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Since the high dimension and complexity of the large-scale spiking neural network, it is difficult to research the network dynamics.
In recent decades, the mean-field approximation has been a useful method to reduce the dimension of the network. In this study, we
construct a large-scale spiking neural network with quadratic integrate-and-fire neurons and reduce it to a mean-field model to
research the network dynamics. We find that the activity of the mean-field model is consistent with the network activity. Based
on this agreement, a two-parameter bifurcation analysis is performed on the mean-field model to understand the network
dynamics. The bifurcation scenario indicates that the network model has the quiescence state, the steady state with a relatively
high firing rate, and the synchronization state which correspond to the stable node, stable focus, and stable limit cycle of the
system, respectively. There exist several stable limit cycles with different periods, so we can observe the synchronization states
with different periods. Additionally, the model shows bistability in some regions of the bifurcation diagram which suggests that
two different activities coexist in the network. The mechanisms that how these states switch are also indicated by the bifurcation
curves.

1. Introduction

Neurons and neural circuits can be modelled as nonlinear
dynamical systems to simulate various brain activities. The
dynamics of these dynamical systems provide theoretical
insight into the biological mechanisms of brain functions.
In recent decades, lots of neuron models have been inten-
sively studied, and their equilibria and bifurcations are used
to explain the formation and transition modes of the neuro-
nal firing patterns [1–6]. However, because of the high
dimension and complexity, the large-scale network models
which consist of many neurons and synapses are difficult to
study by dynamical methods [7]. Since the work of Wilson
and Cowan [8], the mean-field approximation has become
a common method to reduce the network dynamics to the
mean firing rate, constructing a low-dimensional mean-
field model. This kind of reduced model has been proven to

be useful for us to understand the dynamical mechanisms
of various underlying functions. Brunel et al. derived the
mean-field approximation of the network with interacting
excitatory and inhibitory neurons to study the synchroniza-
tion of the neurons. The dynamics of the model exhibited dif-
ferent synchronization states, while the rhythmic transitions
between the synchronization states were caused by the bifur-
cations of equilibria [9]. Besides, Brunel and Wang built a
working memory network and reduced it to a mean-field
model to research the computational mechanisms of how
the brain stored the information temporarily [10]. They
found that working memory was based on the bistability of
the network where one stable state represents the memory
activity and the other stable state denotes the spontaneous
activity. Once an external stimulus input, the network chan-
ged from the spontaneous activity to the ongoing memory
activity, indicating that the information of the stimulus has
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been remembered. This kind of bistability dynamics has also
been observed in the decision-making function. Wong and
Wang proposed a simplified approach to obtain the mean-
field model from a decision-making network model which
mimicked the decision-making process within two alterna-
tive choices [11, 12]. The decision-making process depended
on the system tending towards one of the attractors for the
two alternative choices separated by an unstable saddle in
the decision space. Besides, different networks in visual pro-
cessing [13–16], neural disease [17–19], and movement
[20] have also been researched by mean-field dynamics.

In recent, Montbrió et al. proposed a new approach to
reduce the large-scale neural network of quadratic
integrate-and-fire neurons (QIF) as an exact mean-field
model [21]. They found out that the QIF network model
could be derived as a two-dimensional dynamical system
for the firing rate and the mean membrane potential
under the Lorentzian ansatz [22, 23]. The Lorentzian
ansatz gave the distribution of the neurons’ membrane
potentials, so the continuity equation of the QIF network
could be solved exactly, making the network possible to
be theoretically analysed. Based on this work, Ratas et al.
improved this model by considering more complicated
synaptic dynamics so that the network with sophisticated
synapses can also be reduced [24]. One of the characteris-
tic properties of these mean-field models is the ability to
exactly describing the network dynamics but not approxi-
mately reduce the network. Thus, the mean-field model
derived by these methods can obtain the exact dynamical
mechanism of the network models [25–28].

In this work, we construct a large-scale spiking neural
network of quadratic integrate-and-fire neurons and reduce
it to an exact mean-field model to investigate the network
dynamics.

2. Methods

2.1. The Network Model. We consider a network model with
an excitatory population and an inhibitory population. The
total number of neurons in each population is 20000. Each
neuron is modelled as the quadratic integrate-and-fire model
which is described as

dVk
dt =V2

k + η + Iext − Isynk , ð1Þ

where Vk represents the membrane potential and the
index k can be e or i which marks the neuron in excitatory
population or inhibitory population, respectively. η corre-
sponds to a constant external current which follows a Lorent-
zian distribution gðηÞ of the mean �η and half-width Δ, while
Iext is the external stimulus. Once the membrane potential
exceeds the threshold Vpeak , the neuron is considered to pro-
duce a spike and its voltage is reset to the value V reset. To
reduce the network analytically, Vpeak and V reset are set to

infinity, i.e., Vpeak = −V reset [29]. Isynk is the total synaptic
input which obeys

Isynk = Iexck + Iinhk = Je Vk − Eeð ÞSe tð Þ + Ji Vk − Eið ÞSi tð Þ

= Je Vk − Eeð Þ 1
N
〠
N

l

H Vl − Vthð Þ

+ Ji Vk − Eið Þ 1
N
〠
N

l

H Vl −Vthð Þ,

ð2Þ

where Je and Ji are excitatory and inhibitory synaptic
conductance, Ee and Ei give excitatory and inhibitory reversal
potential, while SkðtÞ are synapse activation variables which
are simplified from a kind of alpha synapse function [24].
From Eq. (2), we can see that neurons in the excitatory pop-
ulation have recurrent excitatory synapses and inhibitory
synaptic connections from the inhibitory population, while
neurons in the inhibitory population receive recurrent inhib-
itory input and the excitatory synaptic input from the excit-
atory population.

2.2. The Mean-Field Model. In the N ⟶∞ limit, we can
use continuous density functions ρkðV ∣ η, tÞ to describe
the macroscopic state of each population in the system
(1). The product ρkðV ∣ η, tÞ dV indicates the fraction of
neurons with membrane potential between V and V + dV .
Thus, under the conservation law of the neuron amount,
the density functions ρkðV ∣ η, tÞ satisfy the continuity equa-
tions [9, 30, 31]:

∂
∂t ρk = −

∂
∂Vk

ρk V2
k + η + Iext + Isynk

� �� �
: ð3Þ

With the assumption that the solutions of Eq. (3) gener-
ically converge to a Lorentzian-shaped function in any initial
conditions, the density functions ρkðV ∣ η, tÞ can be
expressed by following formula [21, 32–34]:

ρk V ∣ η, tð Þ = 1
π

xk η, tð Þ
V − yk η, tð Þ½ �2 + x2k η, tð Þ : ð4Þ

This assumption makes it possible to solve the continuity
equations Eq. (3) derived from the quadratic integrate-and-
fire model. xkðη, tÞ and ykðη, tÞ define the half-width and
the center of the distribution. These two parameters are
closely related to the firing rate and mean membrane poten-
tial. With the fixing η and t , the firing rate of a population is
calculated as the fraction of neurons which exceed the Vpeak,

i.e., rkðη, tÞ = ρkðV⟶∞∣η, tÞ _VðV⟶∞∣η, tÞ = xkðη, tÞ/π.
In cooperating with Eq. (1) and (4), and by integrating over
η , we have

rk tð Þ = 1
π

ð+∞
−∞

xk η, tð Þg ηð Þdη: ð5Þ

Besides, the center of the distribution of membrane
potentials ykðη, tÞ can be easily identified with the mean
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membrane potential which is given by ykðη, tÞ = p:v:Ð +∞−∞
VρkðV ∣ η, tÞdV . The result is the Cauchy principal value
defined as p:v:Ð +∞−∞ f ðxÞdx = lim

R→∞

Ð +R
−Rf ðxÞdx. Thus, the total

mean membrane potential is

vk tð Þ =
ð+∞
−∞

yk η, tð Þg ηð Þdη: ð6Þ

Substituting Eq. (4) into the continuity equations Eq. (3),
we can obtain

_wk η, tð Þ = i η −w2
k η, tð Þ + Je iwk η, tð Þ + Ee½ �Se tð Þ�

+ Ji iwk η, tð Þ + Ei½ �Si tð Þ g,
ð7Þ

where wkðη, tÞ ≡ xkðη, tÞ + iykðη, tÞ. In this process, the
synaptic activation variables SkðtÞ should be replaced by
[24].

Sk tð Þ =
ð+∞
−∞

g ηð Þ
ð+∞
−∞

ρk V ∣ η, tð ÞH V −Vthð ÞdVdη: ð8Þ

For solving these equations, the distribution gðηÞ is
assumed to the Lorentzian distribution with center �η
and half-width Δ:

g ηð Þ = 1
π

Δ

η − �η½ �2 + Δ2 : ð9Þ

This assumption makes Eq. (5), (6), and (8) evaluated
closing the integral contour in the complex η plane [21,
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Figure 1: Activities of the network model and the mean-field model. (a) Raster plot of 1000 randomly selected neurons in the excitatory
population. (b) The firing rate of the excitatory population (red solid) and the mean-field firing rate re (green dashed). (c) Raster plot of
1000 randomly selected neurons in the inhibitory population. (b) The firing rate of the inhibitory population (blue solid) and the mean-
field firing rate ri (orange dashed). (e) At t = 0, a current Iext = 0 is applied to all excitatory neurons, and set to Iext = 8 at t = 2.
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24]. In the lower half η plane, these integrals only rely on
the pole η = �η − iΔ of gðηÞ, and we have

πrk tð Þ + ivk tð Þ =wk �η − iΔ, tð Þ,

Sk tð Þ = 1
π

π

2 − arctan Vth − vk tð Þ
rk tð Þ

� �	 

:

ð10Þ

By substituting these equations into Eq. (7) and sepa-
rating the imaginary and real parts, we can obtain the
following exact mean-field model:

dre
dt = Δ

π
+ 2reve − JereSe tð Þ

dve
dt = �η + v2e − π2r2e − Je ve − Eeð ÞSe tð Þ − Ji ve − Eið ÞSi tð Þ + Iext
dri
dt = Δ

π
+ 2rivi − JiriSi tð Þ

dvi
dt = �η + v2i − π2r2i − Je vi − Eeð ÞSe tð Þ − Ji vi − Eið ÞSi tð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

:

ð11Þ

In the mean-field model and the original network
model, the default parameters are Je = 15, Ji = 8, Ee = 75,
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Figure 2: Two-parameter bifurcation diagram in the Iext-Je plane. f : fold bifurcation curve (red); h1, h2: Hopf bifurcation curve (blue);
PD1, PD2: period-doubling bifurcation curve (purple).
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Figure 3: Two single-parameter bifurcation diagrams with respect to Iext when Je = 12 (a) and Je when Iext = 5 (b). The blue solid lines
represent the stable equilibria, and the black dashed lines give the unstable equilibria. The purple solid lines and the green solid lines
represent the maxima and minima of the stable limit cycles. The blue dashed lines identify the maxima and minima of the unstable limit
cycles. The orange circles indicate the Hopf bifurcation points.
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Ei = −75, �η = −5, Δ = 1, and Vth = 50. The simulation is
performed in Python by using the four order Runge-
Kutta algorithm with an integration time step of
0.01ms. Bifurcation analysis is conducted in MATCONT.

3. Results

3.1. Activities of the Network Model and Mean-Field Model.
For testing whether the activity of the mean-field model is
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Figure 4: Activities of the network model when ðIext, JeÞ = ð5, 30Þ (a), ðIext, JeÞ = ð5, 50Þ (b), ðIext, JeÞ = ð0, 70Þ (c), and ðIext, JeÞ = ð−0:85, 75Þ
(d). In each chart, the upper panel is the raster plot of 1000 randomly selected neurons in the excitatory population, the bottom panel gives the
corresponding firing rate of the excitatory population.
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Figure 5: Two single-parameter bifurcation diagrams with respect to Je when Iext = −3. The chart (b) is the enlargement of the top-right
part of the chart (a). The blue solid lines represent the stable equilibria, and the black dashed lines give the unstable equilibria. The
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respectively. The red solid lines and dashed lines give the maxima and minima of the stable limit cycles with period-4, respectively.
The orange, red, and purple circles indicate the Hopf, fold, and period-doubling bifurcation points, respectively. Regions (1), (2), (3),
and (4) represent four different regions of bistability.
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consistent with the network model, both models receive the
same external stimuli. As is shown in Figure 1(e), the external
stimulus is set to Iext = 0 at 0-2 s, and increases to Iext = 8 at 2-
10 s. When Iext = 0, i.e., there is no external input, the excit-
atory population and inhibitory population of the network
model both show the quiescence states which only exhibit
the background activities (Figures 1(a) and 1(c)). At this
time, the corresponding mean-field firing rates re and ri are
also at the quiescence states which are consistent with the
network model firing rates (Figures 1(b) and 1(d)). After
2 s, the external stimulus is input to the excitatory popula-
tion. As is shown in Figures 1(a) and 1(c), the external stim-
ulus makes a large number of neurons in excitatory and
inhibitory populations produce spikes in the same block of
time, showing the synchronization states. It is noteworthy
that synchronization defines a phenomenon that the action
potentials occur closely together in time. As time increases,
the spikes are periodically produced. As a result, the corre-
sponding population firing rates exhibit periodical activities.
In the synchronization state, the mean-field firing rates are
also in agreement with the population firing rates
(Figures 1(b) and 1(d)).

3.2. The Network Dynamics. The agreement between the net-
work activity and mean-field activity enables us to study the
network dynamics from the mean-field dynamics. In this sec-
tion, we mainly use bifurcation analysis to research the
dynamics of the mean-field model.

In a dynamical system, a bifurcation is a sudden qualita-
tive or topological change in behavior of the system caused by
a small smooth change of some parameter values. Thus, we
can understand how the network activities change from the
bifurcations of the mean-field system. Figure 2 provides an
overall two-parameter bifurcation scenario in the Iext-Je
plane. The parameter plane is partitioned into 10 regions
by the following bifurcation curves: f fold of equilibria
(red); h1 and h2 Hopf (blue); PD1 and PD2 period-doubling
(purple). We label these 10 regions as I-X. The network
model in different regions exhibits distinct dynamics, and
the transition between them can explain how the network
activities change. The corresponding dynamics are described
as follows:

(1) In region I, the model exhibits monostability with a
single stable equilibrium point (e.g., Iext = 0, Je = 15,
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Figure 6: Activities of the network model when ðIext, JeÞ = ð−3, 32Þ (a), ðIext, JeÞ = ð−3, 45Þ (b), ðIext, JeÞ = ð−3, 51Þ (c), and ðIext, JeÞ = ð−3,
52:4Þ (d). In each chart, the upper panel is the raster plot of 1000 randomly selected neurons in the excitatory population, the middle
panel identifies the corresponding firing rate of the excitatory population, and the bottom panel gives variation of the external stimulus
which Iext = 3 between 10 and 12 s, and Iext = −3 at other time.
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0-2 s in Figure 1). The single-parameter bifurcation
chart in Figure 2 also indicates that this state is at a
low population firing rate which corresponds to the
quiescence state of the network model. It is common
that a number of functional neural networks in brain
are at a quiescence state. When the networks only
receive the background input, they usually exhibit a
low firing rate

(2) Crossing h1 Hopf bifurcation curve makes the
model appear stable limit cycle and the stable equi-
librium turns into unstable equilibrium in region II
(Figure 3(a)). The stable limit cycle induces the
model to produce the firing rate spikes regularly,
indicating the synchronization state of the network
model (e.g., Iext = 8, Je = 15, 2-10 s in Figure 1)

(3) Region III lays around the f fold curve, the h1
Hopf bifurcation curve, and the h2 Hopf bifurca-
tion curve. There is one stable focus in this region
(Figure 3(b)). As shown in Figure 4(a), the net-
work in this state exhibits the synchronization state
in the beginning. With time increases, the degree
of synchronization weakens and the firing rate
tends to a stable level which is higher than the qui-
escence state

(4) As the parameters change from Region III to Region
IV via h2 Hopf bifurcation curve, the stable focus
turns into unstable and the stable limit cycle appears
(Figure 3(b)). The activity of the network in this
region oscillates with the same period which is simi-
lar to that in region II (Figure 4(a)). A large number
of neurons are in the synchronization state

(5) When crossing PD1 period-doubling curve from
region IV, the period of the stable limit cycle becomes
period-2. In this region, the excitatory population fir-
ing rate oscillates with two periods, exhibiting the
bursting synchronization state (Figure 4(c))

(6) In region VI, PD2 period-doubling bifurcation curve
doublings the period of the stable limit cycle, making
it turn into period-4. Thus, we can see that the excit-
atory neurons synchronize with four periods and the
corresponding firing rate oscillates regularly with a
series of the burst with four periods (Figure 4(d)).

The synchronization states of the network shown in (2),
(4)–(6) have been considered as one of the mechanisms for
neuronal signal transmission and coding. For example, syn-
chronization can protect the neural information from noise
[35]. In addition, synchronization has been associated with
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a large number of functions such as memory, attention,
object recognition, and top-down modulation of sensory
processes [36, 37]. However, abnormal synchronization will
lead to several neural disorders, including epilepsy [38] and
Parkinson’s disease [39].

(7) Inside the LP curve, the network shows bistability.
However, the coexistent stable equilibria are different
in distinct parts. As it is shown in Figure 5(a), the
blue area (1) of the single-parameter bifurcation dia-
gram, which is located in the region VII, indicates
that the solid lines above and under the dashed line
correspond to the stable focus and stable node,
respectively. Thus, we can know that the stable focus
and stable node coexist in the region VII. This fact is
demonstrated by the network activity. When Je = 32,
Iext = −3, the excitatory population maintains the
quiescence state of a low firing rate level which corre-
sponds to the stable node (Figure 6(a)). Once a tran-
sient stimulus is applied at 10-12 s, the firing rate
produces a spike. After 12 s, the stimulus returns to
Iext = −3, the firing rate does not recover to the quies-
cence state but tends to a steady firing rate at about
4.5Hz which corresponds to the stable focus. Thus,
two kinds of activities also coexist in the network
model

(8) In regions VIII, IX, and X, the stable node and sta-
ble limit cycle with different periods coexist in the
network. As an example, the stable node and stable
limit cycle with period-1 coexist in the area (2) in
Figure 5(a), the stable node and stable limit cycle
with period-2 coexist in the area (3), and the stable
node and stable limit cycle with period-4 coexist in
the area (4). These facts indicate that the corre-
sponding network activities also exhibit bistability.
As illustrated in Figures 6(b)–6(d), the transient
stimulus at 10-12 s makes the original steady quies-
cence state become regular oscillation with differ-
ent periods in distinct regions (one period for
region VIII, two periods for region IX, and four
periods for region X).

Bistability in neural network induces the persistent activ-
ity after a transient stimulus vanishes. This kind of persistent
activity underlies short-term information storage in brain
functions such as working memory, motor control, and spa-
tial navigation [40, 41].

By fixing Iext = −3 and changing Je from 48 to 54, we
calculate the intervals between spikes of the firing rate
which represent the period of the firing rate. The transition
of the phase of the synchronization state in regions VIII,
IX, and X is also indicated by the change of period
(Figure 7(a)). From the bifurcation diagram, we can see
the period-doubling cascade of the phase. It is notable that
this period-doubling cascade finally leads to chaos. The
chaotic activities of the network are illustrated in
Figures 7(b) and 7(c). Although the neurons exhibit syn-
chronization, they synchronize without fixing phases. The
firing rate also oscillates with no fixing periods. This cha-

otic behavior is also verified by the trajectory in the (ve,
re) plane of mean-field model.

4. Conclusions

In this paper, we constructed a large-scale spiking neural net-
work with quadratic integrate-and-fire neurons and reduced
to a mean-field model to research the network dynamics.
First, the activity of the mean-field model was verified to be
consistent with the activity of the network model. This agree-
ment ensured that we could understand the network dynam-
ics from the dynamical properties of the mean-field model.
Thus, the two-parameter bifurcation analysis was performed
on the mean-field model to research the network dynamics.
From the bifurcation scenario, we could know that the net-
work has various activities: the quiescence state, the steady
state with a relatively high firing rate, and the synchroniza-
tion state which corresponds to the stable node, stable focus,
and stable limit cycle of the system, respectively. Notably,
there existed several stable limit cycles with different periods,
so the synchronization states with different periods of the
network model could be observed. Additionally, bistability,
i.e., two steady states coexisted, was observed in some regions
of the two parameters plane. This result proved that two
different activities coexisted in the network model that could
switch from one to another by shortly perturbing some
parameters. Finally, we found that the period-doubling
cascade led to chaos. In this state, the network exhibited the
chaotic synchronization state in which the neurons synchro-
nized without fixing periods.

In future work, the current neural network and mean-
field model can be used to research the neural disorders.
For example, Parkinson’s disease is characterized by the
excessive synchronization in the microcircuit of the basal
ganglia. The present models exhibit rich synchronization
phenomena, so they can be adapted to the activities in basal
ganglia or other brain areas to research the pathological
mechanisms of neural disorders and the methods of control-
ling synchronization. Another direction for future research is
cognition. Based on the bistability, the network model can
simulate some cognitive functions such as working memory,
attention to understand the corresponding dynamical mech-
anisms of cognition.
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