
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Automated detection of low ejection fraction
from a one-lead electrocardiogram:
application of an AI algorithm to
an electrocardiogram-enabled Digital
Stethoscope
Zachi I. Attia 1, Jennifer Dugan 1, Adam Rideout2, John N. Maidens2,
Subramaniam Venkatraman2, Ling Guo2, Peter A. Noseworthy 1,
Patricia A. Pellikka 1, Steve L. Pham2, Suraj Kapa 1, Paul A. Friedman1,
and Francisco Lopez-Jimenez 1,*
1Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA; and 2Eko Devices, Inc., Berkeley, CA, USA

Received 1 November 2021; revised 21 April 2022; online publish-ahead-of-print 23 May 2022

Aims Electrocardiogram (ECG)-enabled stethoscope (ECG-Scope) acquires a single-lead ECGs during cardiac auscultation and
may facilitate real-time screening for pathologies not routinely identified by cardiac auscultation alone. We previously
demonstrated an artificial intelligence (AI) algorithm can identify left ventricular dysfunction (LVSD) [defined as ejection
fraction (EF)≤ 40%] with an area under the curve (AUC) of 0.91 using a 12-lead ECG.

Methods
and results

One hundred patients referred for clinically indicated echocardiography were prospectively recruited. ECG-Scope re-
cordings with the patient supine and sitting were obtained in multiple electrode locations at the time of the echocardio-
gram. The AI algorithm for the detection of LVSD was retrained using single leads from ECG-12 and validated against
ECG-Scope to determine accuracy for low EF detection (≤35%, ,40%, or ,50%). We evaluated the algorithm with
respect to body position and lead location. Amongst 100 patients (aged 61.3+ 13.8; 61% male, BMI: 30.0+ 5.4), eight
had EF≤40%, and six had EF 40–50%. The best single recording position was V2 with the patient supine [AUC: 0.88
(CI: 0.80–0.97) for EF≤35%, 0.85 (CI: 0.75–0.95) for EF≤40%, and 0.81 (CI: 0.71–0.90) for EF, 50%]. When using
an AI model to select the recording automatically, AUC was 0.91 (CI: 0.84–0.97) for EF≤35%, 0.89 (CI: 0.83–0.96)
for EF≤40%, and 0.84 (CI: 0.73–0.94) for EF, 50%.

Conclusion An AI algorithm applied to an ECG-enabled stethoscope recording in standard auscultation positions reliably detected
the presence of a low EF in this prospective study of patients referred for echocardiography. The ability to screen pa-
tients with a possible low EF during routine physical examination may facilitate rapid detection of LVSD.
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Introduction
Since the invention of the stethoscope in 1819, it has become well
recognized that the stethoscope is an essential component of any di-
agnostician’s armamentarium—that the science of auscultation can
serve the well-trained physician in not only identifying diseases early
in their course but to also augment findings obtained via other, often
more costly tests. However, while auscultation may offer one per-
spective on cardiac health, the electrocardiogram (ECG) may offer
additional value.

Recent data has suggested that, by applying algorithms derived out
of large, well-annotated data sets using various artificial intelligence
(AI) techniques, it is possible to determine potassium values, patient
age or sex, or the presence of a low ejection fraction (EF) from the
ECG alone.1–3 In particular, in the case of a low EF, whereas there
are well-recognized treatments to reduce associated morbidity and
mortality, around 8% of the population may be otherwise asymptom-
atic and go undiagnosed.4 Thus, as a low EFmay not always be obvious
during routine clinical examination, the ability of the ECG to automat-
ically suggest the presence of a low EF and to drive the clinician to re-
fer for confirmatory testing (e.g. echocardiography) is clear. However,
widespread acquisition of routine 12-lead ECGs in ostensibly healthy
patients is neither cost-effective nor efficient. A recent technology has
demonstrated the ability to acquire a one-lead, digital ECG during
routine cardiac auscultation.5 Applying AI-enabled, ECG-derived

clinical diagnostic algorithms to the signals acquired by such a device
may allow for early identification of clinical pathology during the rou-
tine physical examination. Thus, we sought to evaluate the predictive
accuracy of using such an ECG-enabled digital stethoscope in auto-
matically identifying patients with a low EF via a previously reported
AI algorithm derived from 12-lead ECGs.

Methods
According to a Mayo Clinic Institutional Review Board (IRB) approved
protocol, 100 consecutive patients were approached for inclusion in
the study. All patients were referred for outpatient transthoracic echo-
cardiography for any indication to the Mayo Echocardiography
Laboratory. Informed consent was obtained immediately before their
echocardiogram.

Electrocardiogram/heart sound acquisition
After obtaining patient informed consent, the ECG-enabled stethoscope
(Eko DUO, Eko Devices, Inc; Oakland, CA) was applied to the patient’s
chest in a variety of locations (Figure 1) both supine and sitting by a single
operator (J.D.), ECG was recorded in 500 Hz for 15 s in each position.
The AI algorithm (described below) was applied to all single-lead ECGs
obtained to determine a probability score (0–1) of the patients having
a low EF (defined as ≤35%, ≤40%, or ,50%).
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Construction of neural network for use on
single-lead electrocardiogram
The development, validation, and network architecture for the 12-lead
ECG EF prediction algorithm has been previously published.3 To retool
the network for use on a single-lead ECG, a lead agnostic training method
to allow the 12-lead AI-ECG model to function off of a single lead was
performed. This consisted of retraining the model to use every individual
lead as a unique, independent lead for the purposes of identifying a low EF
similar to the methods described previously.3 This was carried out using
the same cohort used to develop the original mode, containing 35 970
patients (of those 3894 patients had an EF≤40%) used for seeding the
network weights (training set), and 8989 patients (of those 990 patients
had an EF≤40%) used for internal validation, by changing themodel archi-
tecture described in3 from a convolutional neural networks with an input
of (12× 5000) to (1× 5000), as the original model was operating on
each lead separately in all layers except for one that used to combined
the features from the different leads (the ‘spatial block’ in the original
manuscript), we removed the ‘spatial block’ and retrained the model,
during training we fed each of the leads from the original 12 leads as an
independent sample after normalizing it to have an maximum absolute
amplitude of 1 (au), that is not affected from the ECG polarity. For the
testing set from the original derivation cohort, the area under
the curve (AUC) from averaging the scores for all 12 leads tested
independently, generating a per-patient score, was 0.9 for detection
of EF≤35%.

Owing to the variability in ECGs recorded using a mobile form factor
placed on the patient chest in different locations, we normalized all data
sets used in this study to have a maximum amplitude of 1 unit. In addition,
when training and testing the algorithm, we used one version in which the
ECG was fed to the network as-is, and one version when the ECG amp-
litude was multiplied by ‘−1’ to mimic a situation when the device elec-
trodes are in opposite orientation. In the testing stage, the score of both
versions was averaged to make the model invariant to electrode reversal.

Neural network to determine optimal
electrocardiogram lead
When obtaining ECGs from multiple positions, certain leads may have
better overall signal characteristics with minimal noise, baseline wander,
and maximal contact to allow for adequate cardiac signal acquisition. An
algorithm was developed to automatically identify the optimal ECG lead
from all stethoscope acquired ECGs. Development of this algorithm con-
sisted of training a convolutional neural network model to classify signal
quality of a single-lead ECG strip into one of three classes: good, moder-
ate and poor signal quality. This model was trained using a data set of
1408 annotated ECGs collected at clinical sites different from the study
site used to collect the test set using the digital ECG stethoscope system.
The model takes in a rolling window of two-second ECG segments in
natural (multiplied by 1) and inverted (multiplied by −1) orientations.
Model outputs were averaged across segments and orientations to de-
termine a single output for each ECG strip. The model output then

Figure 1 ECG positions obtained using digital stethoscope. Shown are the various positions in which ECGs were obtained with the patient both
supine and sitting. A total of five ECG positions as labeled in the figure (Lead I with fingers from either hand against each electrode; a modified V5,
modified V2, an angled position in the left upper sternal border, and a horizontal position at the level of the clavicle) were obtained for a total of 10
single-lead ECGs.
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was used to identify the optimal ECG signal for a given study subject by
selecting the lead with maximum probability of good signal quality ac-
cording to the model’s averaged outputs. The single-lead AI-ECG model
was run on each of the ECGs obtained and also on the optimal ECG lead
based on this methodology.

Low ejection fraction outcome analysis
A total of 978 recordings were used for the analysis (summary of missing
recordings per patients are presented in see Supplementary material
online, Table S1). Each ECG recording was normalized and evaluated
using both the EF-AI single-lead algorithm yielding a probability score
(0–1) of the likelihood of having a low EF and the AI-Quality network.
After deriving the scores for each lead location in the two body positions,
an ensemble score (optimal score) was calculated by using the single re-
cording with the highest AI-Quality score per patient. The network re-
ports a score between 0 and 1 (0= low likelihood of low EF; 1= high
likelihood) for each ECG that is evaluated. The area under the receiver
operating characteristics curve (AUC) was the primary outcome mea-
sures and was determined for the test cohort.

Results

Demographics
A total of 100 patients (age 61.3+ 13.8 years, 61% male) comprised
the study group. Seven patients had an EF≤35%, one had 35%,
EF≤40%, and six had EF 40–50%. Indications for echocardiography
included atrial fibrillation (N= 15); dyspnoea (N= 25); heart failure
(N= 19); syncope (N= 6); bradycardia (N= 3); arrhythmia (N=
11); and other reasons (N= 21).

Accuracy of single-lead digital
stethoscope-enabled electrocardiogram
in identifying a low ejection fraction
Figure 1 depicts the various positions in which ECGs were obtained
via the ECG-enabled stethoscope in both supine and sitting positions.

Table 1 summarizes the area under the receiver operator curve
(AUC) for each of the positions in which the ECG was obtained
for prediction of an EF, 35%, EF, 40% and,50%. The single re-
cording with the highest AUC was in the V2 position with the pa-
tient supine. However, the average score across all leads
performed similarly robustly (AUC for identifying EF, 35%
0.86; EF, 40% 0.75; and ,50% 0.82) (Figure 2). When the sys-
tem’s algorithm was used to automatically select the optimal
ECG, however, the AUC for prediction of low EF was highest
[AUC for ,35% 0.91 CI: (0.84–0.97); for ,40% 0.89 CI: (0.83–
0.96); for ,50% 0.84 CI: (0.72–0.96)].

Accuracy and model statistics for the
invariant lead
Sensitivity, specificity, NPV, and PPV were calculated using the in-
variant lead model for the different EF thresholds. For EF≤35%:
sensitivity, 85.7%; specificity, 84.9%; PPV, 30.0%; and NPV,
98.8% using a threshold score of 56% (Figure 3). For EF≤40: sen-
sitivity, 87.5%; specificity, 80.4%; PPV, 28.0%; NPV, 98.7% with a
threshold score of 53.8% and for EF,50% sensitivity, 85.7%; spe-
cificity, 80.2%; PPV, 41.4%, and NPV, 97.2% using a threshold
score of 51.8%.

Discussion
The stethoscope has seen many changes over the past 200
years. However, the essential attribute being detected—namely
heart sounds derived from the mechanical flow of blood—has
barely evolved. Although other efforts to pair ECG data with
heart sounds have existed over the years (e.g. phonocardiogra-
phy), their use has been limited due to lack of convenience
(stemming from the need of additional wires and connections
to the patient’s person) or of interpretability (due to the
need of an experienced cardiologist to interpret the data).5,6
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Table 1 AUC by stethoscope/ECG position

Body position Lead
location

AUC for EF≤35% AUC for EF≤40% AUC for EF,50% N N
EF≤35

N
EF≤40

N EF,50 N
EF.=50

Sitting AN 0.83 CI: (0.64–1) 0.77 CI: (0.58–0.97) 0.76 CI: (0.63–0.89) 98 7 8 14 69

Sitting CL 0.83 CI: (0.69–0.97) 0.8 CI: (0.67–0.94) 0.77 CI: (0.64–0.9) 98 7 8 14 69

Sitting L1 0.86 CI: (0.74–0.99) 0.86 CI: (0.75–0.97) 0.83 CI: (0.72–0.93) 97 7 8 14 68

Sitting V2 0.79 CI: (0.65–0.94) 0.8 CI: (0.67–0.93) 0.73 CI: (0.56–0.9) 96 7 8 13 68

Sitting V5 0.72 CI: (0.52–0.92) 0.72 CI: (0.54–0.89) 0.73 CI: (0.59–0.86) 96 7 8 14 67

Supine AN 0.78 CI: (0.54–1) 0.77 CI: (0.56–0.97) 0.73 CI: (0.56–0.9) 100 7 8 14 71

Supine CL 0.79 CI: (0.63–0.95) 0.78 CI: (0.65–0.92) 0.81 CI: (0.71–0.9) 100 7 8 14 71

Supine L1 0.84 CI: (0.62–1) 0.85 CI: (0.66–1) 0.81 CI: (0.65–0.96) 94 7 8 14 65

Supine V2 0.88 CI: (0.79–0.97) 0.85 CI: (0.75–0.95) 0.81 CI: (0.7–0.93) 100 7 8 14 71

Supine V5 0.75 CI: (0.59–0.91) 0.75 CI: (0.61–0.89) 0.72 CI: (0.59–0.85) 99 7 8 14 70

Average Invariant 0.86 CI: (0.69–1) 0.85 CI: (0.71–1) 0.83 CI: (0.71–0.95) 100 7 8 14 71

Best lead per

patient

Invariant 0.91 CI: (0.84–0.97) 0.89 CI: (0.83–0.96) 0.84 CI: (0.72–0.96) 100 7 8 14 71

The lead positions correlate with the positions demonstrated in Figure 2. The optimal lead and average were defined as outlined in the methods, in some positions with missing ECGs,
the analysis was carried out with available data and the number of patients in each group was reported.
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Thus, although ECG data could certainly be acquired during
normal bedside examination, it has not been done routinely
(Figure 4).

The capacity of a stethoscope used for routine cardiac ausculta-
tion to simultaneously record an ECG at each position in which
the device is placed may offer additional value in part due to

Figure 2 Receiver-operating curve for prediction of low EF. Shown is the ROC curve for prediction of a low EF using the single-lead,
stethoscope-enabled ECG. The ROC curve shown is for the optimal lead signal from all ECGs obtained. The blue line indicates the ROC curve
for prediction of an EF≤ 35% [AUC= 0.91 CI: (0.84–0.97)], the orange curve for prediction of an EF ≤40% [AUC= 0.89 CI: (0.83–0.96)]
and the orange curve for prediction of an EF ,50% [AUC= 0.84 CI: (0.72–0.96)].

Figure 3 Pre-processing. To make the model results invariant to amplitude and direction, each ECG is normalized and flipped and the EF score is
the average score of both directions.
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(i) avoidance of cumbersome patches, wires, or other externally at-
tached machinery; and (ii) ability to augment the data via automated
diagnostics, which may supplement the physician’s interpretation of
physical findings with minimal user interaction or prior expertise; and
(iii) the fact that the use of a stethoscope is integrated into clinical
workflows, facilitating ready adoption. The ability to augment what
is otherwise a routine portion of any physical examination may
have profound implications on early identification of disease, such
as the presence of a low EF.

Our data suggests that it is feasible to routinely obtain ECG signals
using an ECG-enabled digital stethoscope, process such signals
through an AI-enabled algorithm trained from 12-lead ECGs; and
automatically detect presence of a low EF with clinical useful predict-
ive power from the stethoscope-enabled ECG when compared with
12-lead ECGs in the same patients in this prospective study.

The overall accuracy of the ECG-enabled stethoscope was good
and while the V2 position supine had the best results followed by
the average probability attained based on ECGs obtained from all po-
sitions together, an algorithm that selected the lead with the optimal
signal overall performed the best (AUC= 0.91 for EF≤35%; 0.84 for
EF, 50%). The reason for this might be due to recordings from
chest wall locations with poorer signal quality resulting in an inaccur-
ate prediction, and that the EF algorithm is dependent on having an
optimal signal at the time of acquisition. However, during a normal
physical examination, it is expected that the stethoscope is applied
to a minimum of four locations for the purposes of cardiac ausculta-
tion. Furthermore, it is also considered routine to listen with the pa-
tient both supine and sitting.7 Thus, this variability in accuracy based
on single site, single-position ECG acquisition is unlikely to be rele-
vant when the stethoscope is used in routine clinical practice due
to the fact that multiple ECGs would be obtained anyway.

Future research will be needed to determine the diagnostic accur-
acy for low EF in an ostensibly healthy population, the reproducibility
of obtaining diagnostic quality ECG signals during routine physical
examination by providers, and the clinical impact of such early detec-
tion algorithms for a low EF. In addition, while not specifically studied
here, it is possible that heart sounds may contain similar data to drive
prediction of a low EF equivalent to or better than an ECG alone, or

that the combination of both may improve diagnostic accuracy.
Finally, impact of cost of such new digital technologies, cost of in-
creased referrals for more advanced testing (in this case echocardi-
ography), and acceptability of the augmented interpretations by
clinicians will have to be weighed against impact on patient outcomes
at a larger population level.

Limitations
There are several limitations to our study. First, the number of pa-
tients included was small. As all were referred for an echocardio-
gram, pre-test probability of some cardiac disease was high. Thus,
the risk of false positives could be higher in an otherwise healthy
population who would not have otherwise had an indication for an
echocardiogram. Second, all stethoscope-enabled ECG acquisition
was performed by a single individual. Thus, reproducibility of signal
acquisition between different providers requires further study.
Third, as is already a recognized current limitation of AI and, specif-
ically, neural network techniques, the exact features of the ECG lead-
ing to the automated interpretation of a low versus normal EF are
not easily identifiable. Finally, as we have reported previously,
amongst patients with ‘false positives’ (i.e. presence of a normal EF
when the algorithm predicted a low EF), there is a nearly five-fold in-
creased risk of developing a low EF over follow-up when compared
with patients where the ECG predicted the EF was normal and it ac-
tually was.(4) Thus, it is possible that some of our ‘false positives’may
nevertheless reflect a high-risk cohort for development of a low EF in
the future, though the follow-up period was too short to prove this.

Conclusion
In this prospective study of patients referred for echocardiography, it
was feasible to automatically identify patients with depressed ven-
tricular function using a stethoscope with embedded electrodes
for automated ECG acquisition. The ability to augment bedside phys-
ical diagnostics through advancing digital technologies may improve
early diagnosis of ventricular dysfunction and, potentially, other phys-
ical ailments. Future work evaluating impact on patient outcomes,
costs of care, and reproducibility amongst different clinical providers
will be needed to validate clinical impact.
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Figure 4 Histogram of LVEF in our cohort.
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