387–395.

[14] W.A. Saffran, J.T. Welsh, R.M. Knobler, F.P. Gasparro, C.R. Cantor, R.L. Edelson, Prep-
aration and characterization of biotinylated psoralen. Nucleic Acids Res. 16 (1988)
7221–7231.

[15] M. Siebert, M. Lidschreiber, H. Hartmann, J. Soding, A Guideline for ChIP—ChIP Data
Quality Control and Normalization (PROT 47). 2009.

[16] R.R. Sinden, J.O. Carlson, D.E. Pettijohn, Torsional tension in the DNA double helix
measured with trimethylpsoralen in living E. coli cells: analogous measurements
in insect and human cells. Cell 21 (1980) 773–783.

[17] P.S. Song, C.N. Ou, Labeling of nucleic acids with psoralens. Ann. N. Y. Acad. Sci. 346
(1980) 355–367.

[18] J. Toedling, O. Skylar, O. Sklyar, T. Krueger, J.J. Fischer, S. Sperling, W. Huber, Ringo—
an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinform. 8
(2007) 221.

[19] A. Zeileis, G. Grothendieck, zoo: S3 infrastructure for regular and irregular time
series. J. Stat. Softw. 14 (2005) 1–27.

http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0005
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0005
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0005
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0010
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0010
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0010
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0015
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0015
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0020
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0020
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0020
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0025
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0025
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0030
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0030
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0030
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0035
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0035
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0035
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0040
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0040
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0040
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0045
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0045
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0045
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0050
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0050
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0055
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0055
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0055
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0060
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0060
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0065
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0065
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0065
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0065
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0070
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0070
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0070
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0075
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0075
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0080
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0080
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0080
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0085
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0085
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0090
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0090
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0090
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0095
http://refhub.elsevier.com/S2213-5960(14)00065-8/rf0095

	Profiling DNA supercoiling domains in vivo
	Direct link to deposited data
	Experimental design, materials and methods
	Experimental design
	bTMP pull down data
	Quality control and normalisation
	Data analysis

	Discussion
	Acknowledgements
	References


