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H I G H L I G H T S  

• CT texture analysis can aid to predict an unsuccessful biopsy result. 
• The prediction model reached an AUC of 0.80. 
• Relevant biopsy results are identified between osteolytic and osteoblastic lesions.  
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A B S T R A C T   

Texture analysis can provide new imaging-based biomarkers. Texture analysis derived from computed tomog-
raphy (CT) might be able to better characterize patients undergoing CT-guided percutaneous bone biopsy. The 
present study evaluated this and correlated texture features with bioptic outcome in patients undergoing CT- 
guided bone biopsy. Overall, 123 patients (89 female patients, 72.4 %) were included into the present study. 
All patients underwent CT-guided percutaneous bone biopsy with an 11 Gauge coaxial needle. Clinical param-
eters and quantitative imaging features were investigated. Random forest classifier was used to predict a positive 
biopsy result. Overall, 69 patients had osteolytic metastasis (56.1 %) and 54 had osteoblastic metastasis (43.9 %). 
The overall positive biopsy rate was 72 %. The developed radiomics model demonstrated a prediction accuracy 
of a positive biopsy result with an AUC of 0.75 [95 %CI 0.65 – 0.85]. In a subgroup of breast cancer patients, the 
model achieved an AUC of 0.85 [95 %CI 0.73 – 0.96]. In the subgroup of non-breast cancer patients, the 
signature achieved an AUC of 0.80 [95 %CI 0.60 – 0.99]. Quantitative CT imaging findings comprised of con-
ventional and texture features can aid to predict the bioptic result of CT-guided bone biopsies. The developed 
radiomics signature aids in clinical decision-making, and could identify patients at risk for a negative biopsy.   

1. Introduction 

Adequate histologic tissue sampling is of great importance in onco-
logical patients [1,2]. At the present, computed tomography (CT)- 
guided percutaneous core needle biopsy (CNB) has widely been estab-
lished as the standard for sampling and assessing suspected bone 
metastasis [3–6], as CT guidance is beneficial in both reducing 

accidental trauma to adjacent organs and neurovascular structures, as 
well as in the confirmation of correct regional sampling [7,8]. 

The current literature states conflicting results of the diagnostic yield 
achieved by CT-guided percutaneous CNB of a suspected bone lesion, 
with estimates ranging between 69–87.4 % [4,5,9], mainly depending 
on lesion characteristics such as presence and degree of sclerosis as well 
as the lesion diameter. Moreover, the biopsy outcome for lytic lesions is 
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better investigated and was superior compared to osteoblastic lesions 
[5,11,12]. 

In the clinical setting, adequate bioptic targeting of sclerotic lesions 
present a challenging task because of the increased likelihood of nega-
tive results and the often-minuscule yield of malignant cells, which may 
additionally prevent a further in-depth histopathological characteriza-
tion of the probe [1,5,13]. This is noteworthy, as up to half of the pa-
tients with highly prevalent cancers, such as prostate and breast cancer, 
present exclusively with skeletal manifestations of the disease, which 
could impose difficulties for diagnosis [14–16]. Therefore, acquiring 
viable histological proof of malignancy is of critical importance and 
correct localization for tissue sampling could enhance the outcome of 
the biopsy. Up to now, few investigations have addressed possible 
influencing factors between both interventional as well as lesion char-
acteristics and diagnostic yield [4,5,11]. Lytic lesions, larger lesions and 
longer specimens are relevant factors for a positive biopsy outcome [11]. 

With the emergence of texture analysis research, novel biomarkers 
derived from radiological images can be used for additional quantitative 
image assessment [17–22]. Various texture analysis applications have 
been described in the literature, with its main focus being centered on 
further enhancing oncological decision-making [17–23]. Different 
spatial characteristics were used for better discrimination purposes, 
treatment prediction, and prognosis stratification in several tumor en-
tities. In short, texture analysis derived from radiological images can 
provide quantitative information beyond the radiologist’s clinical 
observation scope. This could be of great clinical importance to further 
analyze the preinterventional images and to stratify patients, who could 
benefit from the CT-guided intervention and those, who could not. 

However, to date, no study has investigated the diagnostic potential 
of texture analysis to predict the outcome of bone biopsies. 

In light of the critical importance of identifying malignant bone le-
sions not only in the initial diagnosis of a disease but also in the treat-
ment and follow-up of patients, texture analysis of potential biopsy sides 
seems of particular clinical interest and relevance. Quantitative imaging 
should aid in the complex clinical decision-making process in patients 
with possible bone metastasis. 

Therefore, the purpose of the present study was to investigate 
whether CT-derived texture analysis parameters, as well as interven-
tional and lesion characteristics, can improve the diagnostic perfor-
mance for bone biopsy sampling. 

2. Material and methods 

2.1. Patient acquisition 

This retrospective study was approved by the institutional review 
board (University hospital of Leipzig, register no. 344–2007). 

All patients with a CT-guided bone biopsy were retrospectively 
assessed within the period 2018 to 2022. Inclusion criteria were avail-
able CT images, sufficient histopathology results, and detectable lesion 
on CT images. Exclusion criteria were severe imaging artifacts, e.g. due 
to metal implants. 

Overall, 123 patients (89 female patients, 72.4 %) were included into 
the present study. The median age at the time of CT acquisition was 65.6 
years (IQR 20 years), ranging from 37 to 91 years. The primary tumors 
were comprised of 70 patients with breast cancer (56.9 %), followed by 
8 patients with lung cancer (6.5 %) and 7 patients with prostate cancer 
(5.9 %). Other primary cancers were rare. 73 lesions were located within 
the pelvis (59.3 %), followed by 43 lesions were located within the spine 
(35.0) and 7 lesions within the sternum (5.7 %). 

2.2. Interventional procedure 

Written informed consent for CT-guided biopsy was obtained from 
each patient before the intervention. The biopsies were performed by 
five interventional radiologists having more than five years of 

experience in interventional radiology. Pre-procedure complete blood 
count and coagulation profile were obtained. The biopsy was performed 
with platelet count of at least 50.000/mm3, prothrombin time > 50 %, 
and partial thromboplastin time ≤ 1.5 times. The alkaline phosphatase 
(AP) and lactate dehydrogenase (LDH) were extracted from the last 
blood sample before biopsy. 

Before beginning the procedure, the interventional strategy, espe-
cially the patient’s position and biopsy pathway were planned using pre- 
biopsy CT images. The intervention was started with skin disinfection, 
and subcutaneous local anesthesia advanced toward the planned 
pathway using 10–20 ml lidocaine 1 % (Xylocitin, Jenapharm, Ger-
many). The biopsy was performed using a coaxial 11 Gauge biopsy 
system. The corticalis penetration was performed manually and then an 
automatic driller was used to guide and penetrate the needle throughout 
the suspicious bone lesion. Procedural CT acquisitions were measured to 
assess whether the needle tip properly reached the target lesion. After 
needle removal, post-biopsy CT images were acquired to detect com-
plications, especially hematoma. 

2.3. Imaging technique 

All CT-guided bone biopsies were performed on the same 16-slice CT 
scanner (Brilliance Big Bore, Philips, Hamburg, Germany). Typical im-
aging parameters were: 100 kVp; 125 mAs; slice thickness, 1 mm; pitch, 
0.9. CT scanner. A conventional CT scan of the region of interest without 
contrast media application was obtained prior to the intervention and 
was used to plan the best way to access the lesion. 

2.4. Conventional imaging analysis 

Osteolytic metastasis was defined as a structural hypodense defect 
within the bone, either with a clear or irregular border. Osteoblastic 
metastasis was defined as a hyperdense lesion of the bone ranging from 
slight hyperdense to strong hyperdense. 

The biopsy tract’s needle length, angle, and HU units were measured 
on the pre-interventional planning CT scan. Biopsy tract distance was 
obtained by assessing the tract’s distance upon entering the patient’s 
skin to the deepest osseus penetration of the biopsy needle. In addition, 
the distance between the cortical entrance of the biopsy needle till the 
deepest osseous penetration along the biopsied path was obtained. 
Furthermore, the osseous biopsy tracts HU were determined by drawing 
a region of interest (ROI) on the pre-interventional scan along the path 
of the biopsy tract as determined by the following interventional CT 
scans. As reported by Donners et al., a cut-off value of 610 HU can be 
used to predict osteoblastic lesions with a worse biopsy outcome [24]. 
This threshold value was used to divide the osteoblastic lesions. 

The angle was measured by using the deepest osseous needle pene-
tration as the vertex, the biopsy tract as one arm of the angle, and the 
shortest channel perpendicular to the plane of the skin as the other arm. 

2.5. Texture analysis 

CT images analyzed with the texture analysis software MaZda 
(version 4.7, available at http://www.eletel.p.lodz.pl/mazda/) [25,26]. 
A polygonal ROI was placed on the largest representative slide of the 
bone metastasis on the largest, proximal position. The ROI was clearly 
drawn in accordance to the following biopsy tract of the biopsy needle. 
The measurements were performed in a blinded manner to the clinical 
results by a resident of radiology with four years of general experience 
(J.L.) For each ROI, gray-level (µ) normalization was performed, using 
the limitation of dynamics to μ ± 3 standard deviations to minimize the 
influence of contrast and brightness variation, as it was performed in 
similar studies utilizing texture analysis [27]. 

Altogether, 279 first and second order texture features were 
retrieved for every patient. The robustness of the texture feature 
extraction for MaZda was demonstrated previously and was comparable 
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to the extraction performed by PyRadiomics [28]. The performed 
analysis therefore adheres to the proposed Image Biomarker Stand-
ardisation Initiative [29]. 

Fig. 1 displays a representative case of the patient sample for illus-
tration purposes. 

2.6. Texture feature cleansing and selection 

A Spearman’s correlation matrix analysis was performed using R 
(version 3.5.1) to reduce possible multicollinearity. Firstly, highly 
correlated texture features with correlation coefficient larger than r =
0.7 were removed in order to avoid weakening of the regression model. 
Secondly, the texture features were further evaluated with the random 
forest (RF) model, ranking the features according to their importance to 
the model. RF is an ensemble model that consists of multiple decision 
trees, each fitted to a random subset of the input data. The probability of 
class membership is determined by the majority vote in the ensemble 
[30]. Based on the ranking results, we fitted the features in forward 
regression analysis, extracting the feature signature, which was able to 
predict the biopsy outcome. 

2.7. Histopathology analysis 

After the biopsy cores were obtained, they were fixed for 24–30 h 
and decalcified in an Ethylenediaminetetraacetic acid solution for two 
days. Tumor content was assessed by an experienced pathologist during 
clinical work-up. Histopathology success was deemed as non-diagnostic 
or diagnostic according to need for re-biopsy. Every negative biopsy 
result was secured as malignant in re-biopsy or during clinical work-up. 
The patient groups were stratified accordingly to the primary tumor. 

2.8. Statistical analysis 

The statistical analysis and graphics creation were performed using 
GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA) and SPSS 
(IBM, Version 25.0; Armonk, NY, USA). Collected data were evaluated 
by means of descriptive statistics (absolute and relative frequencies). 
Spearman’s correlation coefficient (r) was used to analyze associations 
between investigated scores after testing for normality distribution. 
Group differences were calculated with Mann-Whitney-U test and 
Fisher’s exact test when suitable. Diagnostic accuracy was further 
investigated by receiver operating characteristics-curve (ROC) with re-
ported area under the curve (AUC). In all instances, p-values < 0.05 
were taken to indicate statistical significance. 

3. Results 

Of the 123 analyzed metastasis, 69 patients had osteolytic metastasis 
(56.1 %) and 54 patients had osteoblastic metastasis (43.9 %). 

The overall tumor positive rate of the performed biopsies was 86 of 
123 cases (72 %). 

The clinical and imaging features are shown in Table 1. 
In breast cancer patients, the length of the skin to lesion was statis-

tically significant longer compared to non-breast cancer patients (86.88 
± 21.28 mm versus 74.39 ± 20.44 mm, p = 0.0016). Moreover, the 
biopsy tract angle was slightly higher in non-breast cancer patients 
(32.47 ± 64.30◦ versus 32.17 ± 20.36◦, p = 0.02). In the assessment of 
serum parameters, the AP was higher in non-breast cancer patients (4.27 
± 8.67 µkat/l versus 2.02 ± 1.53 µkat/l, p = 0.03) compared to breast 
cancer patients. 

Table 2 provides the clinical and interventional features in accor-
dance to the metastasis type. The overall positive biopsy rate was higher 
in osteolytic metastasis compared to osteoblastic (n = 55 of 69, 82 % 

Fig. 1. A. A representative case of the patient sample with an osteolytic metastasis within the right iliac bone in a female patient with cervical cancer. B. The region 
of interest was drawn within the boundary of the lesion. C. The biopsy needle was penetrated through the lesion. 
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versus n = 31 of 54, 57 %, p = 0.004). The osteolytic lesions were sta-
tistically significant larger (28.26 ± 17.56 mm versus 19.39 ± 8.43 mm, 
p = 0.0018). 

In a further analysis, the groups were investigated accordingly to the 
biopsy results, which is summarized in Table 3. The previously proposed 
threshold value of 610 HU was in 75 of 86 of cases (88 %) identified in 
the positive biopsy group, whereas it was present in 24 of 37 of cases (66 
%) in the negative groups present (p = 0.0001). The longest diameter 
was also associated with the biopsy result. In the positive biopsy group 
the lesion was larger with 26.37 ± 16.56 mm, whereas in the negative 
group it was 19.32 ± 7.68 mm (p = 0.04). The mean HU of the lesion 
was lower in the positive biopsy group (254.60 ± 254.99 HU versus 

426.06 ± 290.63 HU, p = 0.003). Tables 4(a-e) provides the statistically 
significant texture features of these group comparisons. Histogram- 
based percentile parameters were statistically significant different in 
every group comparison. 

4. Diagnostic accuracy of texture features 

The random forest classifier was used to predict the biopsy outcome. 
The model demonstrated a prediction accuracy of a positive biopsy 
result with an AUC of 0.75 [95 %CI 0.65 – 0.85]. The used parameters 
for the prediction model are biopsy tract HU, the second order texture 
features “S(1,1)Contrast”, “S(3,3)SumOfSqs”, “S(0,1)DifEntrp” and the 
area of the ROI. The second order texture features reflect the hetero-
geneity of the lesion and quantify the spatial appearances of the voxels 
with the resulting HU values in different manners. The corresponding 
graph is displayed in Fig. 2a. 

Furthermore, a signature was used to predict the biopsy results in the 
subgroup of patients with breast cancer. The model demonstrated a 
prediction accuracy of positive biopsies with an AUC of 0.85 [95 %CI 
0.73 – 0.96] (Fig. 2b). This signature is using the second order texture 
features “S(1,0)DifVarnc”, “S(0,4)DifEntrp”, “S(3,3)InvDfMom” and the 

Table 1 
Demographic overview of the patient sample.  

Clinical and puncture 
feature 

breast cancer 
(n ¼ 70) 

non breast cancer 
(n ¼ 53) 

p-value 

Gender (female) N=, % 70 (97 %) 19 (37 %)  0.00001 
Biopsy (+) N=, % 55 (76 %) 31 (63 %)  0.15  

Osteolytic metastasis N=, 
% 

36 (50 %) 32 (64 %)  0.14 

Age (years) 64.1 ± 12.2 67.6 ± 13.6  0.07 
lesion HU 340.47 ± 289.72 251.03 ± 247.66  0.09 
longest lesion diameter 23.38 ± 13.99 25.75 ± 16.15  0.43 
shortest lesion diameter 15 ± 7.38 16.84 ± 8.27  0.29 
biopsy tract HU 305.15 ± 188.86 258.18 ± 212.34  0.06  

biopsy tract length skin to 
lesion in mm 

86.88 ± 21.28 74.39 ± 20.44  0.0016  

biopsy tract bone to lesion 
in mm 

29.23 ± 14.87 31.82 ± 16.48  0.52  

biopsy tract angle in ◦ 32.17 ± 20.36 32.47 ± 64.30  0.02  

AP µkat/l  2.02 ± 1.53 4.27 ± 8.67  0.03 

LDH µkat/l  4.49 ± 0.98 5.26 ± 2.56  0.98 

Hb mmol/l  7.77 ± 1.05 7.62 ± 1.27  0.35 

platelets exp 9/l  252.24 ± 84.84 263.68 ± 134.1   0.97  

Table 2 
Comparison between patients with osteolytic and osteoblastic metastasis.  

Clinical and puncture 
feature 

Osteolytic (n ¼
69) 

Osteoblastic (n ¼
54) 

p- 
value 

Gender (female) N=, % 46 (67 %) 43 (80 %)  0.16 
Biopsy (+) N=, % 55 (82 %) 31 (57 %)  0.0044 
breast cancer N=, % 36 (52 %) 36 67 %)  0.14 
Age (yrs) 65.36 ± 13.26 65.80 ± 12.46  0.97 
lesion HU 95.41 ± 60.54 569 ± 204.55  0.0001 
longest lesion diameter  28.26 ± 17.56 19.39 ± 8.43  0.0018 

shortest lesion diameter  17.97 ± 8.57 12.94 ± 5.55  0.0005 

biopsy tract HU  168 ± 112.41 435.87 ± 184.63  0.0001 

biopsy tract length skin to 
lesion in mm 

80.23 ± 23.09 83.59 ± 19.94  0.40 

biopsy tract bone to lesion in 
mm  

31.69 ± 16.45 28.53 ± 14.27  0.28 

biopsy tract angle in ◦ 28.18 ± 19.62 37.56 ± 62.54  0.65 
AP µkat/l  3.46 ± 7.16 2.07 ± 1.58  0.05 

LDH µkat/l  4.72 ± 2.05 4.85 ± 1.33  0.33 

Hb mmol/l  7.69 ± 1.22 7.73 ± 1.05  0.92 

platelets exp 9/l  256.76 ± 101.86 257.22 ± 115.25  0.51  

Table 3 
Comparison between patients with a positive and negative biopsy result.  

Clinical and puncture 
feature 

Positive biopsy 
result (n ¼ 70) 

Negative biopsy 
result (n ¼ 53) 

p-value 

gender (female) N=, % 64 (73 %) 25 (71 %)  0.54 
osteolytic N=, % 56 (65 %) 12 (34 %)  0.02 
breast cancer N=, % 55 (63 %) 17 (49 %)  0.16 
threshold < 610HU, 

N=, % 
77 (88 %) 23 (66 %)  0.00001  

Lesion diameter > 3 
cm, N=, % 

25 (28 %) 2 (6 %)  0.007 

Age (yrs) 65.55 ± 13.27 65.57 ± 14.12  0.90 
lesion HU 254.60 ± 254.99 426.06 ± 290.63  0.003 
longest lesion diameter  26.37 ± 16.56 19.32 ± 7.68  0.04 

shortest lesion diameter  16.51 ± 8.34 13.90 ± 5.87  0.15 

biopsy tract HU  252.97 ± 180.39 367.91 ± 223.01  0.01 

biopsy tract length skin 
to lesion in mm 

81.21 ± 21.59 82.95 ± 22.39  0.62 

biopsy tract bone to 
lesion in mm  

31.84 ± 15.65 26.43 ± 14.81  0.06 

biopsy tract angle ◦ 27.52 ± 18.05 44.31 ± 76.85  0.21 
AP µkat/l  3.29 ± 6.47 1.81 ± 1.37  0.05 

LDH µkat/l  4.83 ± 1.79 4,6 ± 1.66  0.67 

Hb mmol/l  7.66 ± 1.15 7.83 ± 1.14  0.43 

platelets exp 9/l  253.38 ± 102.10 265.77 ± 121.14  0.75  

Table 4a 
Comparison of the investigated texture features in accordance to the biopsy 
result.  

Imaging and texture 
features 

Negative biopsy 
result 

positive biopsy 
result 

p- 
value 

_MinNorm 81.69 ± 41.18 61.45 ± 32.22   0.03 

_MaxNorm 179.63 ± 64.01 143 ± 50.51  0.003 
Mean 131.17 ± 42.95 102.78 ± 31.96  0.0006 
Perc,01 % 94.57 ± 37.28 71.85 ± 27.99  0.007 
Perc,10 % 110.77 ± 38.10 84.57 ± 30.25  0.0002 
Perc,50 % 130.91 ± 43.56 102.78 ± 32 ± 53  0.0008 
Perc,90 % 152.37 ± 50.78 119.78 ± 38.35  0.002 
Perc,99 % 169.06 ± 56.59 113.95 ± 41.83  0.002 
Sigma 0.27 ± 0.12 0.34 ± 0.17  0.04  
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histogram parameter “Perc,50 %”. The histogram parameters represents 
the median HU value of the lesion and the second order texture features 
the heterogeneity of the lesion. 

In the subgroup of non-breast cancer patients, the signature achieved 
an AUC of 0.80 [95 %CI 0.60 – 0.99] (Fig. 2c). This signature is using 
only two second order texture features “S(0,1)DifVarnc” and “S(0,1) 
SumOfSqs”. 

Further subgroup analyses were performed in regard of osteolytic or 
osteoblastic lesion. The model for osteoblastic lesions demonstrated a 
prediction accuracy with an AUC of 0.70 [95 %CI 0.54 – 0.86] (Fig. 2d). 
This signature is using three second order texture features “S(0,4) 

DifVarnc”, “S(0,1)SumVarnc” and “S(3,3)SumOfSqs”. For osteolytic le-
sions the model achieved an AUC of 0.66 [95 %CI 0.51 – 0.80] using 
three second order texture features “S(2,-2)SumAverg”, “S(1,1) 
Contrast” and “S(1,-1)Entropy”. The corresponding graph is displayed in 
Fig. 2e. 

5. Discussion 

The present study evaluated the diagnostic benefit of CT texture 
analysis and clinical parameters to predict the successful outcome of CT- 
guided osseous tumor biopsy. 

As a key finding, we could demonstrate that CT texture features are 
different in accordance to the biopsy outcome. This could aid in clinical 
work up to better stratify patients, which could benefit of the biopsy and 
those with a deemed negative result. 

Only a very limited number of studies sought to examine possible 
associations of imaging and clinical data with the outcome results of 
bone biopsies. 

Texture analysis could enable a better tissue characterization based 
upon spatial differences of the CT images [17–20]. This was already 
further elucidated that CT texture analysis could provide insights into 
the biological behavior of tumors [17–20,28]. Presumably, this analysis 
could also provide novel considerations into the work-up of interven-
tional radiologists for better planning of the CT-guided interventions. 

Notably, the combined models employing clinical and CT texture 
features showed the highest accuracy to predict a negative biopsy result. 
This highlights the additive value of both the clinical information and 
the texture-based information of the target lesion. 

As identified important texture features were the histogram-based 
percentile parameters predictors for outcome in almost every tumor 
subgroup analysis. Interestingly, there were low percentile values of 1 % 
in the overall analysis and breast cancer subgroup analysis, whereas for 
the non-breast cancer analysis 10 and 50 % were of importance. 

The histogram parameters represent the distribution of HU values of 
the lesion within the histogram [23]. 

As another finding, there were distinctive differences within the 
second-order texture features between the breast cancer and non-breast 
cancer subgroup. In the breast cancer group, there were significant 
differences for the Wavelet analysis features, whereas for the non-breast 
cancer group there were differences identified for texture features 
derived from gray-level co-occurrence matrix [17–19]. These features 
reflect the spatial relationships of the different HU values of the lesions 
in different mathematical manners. 

This is also an expression for the distinctive differences of the tumor 
composition between the different primary tumors and the resulting 
differences of the imaging phenotype. 

One can assume that CT histogram values can reflect differences of 
the tumor composition of the target lesion and therefore can also aid in 
the correct localization for the biopsy. 

As expected, for the osteoblastic lesions, the most important CT pa-
rameters were percentile based of 90 % and 99 % of the HU values. One 
can acknowledge that for the very dense lesions slight differences of the 
histogram in the high HU region can be reflected with these parameters 
and can indicate a possible negative biopsy result. This important 
finding could be used in patients with only osteoblastic lesions to 
identify a possible target lesion with a more favorable histogram value 
and therefore higher positive biopsy outcome. 

One important aspect of every radiomics analysis is the robustness 
and generalization of the extracted imaging features [29]. The used 
MaZda package is a widely used texture feature software. Moreover, it 
was demonstrated that the extracted features are good comparable and 
robust compared to another widely used package PyRadiomics [28]. 
Another important point is that the most significant features in the 
present study were derived from the first order histogram group, which 
are more robust throughout different sites and vendors [31]. 

The overall tumor-positive biopsy rate of 72 % in our study is within 

Table 4b 
Comparison of the investigated texture features in accordance to the biopsy 
result in a subanalysis of breast cancer patients.  

Imaging and texture 
features 

Negative biopsy 
result 

positive biopsy 
result 

p- 
value 

_MinNorm 91 ± 39.69 64.78 ± 30  0.02 
_MaxNorm 192.58 ± 63.20 148.11 ± 50.09  0.009 
Mean 142.27 ± 42.70 106.94 ± 33.20  0.003 
Perc.01 % 101.71 ± 37.25 75.11 ± 26  0.02 
Perc.10 % 120.71 ± 37.63 89.07 ± 29.27  0.002 
Perc.50 % 142.41 ± 43.33 106.84 ± 34.01  0.003 
Perc90% 163.59 ± 49.86 124.67 ± 38.80  0.004 
Perc.99 % 178.59 ± 53.93 138.73 42.14  0.006 
Teta2 − 0.72 ± 0.13 − 0.64 ± 0.14  0.02 
WaveEnLL_s-3 14352.31 ±

5412.67 
17491.20 ±
4625.25  

0.01 

WavEnHL_s-3 520.20 ± 344.58 338.28 ± 327.92  0.01 
WavEnLL_s-4 11328.17 ± 8268.5 18331.95 ±

8110.33  
0.002  

Table 4c 
Comparison of the investigated texture features in accordance to the biopsy 
result in a subanalysis of all non-breast cancer patients.  

Imaging and texture 
features 

Negative biopsy 
result 

positive biopsy 
result 

p- 
value 

_Mean 120.69 ± 41.64 95.85 ± 28.96  0.03 
Perc.10 % 101.61 ± 37.25 77.06 ± 30.81  0.01 
Perc.50 % 120.06 ± 42.08 96.03 ± 29.13  0.04 
S(3,3)Correlat 0.18 ± 0.27 0.04 ± 0.24  0.03 
S(3,3)SumVarnc 250.30 ± 64.37 214.24 ± 42.66  0.02 
S(4,4)Contrast 183.28 ± 55.01 209.17 ± 54.52  0.03 
S(4,4)Correlat 0.14 ± 0.26 0.00 ± 0.20  0.008 
S(4,4)SumVarnc 243.41 ± 60.66 204.82 ± 39.07  0.003  

Table 4d 
Comparison of the investigated texture features in accordance to the biopsy 
result in a subanalysis of all osteoblastic metastasis.  

Imaging and texture 
features 

Negative biopsy 
result 

positive biopsy 
result 

p- 
value 

_MaxNorm 209.74 ± 52.66 186 ± 52.41  0.03 
Perc.90 % 176.74 ± 40.14 157.32 ± 38.75  0.02 
Perc.99 % 196.04 ± 45.80 170.77 ± 40.01  0.01 
S(0.5)DifVarnc 59.08 ± 20.44 47.23 ± 16.27  0.02  

Table 4e 
Comparison of the investigated texture features in accordance to the biopsy 
result in a subanalysis of all osteolytic metastasis.  

Imaging and texture 
features 

Negative biopsy 
result 

positive biopsy 
result 

p- 
value 

S(5.-5)SumAverg 63.52 ± 2.39 63.72 ± 2.90  0.03 
Teta4 0.05 ± 0.09 − 0.02 ± 0.12  0.04 
WavEnHL_s-3 350.78 ± 210.58 229.08 ± 188  0.02 
WavEnHL_s-4 485.41 ± 279.31 263.90 ± 289.42  0.005 
WavEnHH_s-4 213.53 ± 144.01 106.46 ± 99.22  0.01  
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the pooled frequency of 62–82 %, which was published in a meta 
analysis of 13 studies analyzing only sclerotic bone biopsies [13]. Better 
results were even published by Leffler et al. with a positive biopsy results 
in 82 % of cases and a negative predictive value of 100 % [32]. The 
positive rate of 57 % of the osteoblastic lesions of the present study is on 
the overall lower side of the published spectrum. 

The present higher positivity rate for osteolytic lesions compared to 
sclerotic lesions is a common finding in the literature [10,33–35]. That is 
why, sclerotic/osteoblastic lesions are considered more challenging in 
clinical routine. 

Conventional CT imaging findings were also previously investigated 
by some studies including lesion-to-cortex distance, skin-to-lesion dis-
tance, tract length, and number of cores obtained [4,10,24,33–35]. The 
novel texture parameters could be added into these known factors and, 
as it was shown in the present study, provide more insight into the 
microstructure of the target lesion. 

There is definite need to evaluate the present results in a prospective 
study, whether it could change the interventionalist’s decision for the 
target lesion and whether it could enhance the outcome of the CT-guided 
bone biopsy. 

There are some limitations of the present analysis to address. First, it 
is a retrospective study with known inherent bias. Yet, the imaging 
analysis was performed blinded to the clinical and pathological results. 
Second, the patient sample is rather small with consequently small 
subgroup analyses. Third, although in all cases an 11G needle was used, 
the needle length and the extracted bone biopsy variated slightly and 
could have an influence on the biopsy result. Forth, only metastases 
were analyzed in the present study. It remains unclear, whether texture 
analysis could also aid in bone biopsy planning for primary tumors. 
Moreover, the study sample has a high frequency of breast cancer 

patients, which needs to be considered for generalization purposes. 
Fifth, the measurements were performed by one reader, which could 
lead to certain reader bias for the extraction of the CT texture features. 
However, the target lesions were clearly delineated along the following 
biopsy tract, which should lead to similar results, when performed by 
different experienced readers. 

6. Conclusion 

Quantitative CT imaging findings comprised of conventional and 
texture features can aid to predict the bioptic result of CT-guided bone 
biopsies. The developed radiomics signature might aid in clinical deci-
sion making, and could identify patients at risk for a negative biopsy. 
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