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Abstract

In the era of open data, Poisson and other count regression models are increasingly impor-

tant. Still, conventional Poisson regression has remaining issues in terms of identifiability

and computational efficiency. Especially, due to an identification problem, Poisson regres-

sion can be unstable for small samples with many zeros. Provided this, we develop a

closed-form inference for an over-dispersed Poisson regression including Poisson additive

mixed models. The approach is derived via mode-based log-Gaussian approximation. The

resulting method is fast, practical, and free from the identification problem. Monte Carlo

experiments demonstrate that the estimation error of the proposed method is a considerably

smaller estimation error than the closed-form alternatives and as small as the usual Poisson

regressions. For counts with many zeros, our approximation has better estimation accuracy

than conventional Poisson regression. We obtained similar results in the case of Poisson

additive mixed modeling considering spatial or group effects. The developed method was

applied for analyzing COVID-19 data in Japan. This result suggests that influences of

pedestrian density, age, and other factors on the number of cases change over periods.

Introduction

Currently, a wide variety of count data are collected through sensors and used for smart urban

and regional management (see [1]). For example, in 2020–2021 when the coronavirus disease

(COVID-19) spread globally, the daily number of people infected with coronavirus was moni-

tored worldwide, and countermeasures were considered based on the observations [2].

Poisson and other regression models for count data have been used for analyzing the num-

ber of COVID-19 cases (e.g., [3, 4]) or other diseases (e.g., [5, 6]). These regression models

have also been used in ecology (e.g., [7, 8]), criminology (e.g., [9, 10]), and other fields.

Recently, Bayesian Poisson regression, which assumes Poisson distribution for the count data

and Gaussian priors for latent variables describing spatial, group, and other effects, is widely

used in applied studies.

Still, Poisson regression has remaining issues in terms of (a) computational efficiency and

(b) identifiability. Regarding (a), owing to the lack of conjugacy between the Poisson and
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Gaussian distributions, an approximate inference is necessary for the estimation. Unfortu-

nately, the Markov Chain Monte Carlo method can be slow for large samples. Faster approxi-

mations have been developed for count data regression in a context of additive modeling (e.g.,

[11, 12]), mixed effects modeling [13], and Gaussian process (e.g., [14, 15]).

Regarding (b), the maximum likelihood estimates of the conventional Poisson regression

are unidentifiable or identifiable only weakly for certain data configurations [16, 17], typically,

for small samples with many zeros. As we will illustrate later, this property considerably wors-

ens the accuracy of Poisson regression estimates in some cases.

Gaussian approximation is useful for improving (a) the computational efficiency and avoid-

ing (b) the identification problem, which is attributed to the Poisson likelihood [18]. [19–22]

proposed closed-form Gaussian approximations for Poisson regression. These approaches are

easy to implement, computationally efficient, and free from the identification problem. Given

the current situation wherein a wide range of researchers and practitioners use count data,

these practical approaches will become increasingly important. Unfortunately, these approxi-

mations have the following disadvantages:

i. They have poor approximation accuracy for counts with many zeros as we will demonstrate

later. A closed-form approach accurately describing such data is needed.

ii. An arbitrary parameter, which is used to avoid taking the logarithm of zero, must be deter-

mined a priori. The value is known to have substantial impact on the modeling result [23].

A closed-form approach without such an arbitrary parameter is needed.

Given that, we develop a log-Gaussian approximation for the over-dispersed Poisson

regression that is fast, practical, avoids the identification problem, and overcomes (i)–(ii).

Methods

Improved log-Gaussian approximation

Over-dispersed Poisson regression. This study considers the following over-dispersed

Poisson model for count variables Yi|i2{1,. . .N}:

Yi � odPoissonðli; s
2Þ; li ¼ zi expðmiÞ; ð1Þ

where E[Yi] = λi and Var[Yi] = σ2λi. λi is a mean parameter, σ2 is an over-dispersion parameter,

and zi is a given offset variable.

Suppose that μi = xi
0β where xi is a column vector of K explanatory variables and β is a vec-

tor of regression coefficients. The coefficient estimator and the variance-covariance matrix are

given as

β̂ ¼ ðX0ΛXÞ� 1X0Λz; ð2Þ

Var½β̂� ¼ ŝ2ðXΛXÞ� 1
: ð3Þ

z = [z1,. . .,zN]0 with zi ¼ mi þ
Yi � li
li
; X ¼ x0 1; . . . ; x0N

� �0
, and Λ is a diagonal matrix whose i-th

element equals λi. The coefficients are estimated by an iteratively re-weighted least squares

(IRLS) method alternately updating β̂ and l̂ i ¼ zi expðxi
0β̂Þ until convergence. Given l̂ i; the
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dispersion parameter is estimated as follows:

ŝ2 ¼
1

N � K

XN

i¼1

ðYi � l̂ iÞ
2

l̂ i

: ð4Þ

The resulting mean estimate l̂ i for the over-dispersed Poisson model is known to be the

same as the conventional Poisson regression assuming ŝ2 ¼ 1:

Yi � PoissonðliÞ; li ¼ ziexpðmiÞ: ð5Þ

l̂ i is the Poisson maximum likelihood estimator that suffer from the identification problem as

detailed in [17]. Note that the λi parameter explains not only the mean but also the mode of Yi;

for integer-valued λi, Yi has two modes {λi−1, λi}. Later, we will use the center of the two

modes Modec[Yi] = λi−0.5.

Log-Gaussian approximation for the Poisson regression. To overcome the identifica-

tion problem, we consider approximating the mean estimator l̂ i by using an estimator l̂þi
obtained from a log-Gaussian model, which is unaffected by the identification problem. The

estimated l̂þi is used to estimate β̂; Var½β̂�, and ŝ2.

For the approximation, we need to identify a log-Gaussian model that accurately approxi-

mates the Poisson model Eq (5) around λi. Although mean-based log-Gaussian approxima-

tions for Poisson regression has been developed (e.g., [20]), the mean and mode of the two

distributions behave somewhat differently; the mean and mode of a Poisson distribution are

linearly proportional and grow in the same order (and, thus, λi explains both mean and mode)

while those of a log-Gaussian distribution are not linearly proportional, and the mean grows

faster than the mode. Therefore, mean-based approximation can have poor approximation

accuracy around the mode, which is the distribution center. Considering the success of Laplace

or other mode-based approximations in previous studies, it is reasonable to accurately approx-

imate Poisson distribution around the mode.

This study first develops a mode-based closed-form approximation. We will use the Poisson

mode center Modec[Yi]. Because the mode center is available only when λi = E[Yi]�0.5 to

assure non-negativity, we develop a mode-based approximation for λi�0.5 and another

approximation for λi<0.5. After that, we combine the two approximations for estimating the

l̂þi parameter.

Approximation for λi�0.5

We approximate Eq (5) by using the log-Gaussian variable yi defined as:

yi þ c � logN miðGÞ;
1

li þ c

� �

ð6Þ

where μi(G) represents the mean (logscale), and c is a constant required to avoid taking the log-

arithm of zero. 1

liþc is an approximate variance for a log-transformed Poisson random deviate.

We perform the approximation so that the mode Mode[yi] of the log-Gaussian model

equals the mode center Modec[Yi] of the Poisson model. The following condition is obtained

from the mode matching Modec[Yi] = Mode[yi]:

zi expðmiÞ � 0:5 ¼ exp miðGÞ �
1

li þ c

� �

� c: ð7Þ

Eq (7) suggests that μi and μi(G) do not generally have a linear relationship. Exceptionally, they
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have the following linear relationship if c = 0.5:

miðGÞ ¼ logðziÞ þ mi þ
1

li þ 0:5
: ð8Þ

While existing studies have determined c somewhat arbitrary, c = 0.5 is found to be necessary

for applying the linear approximation under our assumption.

Let us substitute c = 0.5 and Eq (8) into Eq (6). Then, we obtain the following log-Gaussian

model approximating the Poisson model:

yi þ 0:5 � LogN logðziÞ þ mi þ
1

li þ 0:5
;

1

li þ 0:5

� �

: ð9Þ

By organizing Eq (9), we have the following model:

logðy�i Þ � N mi;
1

li þ 0:5

� �

; ð10Þ

where y�i ¼
yiþ0:5

zi
exp � 1

liþ0:5

� �
. The log-Gaussian distribution approximates the Poisson distri-

bution around the mode center.

Approximation for λi<0.5

If λi<0.5, the mode of the Poisson variable Yi and log-Gaussian variable y�i behave some-

what differently: the Poisson mode always takes zero value while the mode of the log-Gaussian

distribution gradually converges to zero as λi (or μi) declines. Mode-based approximation is

not suitable in this case. Conversely, the means of the two distributions both converge to zero

as λi or μi approaches zero. For λi = E[Yi]<0.5, we rely on a mean-based approximation.

By taking the expectation of y�i using Eq (10), we have the following relationship:

E y�i
� �

exp �
0:5

li þ 0:5

� �

¼ expðmiÞ: ð11Þ

Eq (11) implies that, when approximating the Poisson mean function μi (logscale) using y�i , it

should be rescaled by multiplying exp � 0:5

liþ0:5

� �
. By applying the rescaling to y�i , Eq (10) is

modified to approximate the mean of the Poisson distribution as follows:

logðy��i Þ � N mi;
1

li þ 0:5

� �

; ð12Þ

where y��i ¼
yiþ0:5

zi
exp � 1:5

liþ0:5

� �
.

Proposed approximation. Considering the advantage of the mode-based approximation

explained in the “Log-Gaussian approximation for the Poisson regression” section, we use Eq

(10) as long as λi�0.5 while Eq (12) is used otherwise. Still, λi = E[Yi] is unknown a priori.

Considering the property of count data that P(Yi<0.5) = P(Yi = 0), we approximate P(E[Yi]<

0.5) using the ratio r of zero counts in {Y1,. . .,YN}. Given the approximation, Eqs (10) and (12)

are applied with probabilities 1−r and r, respectively. By combining these equations using r,
our proposed approximation is formulated as:

logðyþi Þ � N mi;
1

li þ 0:5

� �

; ð13Þ

where yþi ¼
yiþ0:5

zi
exp � 1þ0:5r

liþ0:5

� �
, which yields Eq (10) if r = 0 and Eq (12) if r = 1. If all counts
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are non-zero, the mode-based approximation is applied for all the samples. As the share of

zero counts increases, the mean-based approximation is emphasized.

For the unknown λi in the variance term, we rely on a plug-in estimator l̂ i ¼ yi. The result-

ing approximation equation yields

logðyþi Þ � N mi;
1

yi þ 0:5

� �

: ð14Þ

This plug-in method ignores the uncertainty in the variance term. Consideration of the uncer-

tainty will be an important future task.

Given Eq (14), the estimator for μi = xi
0β yields m̂þi ¼ xi

0β̂þ where

β̂þ ¼ ðX0ΛyXÞ
� 1X0Λyyþ; yþ ¼ ½yþ1 ; . . . ; yþN �

0
, and Λy is a diagonal matrix whose i-th element

equals yi þ 0:5: m̂þi approximates the μi parameter but is free from the identification problem.

Thus, we use l̂þi ¼ zi expðm̂þi Þ as an estimate of the Poisson mean λi. In other words, the esti-

mated l̂þi is substituted into Eqs (2)—(4) to estimate β̂; Var½β̂�, and v̂2.

Proposed approximation for Poisson mixed effects model. Our approximation is read-

ily extended for (over-dispersed) Poisson mixed effects model (MEM) (e.g., [21]) which is for-

mulated as

Yi � odPoissonðli; s
2Þ; li ¼ ziexpðmiÞ; mi ¼ xi

0β; β � Nð0;ΣβÞ; ð15Þ

where Sβ is the variance-covariance matrix for β. We consider the following estimators for Eq

(15):

β̂ ¼ ðX0ΛþXþ Σ� 1

β Þ
� 1X0Λþzþ; ð16Þ

Var½β̂� ¼ ŝ2ðX0ΛþXþ Σ� 1

β Þ
� 1
; ð17Þ

ŝ2 ¼
1

N � L

XN

i¼1

ðYi � l̂
þ
i Þ

2

l̂þi
; ð18Þ

where L ¼ tr½ðX0ΛþXþ Σ� 1

β Þ
� 1X0ΛþX� is the effective degrees of freedom, zþ ¼ ½zþ

1
; . . . ; zþN �

0

with zþi ¼ m̂
þ
i þ

Yi � l̂
þ
i

l̂þi
, and Λ+ is a diagonal matrix whose i-th element equals l̂þi . These estima-

tors are identical to the conventional Poisson MEM if z+ is replaced with z.

As before, we approximate the Poisson mean l̂þi ¼ zi expðm̂þi Þ in Eqs (16)–(18) using the

following model approximating Eq (15) around λi:

logðyþi Þ � N mi;
1

yi þ 0:5

� �

; mi ¼ xi
0β; β � N 0;Σβ

� �
: ð19Þ

Once the Gaussian mixed effects model (Eq 19) is estimated, the approximate Poisson mean

m̂þi ¼ xi
0β̂þ (logscale) is obtained where β̂þ ¼ ðX0ΛyXþ Σ� 1

β Þ
� 1X0Λyyþ.

In short, an over-dispersed Poisson regression with/without random coefficients is approxi-

mated by the following steps: (I) Estimate m̂þi using a log-Gaussian model whose explained var-

iable logðyþi Þ ¼ log yiþ0:5

zi

� �
� 1þ0:5r

yiþ0:5
and sample weight yi+0.5; (II) Substitute the estimated

l̂þi ¼ zi expðm̂þi Þ into Eqs (2)–(4) for models without random coefficients or Eqs (16)—(18)

for models with random effects. Later, we examine approximation accuracy of our approach

through Monte Carlo experiments.
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Property of the proposed approximation

Table 1 summarizes closed-form approximations for the Poisson regression models. These

methods perform approximations through the estimation of a log-Gaussian model using the

explained variables and the weight shown in this table. These practical methods will be useful

to avoid the identification problem for not only researchers but also practitioners. However,

existing methods are accurate only for a moderate to large μi [22]. These methods should not

be used for counts with many zeros. Besides, the c parameter, which has a considerable impact

on analysis result, must be determined a priori (see the Introduction section). These drawbacks

inhibit the practical use of these approximations.

Major advantages of our approximation relative to these existing methods are as follows:

(A) it does not have the tuning parameter (c); (B) because of the mode matching, the proposed

method accurately approximates the mode of the Poisson distribution irrespective of μi; (C)

Gaussian approximation is used only for estimating the Poisson mean while alternative meth-

ods use it for estimating both the Poisson mean and the regression coefficients. As we will

show later, these advantages considerably improve the approximation accuracy for count data

with many zeros.

Our mode-matching method is akin to the Laplace approximation, which is based on the

mode-matching of a Gaussian distribution and the target distribution. Considering studies

demonstrating the accuracy of the Laplace approximation, our mode-based approach is

expected to be accurate as well. Still, the Laplace approximation can have poor accuracy if the

target distribution is far from Gaussian distribution. Extension based on other approximation

methods such as numerical quadrature is an important remining task.

Results: Monte Carlo experiments

Case 1: Basic over-dispersed Poisson regression model

This section compares the estimation accuracy of the proposed approximation (Proposed)

with standard Poisson regression (Poisson), over-dispersed Poisson regression (odPoisson),

and negative binomial regression alternatives (NB). We also compare ours with the log-linear

approximation of [19] (LogLinear) and the Taylor approximation of [20] (Taylor).

The simulated count data yi is generated from the over-dispersed Poisson regression with

mean λi and the overdispersion parameter σ2:

yi � odPoissonðli; s
2Þ; li ¼ expðb0 þ xi;1b1 þ xi;2b2Þ; ð20Þ

where xi,1 and xi,2 are generated from standard normal distributions N(0, 1), and {β1, β2} =

{2.0, 0.5}. We refer to β1 as a strong and β2 as a weak coefficient. σ2 = 1 implies the standard

Table 1. Closed-form approximations for Poisson regression. c is a tuning parameter that must be determined a priori. zi = 1 is assumed. All the approximations employ

Gaussian linear regression whose explained variables and weights are as shown in the table.

Method Explained variables Weight Outline

Log-linear approx.

[19]

log(yi+c) yi+c β̂^ and Var½β̂^� are estimated from Gaussian model

Taylor approx. [20]; logðyi þ cÞ � c
yiþc yi+c

Log-Gamma approx.

[22]

Our approximation logðyi þ 0:5Þ � 1þ0:5r
yiþ0:5

yi+0.5 β̂^ and Var½β̂^� are estimated from an over-dispersed Poisson regression model whose mean function λi is

approximated using the log-Gaussian model

https://doi.org/10.1371/journal.pone.0260836.t001
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Poisson regression without over-dispersion while σ2>1 means over-dispersion. The β0 param-

eter implicitly controls the ratio of zero counts; a smaller β0 value yields more zero counts.

Over-dispersed Poisson distribution does not have probability mass function [24]. The sim-

ulation data is sampled to satisfy E[yi] = λi and Var[yi] = σ2λi, which yi~odPoisson(λi, σ2)

assumes, as follows:

a. Calculate λi = exp(β0+xi,1β1+xi,2β2)

b. Calculate vi = (σ2−1)/λi

c. Sample yi~NB(λi, vi) where NB(λi, vi) is a negative binomial distribution with expectation λi

and variance Var½yi� ¼ li þ vil
2

i

The sampled yi has the expectation E[yi] = λi and variance Var½yi� ¼ li þ vil
2

i ¼

li þ ðs
2 � 1Þli ¼ s

2li that odPoisson(λi, σ2) assumes. Thus, the sampled yi fulfills the assump-

tion of the over-dispersed Poisson distribution.

The coefficient estimation accuracy is compared across models while varying β02{−2, −1, 0,

1, 1}, σ22{1, 5}, and N2{50, 200}. In each case, the simulations were iterated 1000 times and

the root mean squared error (RMSE) and the mean bias are evaluated:

RMSE bk½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X500

iter¼1
ðb̂
ðiterÞ
k � bkÞ

2

r

; Bias bk½ � ¼
1

N

X500

iter¼1

ðb̂
ðiterÞ
k � bkÞ ð21Þ

where b̂
ðiterÞ
k is the estimated βk in the iter-th iteration.

Fig 1. RMSE of the regression coefficients in cases without overdispersion (σ2 = 1.0) (x−axis: β0, y-axis: RMSE).

https://doi.org/10.1371/journal.pone.0260836.g001
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The evaluated RMSE and bias values are plotted in Figs 1 and 2 in a case without overdis-

persion σ2 = 1.0 whereas Figs 3 and 4 in cases with overdispersion σ2 = 5.0. LogLinear and Tay-

lor tend to have large RMSEs and biases across cases, and the errors inflate if yi has many zero

values (i.e., small β0). In contrast, the RMSE values for Proposed are as small as the Poisson

and odPoisson specifications across cases. Poisson, odPoisson, and NB have large RMSE values

for small over-dispersed samples (σ2 = 5.0) with many zero values (β0 = −2); it is attributable to

the identification problem explained in the “Introduction” section. Proposed does not suffer

from this problem. Proposed is advantageous in terms of stability. The bias of the proposed

method is small across cases. It is suggested that the proposed method estimates regression

coefficients in a reasonable accuracy.

Fig 5 shows the coefficient standard error (SE) estimates. While the SEs estimated from

Proposed are similar to odPoisson, the former method tends to have smaller SE values than

the latter when σ2 = 5.0. To examine if our SE accurately estimates the uncertainty in the coeffi-

cient estimates, Fig 6 plots (SE)/(standard deviation of the estimated coefficient values). The

value is close to 1.0 if the SEs accurately evaluate the uncertainty. Based on the figure, all the

methods tend to underestimate the SE value. Still, the bias of Proposed is smaller than Poisson,

NB, LogLinear, and Taylor whereas larger than odPoisson. Reducing the bias in the SE esti-

mates is an important task.

In S1 Appendix in S1 File, we perform another Monte Carlo experiments assuming six

explanatory variables. The result is consistent with the results obtained in this section.

Fig 2. Bias of the regression coefficients in cases without overdispersion (σ2 = 1.0) (x−axis: β0, y-axis: Bias).

https://doi.org/10.1371/journal.pone.0260836.g002
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Case 2: Model with spatial effects

To verify the expandability of the proposed model, this section applies the proposed method to

estimate a spatial regression model, which has been widely used to analyze spatial phenomena

in the environment, economy, and epidemic. We consider the following model:

yi � odPoissonðli; s
2Þ; li ¼ expðb0 þ xi;1b1 þ xi;2b2 þ siÞ; ð22Þ

where {β1, β2} = {2, 0.5} and σ2 = 5, which means an overdispersion with variance Var[yi] =

5λi. si is a process capturing a spatially dependent pattern of the data. It is modeled by a low

rank Gaussian process whose spatial dependence exponentially decays relative to the Euclidean

distance between the geometric centers of the two zones. Eq (22) is an over-dispersed Poisson

mixed-effects model (MEM) that considers spatial dependence. The model is estimated by

applying the maximum likelihood (ML) estimation for the Poisson MEM (Poisson), an over-

dispersed Poisson MEM (odPoisson), the Taylor approximate Poisson MEM (Taylor), and our

specification (Proposed). Taylor and Proposed fitted linear MEMs using the transforming

explained variables and weight variables (see Table 1). All models were estimated using a

restricted maximum likelihood method implemented a R package mgcv [11].

We assumed β02{−2, −1, 0, 1, 1} and N2{50, 200}. In each case, the models were estimated

500 times, and the estimation accuracies were compared. Figs 7 and 8 display the estimated

RMSEs and biases, respectively. When N = 50, odPoisson took extremely large RMSEs due to

the identification problem. Poisson and Taylor also had large RMSEs. In contrast, the pro-

posed method tends to have smaller RMSE values. The proposed method may be a better

Fig 3. RMSE of the regression coefficients in cases with overdispersion (σ2 = 5.0) (x−axis: β0, y-axis: RMSE).

https://doi.org/10.1371/journal.pone.0260836.g003
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choice for small samples. Even for N = 200, the RMSEs and biases of Proposed were as small as

those of Poisson and odPoisson. The estimation accuracy of the proposed method was verified

in the case of spatial regression.

Fig 9 compares the coefficient standard errors. The SEs obtained from Proposed are similar

to odPoisson for a large β0, while Proposed has smaller SEs for small β0. Fig 10 plots (SE)/(stan-

dard deviation of the estimated coefficient values) when N = 200. Unlike odPoisson whose SEs

are severely underestimated for small β0. Proposed estimates SEs reasonably accurately across

cases.

Finally, Fig 11 compares the estimation accuracy for the spatially dependent process si. The

RMSE values of Proposed are almost identical with odPoisson suggesting the accuracy of our

approximation.

We performed another Monte Carlo experiment assuming group effects, which estimates

heterogeneity across groups, instead of the spatially dependent effects. As summarized in S2

Appendix in S1 File, the RMSEs and biases are as small as Poisson and odPoisson for N = 200

and smaller than the two methods for N = 50.

In short, the proposed method provides an accurate and stable approximation for an over-

dispersed Poisson MEM.

Computation time comparison

Finally, computation time is compared while varying N2{1,000, 10,000, 100,000, 300,000}

under cases 1 and 2. β0 = 0 and σ2 = 1 are assumed in this section. We use R version 4.0.2

Fig 4. Bias of the regression coefficients in cases with overdispersion (σ2 = 5.0) (x−axis: β0, y-axis: Bias).

https://doi.org/10.1371/journal.pone.0260836.g004
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(https://cran.r-project.org/) installed in a Mac Pro (3.5 GHz, 6-Core Intel Xeon E5 processor

with 64 GB memory). The gam function in the mgcv package is used for the model estimation.

Under case 1 (basic model), Poisson, odPoisson, and Proposed took 20.1, 116.0, and 1.34

seconds on average, respectively. In case 2 which estimated spatial effects, Proposed is again

Fig 5. Means of the coefficient standard errors (N = 200) (x−axis: β0, y-axis: mean standard error).

https://doi.org/10.1371/journal.pone.0260836.g005

Fig 6. Means of (estimated standard error)/(standard deviation of the estimated coefficient values) when (N = 200; x−axis: β0, y-axis: mean standard error).

https://doi.org/10.1371/journal.pone.0260836.g006
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considerably faster than Poisson and odPoisson, especially for large samples as plotted in Fig

12. The computational efficiency of Proposed is confirmed.

Results: COVID-19 analysis

Outline

This section employs the developed approximation to an analysis of the COVID-19 (coronavi-

rus disease 2019) pandemic. Since the first case was detected in Wuhan, China, in December

2019, the coronavirus spread. As of February 1, 2021, the cumulative number of confirmed

cases is 103.41 million, while the confirmed death toll is 2.25 million. To achieve effective

infection control for not only COVID-19 but also pandemics/endemics in the future, it is

important to investigate the influencing factor behind the disaster. The data of daily new cases

analyzed in this section is provided from JX Press corporation (https://jxpress.net/).

Fig 13 plots the number of daily cases in Japan between February 1, 2020, and January 29,

2021. The number peaked around April 2020, August 2020, and January 2021, respectively.

Based on the time trend, we refer to February 1 –May 31 as the first wave, June 1 –September

30 as the second wave, and October 1 –January 29, 2021, as the third wave. Fig 14 displays the

spatial plots of the daily new cases by prefecture. This figure shows the tendency of the number

of infected people to become large near Tokyo and Osaka, which are major urban areas.

We performed a regression analysis exploring the influencing factor of the increase/

decrease in each wave. The explained variables were the number of daily cases by prefecture by

10-year age groups (-19, 20–29, . . ., 70–79, 80-). The sample sizes were 51,336, 50,508, and

Fig 7. RMSE of the regression coefficients (model with spatial effects) (x-axis: β0, y-axis: RMSE).

https://doi.org/10.1371/journal.pone.0260836.g007
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50,094 for the three waves, respectively. 89.0% (45,696 samples), 77.1% (38,954 samples), and

49.7% (24,873 samples) of the samples were zeros.

For the COVID-19 data, we approximate the following over-dispersed Poisson additive

mixed model using our approach:

yi � odPoissonðli; s
2Þ; li ¼ expðb0 þ xib1 þ

X4

l¼1

gi;l þ siÞ; ð23Þ

Fig 8. Bias of the regression coefficients (model with spatial effects) (x-axis: β0, y-axis: Bias).

https://doi.org/10.1371/journal.pone.0260836.g008

Fig 9. Means of the coefficient standard errors (N = 200) (x−axis: β0, y-axis: mean standard error).

https://doi.org/10.1371/journal.pone.0260836.g009
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where yi is the number of daily new cases. β0 and β1 are regression coefficients. The model is

fitted for each of the three datasets completely separately. To scale the mean function accord-

ing to the population, the offset variable zi is given by the prefectural population. The explana-

tory variable xi is the prefectural pedestrian density by day, which is relative to January 13,

2020 (source: Apple Mobility Trends: https://covid19.apple.com/mobility). The density is esti-

mated based on the number of route searches by Apple map users. For further detail, see the

Fig 10. Means of (estimated standard error)/(standard deviation of the estimated coefficient values) (N = 200; x−axis: β0, y-axis: RMSE).

https://doi.org/10.1371/journal.pone.0260836.g010

Fig 11. RMSE of the estimated spatial effects (x-axis: β0, y-axis: RMSE).

https://doi.org/10.1371/journal.pone.0260836.g011
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source page. gi,l represents the l-th group-wise random effect. We consider the effects by week

(gi,1), days of the week (gi,2), generation (gi,3), and prefecture (gi,4). In considering countermea-

sures, it is important to reveal not only patterns by prefectures but also across prefectures. To

estimate this, we include a low rank Gaussian process si which smoothly varies depending on

geographic coordinates; we use the geographic center of each prefecture for the modeling. The

model was estimated using the mgcv package.

Results

Table 2 summarizes the estimated parameters. The estimated coefficients of pedestrian density

become positively significant in the first and second the waves. Self-restraint was estimated to

reduce the number of cases in the early periods. Based on the estimated dispersion parameter

(σ2), the variance of the number of cases were over-dispersed, and the tendency became stron-

ger over time.

Fig 16 plots the estimated group effects by week, days of the week, and generation. The esti-

mated week-wise effects show that the increase in cases lasts longer in the third wave. Control

of the infection spread might be getting more difficult over waves. Regarding the days of the

week, Monday has the lowest while Thursday, Friday, and Saturday have higher values. The

difference is attributable to some business reasons such as the closing of hospitals and PCR test

sites. The estimated generation effects have considerable differences across waves. In the first

wave, people who are in the working generation (the 20s - 50s) tend to be infected. Commut-

ing and/or meeting in the office might trigger the infection. In the second wave, the 20’s group

has a strong tendency of being infected as compared to the elders, therefore, more self-restric-

tion is needed. In the third wave, not only the 20s but also the 30s – 50s have high chances of

being infected. Infection might spread again across the working generation.

Fig 12. Computation time comparison under case 2 (model with spatial effects).

https://doi.org/10.1371/journal.pone.0260836.g012
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Fig 17 plots the estimated prefecture-wise independent effects and spatially depen-

dent effects. The former estimates local hotspots while the latter, global hotspots. The

estimated prefecture-wise effects suggest that prefectures including major cities (Tokyo,

Osaka, Fukuoka) and Hokkaido are local hotspots. More countermeasures might be

required in these prefectures. On the other hand, based on the estimated spatially depen-

dent effects, there is a global hotspot around Tokyo, and the influences grow over waves.

Control of the infection spread from Tokyo might have been important to mitigate the

third wave.

Discussion

This study develops a practical log-Gaussian approximation for Poisson regression models.

Considering its simplicity, stability, and computational efficiency, it will be useful for research-

ers as well as practitioners.

Exploring the expandability of our approach is an important future task. For example,

our approach might be useful for spatial and spatiotemporal interpolation of count data

by combining it with Gaussian process models without additional computation and

implementation costs. Our approach might also be useful for fast count data assimilation

by combining it with a state-space model. Exploring such extensions will be an interesting

research endeavor.

Fig 13. Daily number of cases across Japan.

https://doi.org/10.1371/journal.pone.0260836.g013
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Fig 14. Number of cases by prefecture.

https://doi.org/10.1371/journal.pone.0260836.g014

Fig 15. Comparison of the observed and predicted number of cases.

https://doi.org/10.1371/journal.pone.0260836.g015
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Fig 16. Estimated group effects (week, days of the week, generation).

https://doi.org/10.1371/journal.pone.0260836.g016

Fig 17. Estimated group effects by prefecture (top) and spatially dependent effects (bottom).

https://doi.org/10.1371/journal.pone.0260836.g017
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