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ABSTRACT

Ligand-responsive allosteric transcription factors
(aTF) play a vital role in genetic circuits and high-
throughput screening because they transduce bio-
chemical signals into gene expression changes. Pro-
grammable control of gene expression from aTF-
regulated promoter is important because different
downstream effector genes function optimally at dif-
ferent expression levels. However, tuning gene ex-
pression of native promoters is difficult due to com-
plex layers of homeostatic regulation encoded within
them. We engineered synthetic promoters de novo
by embedding operator sites with varying affinities
and radically reshaped binding preferences within a
minimal, constitutive Escherichia coli promoter. Mul-
tiplexed cell-based screening of promoters for three
TetR-like aTFs generated with this approach gave
rich diversity of gene expression levels, dynamic
ranges and ligand sensitivities and were 50- to 100-
fold more active over their respective native promot-
ers. Machine learning on our dataset revealed that
relative position of the core motif and bases flanking
the core motif play an important role in modulating
induction response. Our generalized approach yields
customizable and programmable aTF-regulated pro-
moters for engineering cellular pathways and en-
ables the discovery of new small molecule biosen-
sors.

INTRODUCTION

The ability to program gene expression is a fundamental re-
quirement for engineering new cellular functions. Develop-
ment of standardized parts has enabled the design of sophis-
ticated, model-guided genetic circuits with minimal human

intervention (1). This heralds a new era of synthetic biol-
ogy where living cells can be programmed to execute user-
defined functions with high fidelity, and are more than just
a ‘bag of enzymes’. Ligand-responsive allosteric transcrip-
tion factors (aTF) are a vital component of genetic circuits
because they control the flow of information by transduc-
ing biochemical signals into gene expression (2). aTFs con-
vert internal or external cues (input) into ligand-inducible
promoter expression (output) of downstream effector genes,
providing versatile control of virtually any cellular process.
Much effort has been directed toward expanding the suite of
ligand inputs to build new aTF biosensors (3,4). However,
our ability to program gene expression output from a pro-
moter regulated by an aTF (native promoter) is poorly de-
veloped and has received far less attention. Programmable
control of gene expression from an aTF-regulated native
promoter is important because different downstream effec-
tor genes function optimally at different expression levels
(5). For instance, high expression of a fluorescent reporter
facilitates visualization and resolvability of cells for imaging
(microscope or flow cytometer). Similarly, a weak metabolic
enzyme may have to be overexpressed to improve pathway
flux. In contrast, expression of a transporter or a recom-
binase has to be carefully controlled within a tight window
as overexpression may be highly deleterious. In complex cir-
cuits such as timers, counters and memory devices with mul-
tiple aTF-based logic gates, gene expression output of each
gate has to be correctly ‘matched’ to activate the next gate so
as to effectively relay the signal (1,6,7). aTF biosensors used
in metabolic pathway optimization can often be ineffective
if their dynamic range is low or incompatible with intracel-
lular metabolite concentrations. These examples illustrate
the need for programmable aTF-regulated promoters that
can be tailored for different downstream effector genes and
applications.

Currently, we are limited to mostly one or a few well-
characterized native promoters depending on the aTF.
Since native promoters are evolutionarily optimized for
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the endogenous role of the aTF, they are saddled with
sites for feedback control, co-regulators and may also con-
tain elements that enhance context-dependence including
sites for alternative sigma and stress-response factors. Be-
cause these features cannot be easily disentangled, modify-
ing gene expression properties like baseline expression, dy-
namic range and dose-response is notoriously difficult in
native promoters. Massively-parallel reporter assays have
been developed to quantitatively characterize promoter-
transcription factor interactions (8) and to engineer new
promoters (9). These approaches mutagenize the native pro-
moter and measure resultant changes in reporter expres-
sion to infer underlying sequence-function landscape and
binding energetics (10). Instead of tinkering with native
promoters, we decided to de novo engineer aTF-regulated
promoters based on a minimal constitutive promoter com-
pletely unrelated to the native promoter and devoid of reg-
ulation. Our goal was to engineer a suite of inducible pro-
moters for an aTF displaying the full range of gene expres-
sion levels and ligand response characteristics. We chose to
engineer promoters for TetR-like family of aTFs because
they are commonly used in genetic circuits (11) and repre-
sent a large pool of potential new biosensors for primary
and secondary metabolites (12). TetR-like aTFs have a sim-
ple mechanism of transcription: when bound to their op-
erator (binding site on DNA), they repress gene expres-
sion by sterically blocking RNA polymerase. Upon binding
to a ligand, an allosteric conformational change dislodges
the aTF from the operator allowing RNA polymerase to
transcribe the downstream gene. This led us to hypothe-
size that gene expression could be modulated by chang-
ing the affinity of an aTF for its operator sequence as this
would alter promoter occupancy by RNA polymerase. In
other words, since equilibrium distributions of DNA-bound
(unliganded) and DNA-unbound (liganded) aTFs would
be different for operators with different aTF affinities, it
would result in distinct ligand-induced transcriptional re-
sponses. We implemented this concept as follows (Figure
1). We generated a library of ∼105 aTF operator sites of
varying affinities by in vitro selection starting from random-
ized N-mers. The in vitro selected operators had radically
reshaped binding architecture but with similar core motifs
found in their respective native counterparts. The opera-
tor library was positioned as a spacer between -35 and -10
sites of a minimal constitutive Escherichia coli promoter to
create a library of aTF-regulatable promoters. We then en-
riched for functional promoter variants with different gene
expression levels by sorting cells carrying the promoter li-
brary driving GFP (without and with inducer) followed
by clonal screening (Figure 1). For each aTF, this yielded
greater than 30–50 inducible promoters with low baseline
expression exhibiting a full range of ligand-induced gene ex-
pression spanning 5–90% of expression from the constitu-
tive promoter. The engineered promoters also had a broad
distribution of dynamic ranges, ligand sensitivities and co-
operativity of response. We demonstrate the generalizabil-
ity of this approach by engineering inducible promoters for
three TetR-family aTFs––TtgR, PmeR and NalC. Statisti-

cal machine learning on our dataset revealed that although
a core sequence motif was required for aTF binding, rela-
tive position of the core motif and bases flanking the core
motif played an important role in modulating induction re-
sponse. Our results show that a simple model of competitive
access to the promoter between aTF and RNA polymerase
can be exploited to generate a rich variety of ligand-induced
gene expression levels and dose response functions. This
approach could be useful for rapidly engineering promot-
ers for new metagenomic aTFs sensing useful molecules, by
sidestepping the need to identify and optimize their native
promoters.

MATERIALS AND METHODS

In vitro enrichment of operator sites

We synthesized codon optimized genes for all three aTFs
(Genscript, Inc) and cloned them using Gibson Assembly
into overexpression vector pET-31b with a C-terminus His
tag (15). We transformed sequence-verified plasmids into
BL21(DE3) E. coli and plated them on Luria-Bertani (LB)
plates containing 100 �g/ml carbenicillin. After overnight
growth at 37◦C, we inoculated colonies into 3 ml LB
medium (100 �g/ml carbenicillin) and grew the cells to
an optical density of 0.6 at 600 nm (OD600) at 37◦C.
Then we induced cultures with 0.5 mM isopropyl �-D-1-
thiogalactopyranoside (IPTG) for 3 h and confirmed pro-
tein expressions on a 4–12% Bis–Tris glycine gel. Cells were
subsequently lysed by sonication in a lysis buffer (50 mM
HEPES pH 7.5, 300 mM NaCl, 5 mM BME 10% glycerol).

We combined equimolar amounts of 16, 17, 18 and 19
base pairs (bp) hybridized promoter libraries into one mixed
library. The mixed library (100 nM) was incubated with 2 �l
protein lysate in 1× enrichment buffer (15 mM Tris–HCl
pH 7.5, 100 mM NaCl, 1 mM BME, 0.02 U poly-dI-dC,
0.03% BSA, 0.05% NP40) in 20 �l reactions at room tem-
perature for 1 h. We mixed 2.5 �l magnetic His-tag pull-
down beads (pre-washed three times with 500 �l buffer of
15 mM Tris–HCl pH 7.5, 100 mM NaCl, 0.03% BSA) with
protein and DNA by rotating at low speed for 30 min at
4◦C. We pulled down protein–DNA complex attached to
beads, removed unbound DNA and washed the complex
three times with pre-wash buffer (15 mM Tris–HCl pH 7.5,
100 mM NaCl, 0.03% BSA). After removing final wash
buffer, we mixed the complex with Kapa HF PCR master
mix and primers to amplify enriched DNA (PCR protocol:
95◦C for 3 min, 98◦C for 20 s, 60◦C for 20 s, 72◦C for 10
s. Repeat step 2 to 4 for 20 times, 72◦C for 20 s) and con-
firmed the amplicon size on a 2% agarose gel.

To prepare in vitro enriched DNA for deep sequencing,
we added standard Illumina P5 adaptor and custom 8 bp
barcode to the 5′ end using PCR (PCR protocol: 95◦C for
3 min, 98◦C for 20 s, 60◦C for 20 s, 72◦C for 10 s. Repeat
step 2 to 4 for 15 times, 72◦C for 20 s). Barcoded DNA
amplicon size was checked using 2100 Bioanalyzer (Agi-
lent) and sequenced using Illumina HiSeq 2500 sequenc-
ing system (University of Wisconsin-Madison, Biotechnol-
ogy Center DNA sequencing facility) after addition of 40%
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Figure 1. De novo promoter engineering scheme. Design workflow involves three steps: creating a promoter library with randomized bases between -35
and -10 sites of a constitutive E. coli promoter, enrichment of promoters that can bind to aTF by in vitro selection, and multiplexed screening for inducible
promoters by high-throughput cell sorting followed by clonal testing.

PhiX sequencing control (Illumina). The sequencing run
gave around 289 million raw reads.

Analysis of operator motifs using a Markov model

First reads from sequencing were demultiplexed using a 8 bp
barcode and truncated to include only the N-mer random
portion of the library. For the analysis, we use ‘gapped k-
mers’ - these are k-mers with spaces in the middle of the
form ‘l-mer m-space n-mer’ (thus l + m + n = k), where l
and n can take values 4 or 5 and spacer m can take val-
ues 0 to N – l – n, where N is the length of the random
portion of the library. For example, ACTACxxxACGC is a
‘gapped 12-mer’ of ‘5-mer 3-spacer 4-mer’ type, where spac-
ers x can be any nucleotide A, C, G or T. First occurrence of
such gapped k-mers is counted in the random portion of the
sequenced sample and those with occurrence <50 counts
are removed from further analysis. Then the enrichment for
each gapped k-mer is calculated by dividing these counts in
the sequenced sample against the expected number of oc-
currences of the same gapped k-mer from the starting ran-
dom library (Bhimsaria et al. in preparation). For the start-
ing library the sequencing depth is enough to have counts
for all 8-mer (without spaces or gaps in the middle), but the
depth (total number of read counts) isn’t enough to capture
all gapped k-mers or even non gapped k-mers with k ≥10.
Thus, to normalize the counts of gapped k-mer in the sam-
ple against library, a fifth-order Markov model was created
to get the expected number of occurrence of each sequence
and capture the bias in the library (13). A fifth order Markov
model outputs the probability of sixth nucleotide given the
previous five nucleotides. For example, the probability of a
sequence ACTACxxxACGC can be calculated as: probabil-

ity of ACTAC * probability of x given ACTAC * probability
of x given CTACx * probability of x given TACxx * prob-
ability of A given ACxxx * probability of C given CxxxA
* probability of G given xxxAC * probability of C given
xxACG. Note that probability of x given any sequence is
equals to 1. Multiplying this probability to the total counts
or reads of the sample (for which normalization has to be
done) outputs the expected number of occurrence (counts)
of the gapped k-mer sequence.

Next, the most enriched gapped k-mer sequence was used
as a seed to generate position weight matrix (PWM) by first
calculating enrichment for all gapped k-mer sequences hav-
ing 1-mismatch to the seed sequence in the same manner
and then weighting each position of PWM on the basis of
the calculated enrichment values (14).

Library preparation and cloning

The promoter libraries were based on a strong constitu-
tive E. coli promoter, apFab71. The promoter libraries were
flanked by 3′ and 5′ BsaI digestion sites and a ribosome
binding site (Bujard RBS) and were ordered as single-
stranded DNA oligos from Integrated DNA Technologies,
Inc. To render the libraries double-stranded, we used a
primer complimentary to the 3′ of the single-stranded li-
braries for DNA hybridization and DNA polymerization
(reaction: 10 �M library, 10�M primer, 1U Kapa DNA
polymerase, 1X Kapa HF buffer, 200 �M dNTPs; proto-
col: 95◦C for 3 min, 60◦C for 1 min, 72◦C for 3 min). Hy-
bridization products were purified (Omega Bio-tek, Inc.)
and the amplicon sizes were verified on a 2% agarose gel.
We used Golden Gate Assembly to clone the promoters
into designed vector pXL-3 (modified from pJ251-Gerc,
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Addgene.org plasmid #47441, Supplementary Table S3) to
drive the expression of super-folder GFP. We combined
pXL-3 backbone with individual promoter library (molar
ratio of the backbone and each promoter library was 1:9)
and incubated total 300 ng DNA in a 20 ul Gibson As-
sembly (15) reaction mix at 37◦C for 1 h and 60◦C for 5
min. We dialyzed Gibson Assembly product on a mem-
brane (0.02 �m pores) in dH2O for 1 h to remove salt. We
transformed 30 ng DNA from each dialyzed reaction into
DH10B electrocompetent E. coli (New England Biolabs,
Inc.) and recovered at 37◦C for 1 h. After recovery, serial
dilutions of transformants on LB (50 �g/ml kanamycin)
plates yielded ∼500 000 CFUs per transformation.

Enrichment of functional promoters by fluorescence-
activated cell sorting (FACS)

We cloned aTFs into a pSC101 backbone (carrying specti-
nomycin resistance gene, Supplementary Table S3) under
the control of a constitutive promoter and strong RBS by
Gibson assembly (15). Assembly reaction was transformed
into DH10B electrocompetent cells and allowed to grow
overnight at 37◦C. After sequence validation, we made cells
carrying aTFs electrocompetent by standard procedures
and transformed the cells with in vitro enriched promoter li-
brary. We plated serial dilutions of each transformation and
estimated ∼500 000 CFUs per transformation. We made
two replicates of cells carrying libraries with aTF and in-
duced one of them with appropriate small molecule in-
ducer. We induced the PmeR library with 250 �M phloretin,
TtgR library with 500 �M Naringenin and NalC library
with 20 �M PCP. After growing with shaking at 37◦C for
5 h, cells were prepared in PBS for flow cytometry (Sony
SH800S, Sony Biotechnology, Inc.).

We set up equally spaced fluorescence bin boundaries at
50% PMT and 60% PMT on GFP and mCherry respectively
in a cell sorter (SH800S, Sony Biotechnology Inc.). We re-
moved doublets and cell debris by setting forward scatter-
ing threshold to 2500 arbitrary units. We gated out doublets
by plotting forward scattering area versus forward scatter-
ing height and removing events with roughly doubled time
(time is a function of area and height in the forward scatter-
ing measurement). We sorted 500 000 events per bin and
recovered sorted population in 4 ml LB shaking at 37◦C
for 1 h. Then, we added antibiotics (50 �g/ml kanamycin
and 50 �g/ml spectinomycin) and allowed cells to grow to
OD600 of 0.6. We reinoculated cells from each bin at 1:15 di-
lution into two replicates and induced one of the replicates
with appropriate small molecule inducer. All cultures grew
for 5 h before population GFP fluorescence distribution be-
ing recorded with the cell sorter.

Measurement of aTF response curves from individual clones

We randomly selected around 100 colonies from bins with
highest fold induction (bins 2 and 3 for PmeR; bin 6
for TtgR; bin 6 for NalC). We inoculated colonies in LB
(50 �g/ml Kanamycin and 50 �g/ml Spectinomycin) in
96-well plates and allowed cells to grow until OD600 of
0.6. Then, we reinoculated cells in fresh LB at 1:15 di-
lution either with or without respective inducers. We al-
lowed cells to grow for 5 h before measuring their OD600,

GFP and mCherry fluorescence on a multi-plate reader
(Biotek HTX). We calculated fold induction by dividing
induced normalized fluorescence against non-induced nor-
malized fluorescence. We ranked colonies by their normal-
ized induced fluorescence and selected 96 colonies from
each aTF initial colony pool with high fold inductions along
the normalized induced fluorescence scale. We sequenced
96 colonies from each aTF pool to remove any duplications
and sequences with imperfect constant regions on the pro-
moter, RBS and reporter gene gfp. At the end, we had 30–
60 unique sequences for each aTF (Figure 4 and Supple-
mentary Table S1). We measured induction response for all
synthetic and native promoters in three biological replicates
with or without appropriate small molecule inducer. We se-
lected 20 representative sequences from each aTF pool to
measure inducer dose response (Figure 4C and Supplemen-
tary Table S1). We calculated the transfer function param-
eters using minpack.lm package in R (Figure 4D, Supple-
mentary Figure S5). Fitted curves were manually inspected
(Supplementary Figures S6–S8).

Model building with machine learning

For each of the functional operator sequences correspond-
ing to the three prokaryotic transcription factors––PmeR,
TtgR and NalC, fold induction ratios were computed based
on experimentally measured induced and repressed level re-
sponses. As the operator sequences were of varying length,
multiple sequence alignment was performed using T-coffee
as it yielded the most compact gap-filled sequence represen-
tation (16) (Supplementary Table S4). These gap-filled se-
quences were later converted into numerical feature vectors
using one-hot encoding (17). Support vector regression with
a radial basis function was used to build quantitative mod-
els to accurately predict fold induction ratios for a given op-
erator sequence under 5-fold cross-validation. Additionally,
10% of the initial data-set was held-out to assess the gener-
alizability. The Python based package––scikit-learn v.0.17.1
(17) was used for implementing support vector regression.
The scripts were optimized and executed in parallel across
23 CPUs (Intel Xeon 2.4 GHz processors) with cache size
capped at 20 GB of RAM space to achieve a computational
run time of ∼ O(1h).

Feature importance analysis

In order to assess which nucleotides at a given position
are important, feature importance scores were computed
based on the number of times a particular feature was se-
lected among the best set of features obtained at the end
of simulated annealing across 100 bootstrap samples of the
training dataset, as well as the observed distribution of the
feature values among the inducible and non-inducible sets.
These feature importance scores were internally normalized
and custom position weight matrices were computed for in-
ducible and non-inducible sets for the three different aTFs.
Mathematically,

feature importance scorei,j,k = bagged frequencyi,j

×observed frequencyi,j,k



10456 Nucleic Acids Research, 2019, Vol. 47, No. 19

wherein ‘i’ stands for position number which ranges from 1
to length of gap-filled sequence, ‘j’ stands for sequence char-
acter in the set {‘A’,‘T’,‘G’,‘C’,‘-’} and ‘k’ stands for either
inducible or non-inducible set, ‘bagged frequency’ stands
for normalized frequency aggregated across 100 bootstrap
sampled datasets. Later, sequence logos were generated us-
ing the web3logo tool (18).

RESULTS

Enrichment of new operator sites by in vitro selection

We chose a strong, constitutive, minimal E. coli pro-
moter (apFab71) with canonical –35 (TTGACA) and –10
(TATAAT) sites as the starting promoter for design. We
call this the ‘template’ promoter because all engineered pro-
moter variants are derivatives of apFab71. We created a
library of operators with theoretical diversity of approxi-
mately 1012 sequences by randomizing the spacer bases be-
tween –35 and –10 sites. Although spacers in natural pro-
moters are typically 17 bp long, we created 16, 17, 18 and
19 bp long spacer libraries to provide greater adaptability
for binding to an aTF. Prior to in vitro selection, we vali-
dated that all three aTFs indeed bind and release their na-
tive binding site in a ligand-dependent manner by gel shift
measurements (Supplementary Figure S2 and Supplemen-
tary Table S2). Then, we assessed the impact of randomiz-
ing the spacer on constitutive promoter activity (aTF not
co-expressed) by comparing GFP expression of the uns-
elected promoter library with unmodified apFab71. Pro-
moter libraries from 16, 17 and 18 bp spacers were highly
active (aTF not co-expressed) with median fluorescence
distribution of population comparable to unmodified ap-
Fab71 promoter (Supplementary Figure S1A and B). How-
ever, the 19 bp promoter library was less active, which was
likely caused by misalignment of –35 and –10 sites weaken-
ing RNA polymerase binding (Supplementary Figure S1B).
Nonetheless, we included the 19bp promoter library be-
cause a longer operator sequence may be more suitable for
aTFs with a larger binding footprint. We chose three aTFs
of the TetR-like family: PmeR and TtgR bind to differ-
ent flavonoid molecules which are natural products used
in medicinal, nutraceutical and cosmetic applications, and
NalC binds to pentachlorophenol which is an environmen-
tal toxin used as herbicides and wood preservatives against
fungal infection. We carried out in vitro selection by over-
expressing His-tagged aTF as bait in E. coli cell lysate.
Equimolar amounts of all four promoter libraries were
mixed and incubated with the cell lysate, followed by pro-
tein pulldown and PCR amplification of bound sequences.
Deep sequencing after five rounds of selection gave an esti-
mated 105 unique operators for each aTF (Supplementary
Table S4).

To assess the results of in vitro selection, we eliminated
sequences with fewer than 10X coverage, clustered the re-
maining sequences at 90% sequence identity threshold (us-
ing CD-HIT (19)), and sorted the clusters in descending
order based on their size (i.e., number of sequences within
each cluster) for each of the promoter libraries individually.
The ordered list of clusters for all three aTFs gave a charac-

teristic exponential fit indicative of successful enrichment as
seen in other SELEX-based methods (20,21) (Figure 2A).
Because sequence enrichment was broadly distributed, we
inferred that the selected library contains operators with
different affinities for the aTF, which is an important re-
quirement for our design strategy to generate varying tran-
scriptional outputs. No-aTF negative control did not show
exponential ranking of cluster sizes as expected. For each
aTF, similar binding motifs emerged within the respective
N-mer libraries indicating convergence of in vitro selection
(Figure 2B). No-aTF control gave random, low informa-
tion content motifs consistent with poor enrichment (Sup-
plementary Figure S3). Strong palindromic signature was
evident among the core motifs validated that PmeR, TtgR
and NalC function as dimers as expected with each half site
4–6 bp long and separated by 2–6 bp (Figure 2B).

A striking observation is that in vitro selection has rad-
ically reshaped operator site configuration compared to
the native operator while retaining core binding motifs
of the latter. Native binding sequence for PmeR (22) and
TtgR (23) are nearly 30bp long with binding site for each
monomer (half site) of the dimer separated by 12–13 bp
(Figure 2B). Yet, we found that the core binding motif of
PmeR and TtgR could be accommodated within our much
shorter 16–19 bp operator libraries with only 6-8bp sepa-
rating the half sites (Figure 2B). There are two plausible
structural interpretations: (i) any local structure between
half sites such as bending of DNA that may be present in
the native promoter no longer exists in in vitro operators (ii)
crossing angle between the DNA-binding domains of indi-
vidual monomers could be greater with native binding site,
but narrower with in vitro operators. Interestingly, we ob-
serve the effect in NalC where separation between half sites
is longer in the in vitro operator library (6 bp) compared
to the native binding site (24) (3 bp) (Figure 2B). Taken to-
gether, these results suggest that aTF-promoter interactions
have a high degree of structural plasticity while preserving
function. In summary, in vitro selection is a simple, yet pow-
erful approach to generate operators with a wide range of
aTF binding affinities, allowing aTFs to access new opera-
tor configurations distinct from their native binding site.

Identification of functional promoters by cell sorting

We employed fluorescence-activated cell sorting to rapidly
enrich functional or inducible promoters. Promoter li-
braries embedded with in vitro selected operators for PmeR,
TtgR and NalC were cloned upstream of GFP, and trans-
formed into E. coli. Transformed cells lacking aTF (aTF–)
gave high fluorescence confirming that promoters are still
constitutively active (Figure 3A, top). Cells carrying the
promoter library and co-expressing an aTF without in-
ducer (aTF+/inducer-) gave markedly reduced fluorescence
with a fold change (ratio of median fluorescence of aTF–
and aTF+/inducer-cells) of 10.4-, 12.4- and 2.5-fold for
TtgR, PmeR and NalC, respectively (Figure 3A, middle).
This validated our hypothesis that in vitro selected opera-
tors embedded between –35 and –10 sites should be able to
repress transcription. Fluorescence distribution of the re-
pressed population (aTF+/inducer-) spanned 50–100-fold
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Figure 2. In vitro selection of operators. (A) Highly similar operators are clustered together at 90% sequence identity threshold. Clusters ranked in descend-
ing order (left to right) by number of sequences within a cluster or cluster size (Y-axis). Cluster size shows characteristic exponential fit. Minimum number
of sequences per cluster is five. Red, orange, green and blue represent operator libraries of length 16bp, 17bp, 18bp and 19bp, respectively. (B) Motifs of
highly enriched sequences of all four operator libraries and native operator sites of PmeR, TtgR and NalC. Palindromic sequences representing putative
half sites is underlined in native operator sites.

indicating that the operator affinity for aTF varies widely
across the promoter library. Fluorescence distribution of
repressed TtgR promoter library (aTF+/inducer-) is dis-
tinctly bimodal with a small fraction of high GFP cells
which likely contain operators with low or no affinity for
TtgR (Figure 3A, middle).

Next, we assessed inducibility of the promoter li-
braries by determining fold induction upon adding ligand
(aTF+/inducer+) below toxicity threshold to repressed cells
(Supplementary Figure S4). Fold induction is the ratio of
median fluorescence of induced (aTF+/inducer+) and re-
pressed (aTF+/inducer-) cells. Indeed, all three promoter
libraries were ligand-inducible, with 17.6-, 7.7- and 2.5-fold
induction for PmeR, TtgR and NalC, respectively (Figure
3A, bottom). We then sorted repressed cells from low-to-
high fluorescence bins and subsequently induced cells from
each bin independently (Figure 3B, Supplementary Table
S5). This strategy of slicing the entire population into bins
facilitates rapid identification of subpopulations of cells
containing inducible promoters over those that are consti-
tutively active. This is best exemplified with NalC where fold
induction of the overall population was a modest 2.5-fold,
but after cell sorting the purple and blue bins gave fold in-
duction ratios of 24.2 and 6.5, suggesting that these bins are
now substantially enriched with inducible promoters (Fig-
ure 3B). A high proportion of promoters in the remaining
four bins (cyan, pink, brown and green) are constitutively

active (fold induction ∼1.0) likely due to low aTF-operator
affinity. Cells from three low-fluorescence TtgR bins (pur-
ple, blue and cyan) and all four PmeR bins were enriched in
inducible promoters with fold induction >5.0 for each bin
(Figure 3B). Notably, a small but significant fraction of cells
from low-fluorescence bins remain uninducible, and these
likely represent operators with very high affinity for aTF.

Characterizing promoter activity and response function

For each aTF, we clonally evaluated promoters by testing
∼100 randomly selected colonies from each sorted subpop-
ulation with high fold induction to find 30–50 inducible
promoters. Selected promoters for all three aTFs gave a
broad range of gene expression properties in terms of max-
imum reporter expression and dynamic range of the re-
porter signal (ratio of induced to uninduced reporter ex-
pression) (Figure 4A and B, Supplementary Table S1). All
promoters had low induced baseline expression or a tight off
state but different levels of ligand-induced expression (Fig-
ure 4A). Maximum ligand-induced expression across pro-
moters ranges as gradual increments from 3–80% (PmeR),
20–90% (TtgR) and 10–50% (NalC) of constitutive apFab71
(original template promoter) which is the upper limit of
gene expression (Figure 4A). Strongest induced promoter of
PmeR, TtgR and NalC is 77-, 16- and 66-fold more active
over their respective native promoters ported into E. coli
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Figure 3. In vivo enrichment of inducible promoters by fluorescence-activated cell sorting. (A) Cells expressing GFP regulated by engineered promoter
variants constitu-tively (top, aTF-/inducer-), co-expressing aTF without inducer (middle, aTF+/inducer-), and co-expressing aTF with inducer (bottom,
aTF+/inducer+). Fold repression (FR) is the ratio of median fluorescence of aTF-/inducer- and aTF+/inducer- cells. FR is shown in the middle panel.
Fold induction (FI) is the ratio of median fluorescence of aTF+/inducer+ and aTF+/inducer- cells. FI is shown in the bottom panel (B) Cells repressed
by aTF (aTF+/inducer-) are sorted into bins according to their fluorescence and each bin is induced independently. Top panel is overall distribution
of repressed cells. Colors represent cells sorted into different fluorescence bins. Lower panels show ligand-induced response of cells from each bin. Fold
induction (FI) ratio of each bin is mentioned in the panel.
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Figure 4. Characterization of transcriptional activity of individual promoters. (A) Normalized fluorescence of uninduced and induced states (maroon
circles) reported as a percentage activity of constitutive apFab71 promoter. Activity of native promoter ported into E. coli (blue squares) and commonly
used pLTetO promoter (green triangles) are shown for comparison. (B) Fold induction ratio between induced and uninduced fluorescence of engineered,
native and pLTetO promoters. (C) Ligand dose response data fitted to a standard Hill equation. Color gradient represents fold induction and native
promoter is shown as dashed line. (D) Plot of maximum induced reporter expression (Vmax) versus concentration of ligand required to reach half Vmax
(Km). Both parameters estimated from fitted Hill equation. Blue dot represents native promoter.
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(Blue points, Figure 4A). Furthermore, strongest induced
promoter of PmeR and TtgR was greater than twice as ac-
tive and NalC 40% more active than the widely used pLTetO
promoter (25) (Figure 4A, green points). Fold induction of
individual promoters (ratio of fluorescence of induced to
uninduced states), which denotes dynamic range of reporter
signal, of all twenty PmeR and NalC promoters and sixteen
out of twenty TtgR promoters was greater than their respec-
tive native counterparts (Figure 4B). Although the dynamic
range of native promoters of TtgR and PmeR was high (55-
and 20-fold, respectively, blue squares) owing to low unin-
duced baseline expression, their overall activity was poor.
But, engineered promoter variants with comparable unin-
duced baseline expression gave much higher dynamic ranges
due to greater transcriptional activity (Figure 4B). This dif-
ference is best exemplified by comparing native promoters
of PmeR, TtgR and NalC with respective engineered vari-
ants of comparable dynamic range (PmeR variant 20, TtgR
variant 20 and NalC variant 19) (Figure 4B). Although the
dynamic range of each pair is comparable (Figure 4B), en-
gineered promoter variants are 50 to 100-fold more active
(Figure 4A). Low activity of native promoters in E. coli indi-
cates poor cross-host compatibility and underscores a ma-
jor challenge in the biosensor field of limited portability of
regulatory parts across hosts. By using a template promoter
from the target host itself (in this case, E. coli), we simplify
aTF portability and achieve high activity.

Next, we measured ligand concentration dependent gene
expression (dose response) of all promoters and fitted the
data to a standard Hill equation. The dose response curves
revealed rich functional diversity of promoter variants with
different ligand sensitivities and transcriptional activities
compared to native promoter ported in E. coli (Figure 4C,
solid lines versus dashed line). To quantify the response
characteristics, we computed the following Hill equation
parameters Vmax, Km and n by non-linear regression (Sup-
plementary Table S1, Supplementary Figure S6–S8). Vmax is
the maximum promoter activity at full induction; Km is the
concentration of ligand for half Vmax expression and repre-
sents sensitivity to the ligand; and n is the Hill coefficient de-
scribing cooperativity of response. Several interesting prop-
erties of the promoters become evident from inspecting Hill
equation parameters (Figure 4D). First, points parallel to
the X-axis (Figure 4D) are promoters with different ligand
sensitivities (Km) but similar gene expression levels (Vmax).
The widest gap in Km values for similar Vmax are the follow-
ing promoter pairs: PmeR promoters 20 versus 17 (77 �M
versus 149 �M), TtgR promoters 5 versus 3 (122 �M versus
339 �M), and NalC promoters 8 versus 11 (2.8 �M versus
12.2 �M). This result is non-intuitive because it shows lig-
and sensitivity can be altered by changing operators with-
out mutating the protein itself. One may expect ligand sen-
sitivity to be linked to ligand affinity or allosteric activ-
ity which are properties of the aTF, not the operator. Sec-
ond, changing operators can change cooperativity of sig-
nal response (Supplementary Figure S5). Greater cooper-
ativity (higher Hill coefficient) implies both monomers of
the dimeric aTF act in concert eliciting a steeper response
and lower cooperativity generates a graded linear response
(Supplementary Figure S5–S8). Since cells utilize both types
of signal responses, our results show that natural promoters

may adapt signal response to different contexts by possibly
changing operators. These results open the possibility of a
whole new layer of genome regulation where transcriptional
response is encoded in the operator and is reminiscent of
studies demonstrating alternate ligand specificities of gluco-
corticoid receptor at different operator sites (26,27). Third,
promoters with similar Km have different Vmax (lines paral-
lel to Y-axis, Figure 4D). Since in vitro selection generates
operators with different affinities, an operator with greater
aTF affinity would have lower Vmax due to higher residual
binding even upon induction compared to one with lower
affinity. In summary, characterization of individual promot-
ers shows that a multitude of induction responses can be
generated by simply altering operator sequences.

Sequence determinants of promoter function by machine
learning

Since only a subset of promoters that repressed the reporter
were ligand-inducible and the rest were constitutively off,
we wanted to understand the sequence determinants of pro-
moter function. We hypothesized that both inducible and
uninducible promoters likely have the same core motif re-
quired for binding, but position of the core motif and/or
identity of the flanking bases may play an important role
in ligand inducibility. To test this hypothesis, we developed
machine learning models for each aTF independently us-
ing inducible and uninducible sequences, corresponding to
the top one percent of most abundant sequences from in
vitro binding assay, to assess the contribution of differ-
ent nucleotides at a given position. It is well known that
sampling sequence space uniformly helps improve predic-
tive power of empirical models for making predictions on
unexplored regions. To retrospectively assess sequence and
functional diversity in our dataset, we plotted edit (or Lev-
enshtein) distance between sequence of interest and a ref-
erence sequence (along the radial axis) vs. fold induction
ratio (along the angular axis) (Figure 5A). While PmeR
and TtgR sequence variants were broadly distributed, se-
quence diversity of NalC was relatively lower. As the op-
erator sequences were of varying length (16–19 bp long),
we performed multiple sequence alignment using T-coffee
to yield the most compact gap-filled sequence representa-
tion (16) (Supplementary Table S6). Based on one-hot en-
coding, each sequence was converted into a vector of nu-
merical features corresponding to the identity of bases at a
given position (Supplementary Figure S9). We used support
vector regression (28) with radial basis function to build
quantitative models to accurately predict fold induction ra-
tios for a given operator sequence. The coefficient of cor-
relation between predicted and actual fold induction ratios
was 0.84, 0.88 and 0.83 for TtgR, PmeR and NalC, respec-
tively (Figure 5B, Supplementary Table S7). In order to as-
sess which nucleotides at a given position are important, we
computed feature importance scores based on the number
of times a particular feature was selected at the end of simu-
lated annealing across 100 bootstrap samples of the training
dataset. Next, we identified consensus sequence motifs (18)
for operators within inducible and uninducible promoters
based on the feature importance scores computed by ma-
chine learning. Both inducible and uninducible promoters
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Figure 5. Sequence determinants of promoter activity by machine learning. (A) Diversity of operator sequences and their corresponding fold induction
shown as a speedometer plot. Central point corresponds to a reference sequence, in this case operator embedded with highest fold induction. Radial axis
is Levenshtein distance between reference operator (center point) and the remaining inducible sequences. Angular axis is fold induction. (B) Scatter plots
of fold induction predicted vs. experimental and the Spearman correlation coefficient. (C) Sequence motifs of inducible (top) and uninducible (bottom)
operators. Y-axis represents bits. Gray boxes indicate differences in key sequence features between inducible and uninducible promoters. Logos were
generated using web3logo tool

share similar core motifs resembling the motifs obtained af-
ter in vitro selection (Figure 2) which suggests that these mo-
tifs are minimally required to bind to aTF (Figure 5C). Dif-
ferences between inducible and uninducible promoters arise
from location of the core motif within the operator region,
as well as the identity of bases flanking the core motif. For
PmeR, ‘TACA’ core motif of the left half site is located be-
tween nucleotides 1–4 among inducible promoters and 3–6
among uninducible promoters. A plausible explanation is
that a wider binding angle caused by TACA at positions 1–
4 may increase DNA bending or strain the dimer interface
and the resulting strain energy may allow PmeR to read-
ily dissociate upon induction. Bases flanking the core motif
also help drive the differences between both sets of promot-
ers (Figure 5C). They can be completely different as seen
at positions 7 and 13 of PmeR. But more often, they show
stronger sequence preference for a certain base(s) as seen at
positions 12 and 14 of PmeR, 7 and 9 of TtgR, and 3, 5, 6,
17, 18 and 20 of NalC. Pairwise and higher-order synergis-

tic interactions between bases may also facilitate inducibil-
ity of a promoter as simple linear models failed to explain
the variability in data. These results show that seemingly mi-
nor differences in promoter sequences can have a large im-
pact on inducibility of a promoter. When a ligand binds to
a DNA-bound aTF, strain energy propagates from ligand
to the DNA-binding domain. Minor sequence differences
may control the balance between a tightly bound state that
cannot be released and a weakly bound state that can be eas-
ily dislodged upon binding of ligand. Since many operons
with different transcriptional demands are often controlled
by the same aTF, our results provide insights into how na-
ture might tailor the operator site to re-use the aTF to meet
different regulatory needs.

DISCUSSION

Programmable ligand-inducible promoters are an invalu-
able tool for synthetic circuit design and biosensor-guided
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high-throughput screening. We designed inducible promot-
ers by modularized assembly onto the simplest of bacterial
promoters, devoid of complex regulation found in native
promoters. By simply changing aTF’s affinity for its oper-
ators, we engineered promoter variants with different gene
expression levels, dynamic ranges and ligand sensitivities.
This generalizable method should be applicable to other
TetR-family proteins and potentially thousands of other
bacterial repressors expanding the suite of aTFs for syn-
thetic biology applications. We inserted the operator be-
tween the –35 and –10 sites of an E. coli promoter because
it mimicked the location of natural operator sites for many
aTFs and hence would likely be most effective region for
blocking the RNA polymerase. This architecture imposes a
limitation on length of the operator because transcriptional
strength is highly sensitive to the distance between –35 and
–10 sites (optimal separation of ∼17 bp). Our methodology
can be easily modified to explore other promoter architec-
tures to accommodate aTFs with longer binding footprint.
Length is no longer a limitation if the operator is placed up-
stream of –35 site, flanking –35 on both sides, flanking –10
on both sides or downstream of –10 site. To improve the ef-
ficiency of in vitro selection, we can facilitate binding by a
priori fixing the core motif from natural operators and ran-
domizing the remaining positions. Our promoter engineer-
ing strategy should be applicable to transcription activa-
tors too because though they are mechanistically different
from repressors, the underlying principles governing aTF-
operator interactions remain the same. For instance, tran-
scription activators of AraC-, LysR- and XylR-like families
translocate across distal and proximal operator sites with
differential affinities in a ligand-dependent manner to mask
or unmask RNA polymerase binding sites within a pro-
moter (29). Operators with different affinities at the distal
and proximal sites would modulate transcription by chang-
ing promoter occupancy by RNA polymerase. A system-
atic study of different architectures and aTF mechanisms
would lead to comprehensive design principles for ligand-
inducible promoter engineering.

Discovery of new metagenomic aTF biosensors for high-
throughput screening would be bolstered by our method
(30,31). The metagenome is a treasure trove of new aTF
biosensors, but often native promoters are either unknown
or cannot be activated. This would no longer be an imped-
iment because we should be able to de novo engineer in-
ducible promoters for metagenomic aTFs by our method.
Non-model organisms have attracted renewed interest, en-
abled by CRISPR-Cas9- genome editing, because their
novel metabolic capabilities can be harnessed for biosyn-
thetic engineering (32). Although aTF-based biosensors
are widely employed in E. coli, their use is virtually non-
existent in non-model organisms due to poor compatibility
of promoters across hosts. Our method should simplify aTF
portability into industrially important non-model microbes
including Corynebacterium, Pseudomonas and Zymomonas
by using a constitutive promoter of the native host, and ad-
justing aTF-operator interactions to match the strength of
the native promoter.

Our result also challenges the passive role attributed to
an operator as merely a docking or tethering site of the
aTF. This view arises from perceiving the ligand as the al-

losteric effector and DNA-binding interface as the distal
site. We show that changing the operator can profoundly af-
fect transcriptional response such as ligand sensitivity and
cooperativity which are generally thought of as properties
of the protein, not DNA. Protein allostery could be po-
tentially bidirectional where both allosteric and distal sites
‘talk’ to each other rather than the conventional unidirec-
tional paradigm. Furthermore, this would expose a whole
new layer of site-specific transcription regulation governed
by aTF-operator interactions.
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