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Abstract

Using publicly-available data from the Alzheimer’s Disease Neuroimaging Initiative, we 

investigate the joint association between single-nucleotide polymorphisms (SNPs) in previously 

established linkage regions for Alzheimer’s disease (AD) and rates of decline in brain structure. 

In an initial, discovery stage of analysis, we applied a weighted RV test to assess the 

association between 75,845 SNPs in the Alzgene linkage regions and rates of change in structural 

MRI measurements for 56 brain regions affected by AD, in 632 subjects. After confirming 

association, we selected refined lists of 1694 and 22 SNPs via a bootstrap-enhanced sparse 

canonical correlation analysis. In a final, validation stage, we confirmed association between 

the refined list of 1694 SNPs and the imaging phenotypes in an independent data set. Genes 

corresponding to priority SNPs having the highest contribution in the validation data have 
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previously been implicated or hypothesized to be implicated in AD, including GCLC, IDE, and 

STAMBP1andFAS. Though the effect sizes of the 1694 SNPs in the priority set are likely small, 

further investigation within this set may advance understanding of the missing heritability in AD. 

Our analysis addresses challenges in current imaging-genetics studies such as biased sampling 

designs and high-dimensional data with low association signal.

Keywords

Multivariate analysis; Linkage regions; Imaging genetics; Endophenotypes; Inverse probability 
weighting; Variable importance probabilities

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder causing cognitive impairment 

and memory loss. The estimated heritability of late-onset AD is 60%–80% (Gatz et al., 

2006), and the largest susceptibility allele is the ε4 allele of APOE (Corder et al., 1993), 

which may play a role in 20% to 25% of AD cases. Numerous studies have identified 

susceptibility genes which account for some of the missing heritability of AD, with many 

associated variants having been identified through genome-wide association studies (GWAS) 

(e.g. Bertram et al., 2008; Beecham et al., 2009; Kamboh et al., 2012). Apart from APOE, 

the associated variants have mostly had moderate or small effect sizes, suggesting that the 

remaining heritability of AD may be explained by many additional genetic variants of small 

effect.

Identifying susceptibility variants with small effect sizes in GWAS is challenging since 

strict multiple testing corrections are required to maintain a reasonable family-wise error 

rate. This analysis focuses on leveraging information from prior family of studies of AD 

(Hamshere et al., 2007; Butler et al., 2009), by looking for association in previously 

identified linkage regions reported on the Alzgene website (Biomedical Research Forum, 

2013). Linkage regions for AD are genomic regions that tend to be co-inherited with AD in 

families. By definition, linkage regions include susceptibility genes that are co-transmitted 

with the disease. The regions currently identified from family studies of AD are large, 

however, since families contain relatively few transmissions. Further transmissions over 

multiple generations would provide more fine-grain information about the location of 

susceptibility genes. Previous studies have fine-mapped a single linkage region through 

association of AD with genetic variants in densely genotyped or sequenced regions (Scott et 

al., 2000; Ertekin-Taner, 2003; Züchner et al., 2008; Fallin et al., 2010), or have confirmed 

linkage to AD in genomic regions identified from GWAS (Anna et al., 2011). In this report, 

we aim to fine-map multiple linkage regions for AD through multivariate association of their 

SNPs to the rates of atrophy in brain regions affected by AD.

We analyze data from two phases of the Alzheimer’s Disease Neuroimaging Initiative 

(Mueller et al., 2005), ADNI-1 and ADNI-2, which are case-control studies of AD and mild-

cognitive impairment. The rates of atrophy in brain regions affected by AD are so-called 

endophenotypes: observable traits that reflect disease progression. By investigating the joint 

association between the genomic variants and the neuroimaging endophenotypes, we use 
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the information about disease progression to supervise the selection of single-nucleotide 

polymorphisms (SNPs). This multivariate approach to analysis stands in contrast to the 

commonly-used mass-univariate approach (for a review, see Nathoo et al., 2017), in which 

separate regressions are fit for each SNP, and the disease outcome is predicted by the 

minor allele counts. Simultaneous analysis of association is preferred because the reduced 

residual variation leads to (i) a clearer assessment of the signal from each SNP, (ii) increased 

power to detect signal, and (iii) a decreased false-positive rate (Hoggart et al., 2008). We 

also employ inverse probability weighting to account for the biased sampling design of the 

ADNI-1 and ADNI-2 studies, an aspect of analysis that has not been accounted for in many 

previous imaging genetics studies (Zhu et al., 2016).

Methods that explicitly account for gene structure have been proposed for analyzing the 

association between multiple imaging phenotypes and SNPs in candidate genes (e.g. Wang 

et al., 2011; Greenlaw et al., 2017). However, these methods become computationally 

intractable when analyzing data with tens of thousands of genotyped variants. To select 

SNPs associated with disease progression, we instead use sparse canonical correlation 

analysis (SCCA) to find a sparse linear combination of SNPs having maximal correlation 

with the imaging endophenotypes. Multiple penalty schemes have been proposed to 

implement the sparse estimation in SCCA (Parkhomenko et al., 2009; Witten et al., 

2009; Lykou and Whittaker, 2010). We employ an SCCA implementation that estimates 

the sparse linear combinations by computing sparse approximations to the left singular 

vectors of the cross-correlation matrix of the SNP data and the neuroimaging endophenotype 

data (Parkhomenko et al., 2009). Sparsity is introduced through soft-thresholding of the 

coefficient estimates (Donoho and Johnstone, 1994), which has been noted (Chalise and 

Fridley, 2012) to be similar in implementation to a limiting form of the elastic-net (Zou 

and Hastie, 2005). A drawback of ℓ1-type penalties is that not all SNPs from an LD 

block of highly-correlated SNPs that are associated with the outcome will be selected into 

the model (Zou and Hastie, 2005). We prefer an elastic-net-like penalty over alternative 

implementations with ℓ1 penalties because it allows selection of all potentially associated 

SNPs regardless of the linkage-disequilibrium (LD) structure in the data.

We may think of SNP genotypes as a matrix X and imaging phenotypes as a matrix Y 
measured on the same n subjects. Robert and Escoufier (1976) showed that estimating the 

maximum correlation between linear combinations of X and Y in canonical correlation 

analysis is equivalent to estimating the linear combinations having the maximum RV 
coefficient, a measure of linear association between the multivariate datasets (Escoufier, 

1973). As the squared correlation coefficient between the first canonical variates, the RV 
coefficient is well-suited for testing linear association in our context. We use a permutation 

test based on the RV coefficient to assess the association between the initial list of SNPs 

in X and the phenotypes in Y. A permutation test with the RV coefficient is preferred over 

a parametric hypothesis test since the permutation null distribution is computed under the 

same conditions as the observed RV coefficient, resulting in a valid hypothesis test. The 

outcome of this test is used to determine whether or not to proceed with a second refinement 

stage that reduces the number of SNPs by applying SCCA.
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Tuning parameter selection can be difficult when data has low signal (Nathoo et al., 2016) 

and selection of the soft-thresholding parameter in SCCA is challenging in our context. 

Since the number of SNPs exceeds the sample size and many of the SNPs are expected to 

be unassociated with the phenotypes, large sample correlations can arise by chance (Fan et 

al., 2011). Indeed, the prescribed procedure of selecting the penalty parameter with highest 

predicted correlation across cross-validation test sets (Parkhomenko et al., 2009) results in 

more than 98% of the SNPs remaining in the model. A prediction criterion for choosing 

the penalty term may contribute to the lack of variable selection, allowing redundant 

variables into the model (Leng et al., 2006). When the same tuning parameter is used 

for variable selection and shrinkage, redundant variables tend to be selected to compensate 

for overshrinkage of coefficient estimates and losses in predictive ability (Radchenko and 

James, 2008). In our case, there is effectively no variable selection and little insight is gained 

by allowing for sparsity in the solution. To circumvent the lack of variable selection from 

SCCA, we fix the tuning parameter to select about 10% of the SNPs (Wu et al., 2009) and 

then use resampling to determine the relative importance of each SNP to the association 

with neuroimaging endophenotypes. Instead of using the prediction-optimal penalty term, 

we fixed the soft-thresholding parameter for the SNPs to achieve variable selection based 

on the rationale that no more than about 7500 SNPs, or approximately 10%, are expected 

to be associated with the phenotypes. This choice is guided by prior experience in genetic 

association studies, where the majority of genetic variants have no effect on the phenotypes, 

or an effect that is indistinguishable from zero (Carbonetto and Stephens, 2012).

The organization of the manuscript is as follows. The Materials and Methods section 

describes the ADNI data, the data processing procedures, and the methods applied for 

discovery, refinement, and validation. The Results section presents the results of the 

analyses. The Discussion section notes challenges and successes of the analysis, including 

considerations for modelling continuous phenotype data under a case-control sampling 

design, and provides interpretation of the results.

2 Materials and methods

2.1 Materials

Figure 1 illustrates the data processing steps required to compute the quantities that are 

analyzed from the raw data: adjusted minor allele counts of SNPs in the Alzgene linkage 

regions for the genomic data, and adjusted predicted rates of change at 56 brain regions of 

interest (ROIs) from MRIs for the neuroimaging data. The following subsections detail the 

data processing steps required to obtain the analysis and validation datasets.

2.1.1 ADNI—Data used in the preparation of this article were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). Patients with MCI 

have a subjective memory concern but no significant cognitive impairment, while patients 
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with early Alzheimer’s disease have experienced memory loss. The first phase of ADNI, 

ADNI-1, aimed to enroll approximately 800 study subjects, aged 55–90, of which 200 

were cognitively normal (CN), 200 had mild Alzheimer’s disease (AD), and 400 had mild 

cognitive impairment (MCI) (ADNI Procedures Manual, 2006, p. 3). The CN subjects were 

roughly age-matched to the MCI and AD subjects. Subjects were assigned to a group 

following inclusion and exclusion criteria based on clinical and cognitive tests. Mild AD 

subjects had mini-mental state examination (MMSE) scores from 20–26 inclusive, clinical 

dementia rating (CDR) of 0.5 or 1.0, and met the National Institute of Neurological and 

Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders 

Association (NINCDS/ADRDA) criteria for probable AD. MCI subjects had MMSE scores 

between 24–30, CDR of 0.5, a memory complaint, and objective memory loss measured by 

education adjusted scores on Wechsler Memory Scale Logical Memory II (Wechsler, 2009). 

Cognitively normal participants were non-depressed, with MMSE scores between 24–30, 

and did not fit the criteria for the MCI or mild AD groups (ADNI Procedures Manual, 2006, 

p. 3–4). The study subjects were enrolled from 50 sites in the US and Canada and were 

required to commit to at least 2 years of follow up MRI.

ADNI-2 was a subsequent phase of ADNI that involved enrollment of new subject cohorts, 

as well as continued follow-up of subjects enrolled in earlier phases. ADNI-2 enrolled a 

new cohort of subjects among which 190 subjects were cognitively normal, 181 subjects had 

early MCI, 164 subjects had MCI, and 148 subjects had mild AD.

The ADNI-1 cohort was used in our initial analysis. To validate the findings of the initial 

analysis, a subset of the ADNI-2 cohort was used that included new subjects in the same 

disease categories (CN, MCI and AD) as the subjects in ADNI-1.

2.1.2 Imaging data—The neuroimaging phenotypes analyzed are predicted rates of 

change in cortical thickness and volumetric measurements in brain regions obtained from 

magnetic resonance imaging (MRI) scans. ADNI subjects had 1.5T MRI scans at either 6 

or 12 month intervals during the 2- to 3-year follow-up period of the study and we chose to 

analyse the longitudinal information on cortical thickness and regional volumes. While other 

studies have compared the different study groups using imaging information from baseline 

(Shen et al., 2010; Meda et al., 2012), the longitudinal information provides insight into 

the different rates of brain deterioration experienced by people with negligible memory loss 

compared to those with more acute memory difficulties and Alzheimer’s disease.

2.1.2.1 Segmentation: Segmentation is the process of identifying the locations of 

anatomical structures within an image. In these data, the MRIs were segmented using 

Freesurfer (Fischl, 2012) software, identifying the locations of regions of interest such as 

the hippocampus, cerebellum and ventricles. For each hemisphere, the 28 volumetric and 

cortical thickness measurements used for analysis by Shen et al. (2010) were obtained via 

automated parcellation of the segmented images in Freesurfer. Cortical thickness (thickness 

of gray matter) and volumes of the regions of interest become increasingly atrophied 

as disease progresses, so we expect increased rates of atrophy in participants with more 

memory concerns (the MCI and AD subjects) compared to the cognitively normal subjects.
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2.1.2.2 Predicting rates of change: Linear mixed effect models, given in Equation 1, 

were used to predict the rates of change in each brain region of interest (ROI). Brief 

descriptions of the regions of interest are given in Appendix. A separate mixed model was 

fit for each ROI, with random effects for subject-specific rates of change and fixed effects 

for average rates of change within diagnostic subgroups. The response variable Yijt is a 

continuous measurement of the cortical thickness or volume of a brain region of interest. 

In the specification of the model, fixed-effects terms are denoted by β, while random-effect 

terms are denoted by γ. The covariates are (i) t, the time of the follow-up visit at which the 

scan was conducted, with t ∈ 0, 6, 12, 18, 24 months; (ii) MCI, a dummy variable equal to 1 

if subject i has mild cognitive impairment, and equal to 0 otherwise; and (iii) AD, a dummy 

variable equal to 1 if subject i has Alzheimer’s disease, and equal to 1 otherwise. The ROI’s 

are indexed by j:

Y ijt = β0j + β1jMCI + β2jAD + β3jt + β4jMCI × t + β5jAD × t + γ1ij + γ2ijt
+ εijt

(1)

The predicted rate of change over the study period for subject i at ROI j is the sum 

of the disease-specific estimated rate of change and the subject-specific predicted rate of 

change β3j + β4jMCI + β5jAD + γ2ij. The lme4 package (Bates et al., 2015) was used to fit 

the mixed effects model in R, and the conditional mode was used to predict the random 

effect γ2ij. The normality of the predicted, subject-specific, random effects was assessed 

by examining the Q-Q plots of the predictions at each ROI. The assumption of normality 

appeared to be reasonable for all ROIs.

Figure 2 is a heatmap of the predicted rates of change, adjusted for potential confounding 

variables in the sample, as discussed next. The heatmap illustrates how rates of change are 

more negative in subjects with more advanced disease, indicating that the thickness of gray 

matter and the volumes of brain regions of interest are shrinking more. Decreases in cortical 

thickness are more pronounced for subjects with AD (i.e. their rates of changes are more 

negative for various cortical thickness measures). Similarly, the ventricles, cavities in the 

brain filled with cerebrospinal fluid, have a more positive rate of change for subjects with 

more advanced disease. As brain atrophy progresses, these cavities expand.

2.1.3 Genomic data—The ADNI-1 subjects were genotyped with the Illumina 

Human610-Quad BeadChip and the ADNI-2 subjects were genotyped with the Illumina 

HumanOmniExpress BeadChip, both of which interrogate SNPs. All genotyping 

information was downloaded from the LONI Image Data Archive (Laboratory of 

Neuroimaging, 2015). Pre-packaged PLINK (Purcell et al., 2007) files included genotyping 

information for 757 of the 818 ADNI-1 subjects. Genotyping information for 793 of 

the ADNI-2 subjects were converted from CSV files to PLINK binary files using a 

publicly-available conversion script (Hibar, 2014). The Human610-Quad BeadChip and 

HumanOmniExpress BeadChip interrogated 620,901 and 730,525 SNPs respectively. APOE 

was genotyped separately at study screening from DNA extracted from a blood sample.
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2.1.3.1 Inclusion criteria: Subjects were included if their genotyping data were available, 

if they had a baseline MRI scan, and they had at least one additional follow-up baseline 

scan. Of the 757 ADNI-1 subjects and 793 ADNI-2 subjects with SNP data available, 696 

and 583 had both a baseline scan and at least one additional follow-up scan, respectively. 

Genomic quality control procedures outlined below in the Genomic quality control section 

were also applied, widening the exclusion criteria, to obtain a more homogeneous sample.

2.1.3.2 Genomic quality control: Genomic quality control was performed with the freely-

available software package PLINK. Thresholds for SNP and subject exclusion were as 

defined in Shen et al. (2010), except that we required a more conservative genotyping call 

rate for SNPs, as in Ge et al. (2012). Quality control was applied in three separate phases:

– Phase 1

1. Exclude SNPs with genotyping call rate < 95%

2. Restrict sample to subjects with self-reported non-Hispanic Caucasian 

ethnicity and ‘white’ race.

– Phase 2

1. Exclude SNPs with minor allele frequency (MAF) <5%, Hardy-Weinberg 

equilibrium (HWE) p < 10−6.

2. Exclude subjects based on tests for multivariate outliers and tests of 

relationship and gender using the genotyping data.

– Phase 3

1. Exclude SNPs from sex chromosomes.

Details of the genomic quality control procedures that were applied may be found in Szefer 

(2014).

2.1.3.3 Genomic imputation: Imputation serves two key roles in the analysis: to preserve 

the sample size for the multivariate analysis by replacing sporadically missing genotypes 

with imputed ones, and to impute SNPs not interrogated on the ADNI-2 chip that are 

interrogated on the ADNI-1 chip. Best-guess SNP genotypes were imputed in the ADNI-1 

and ADNI-2 sample using the HapMap3 panel with NCBI build 36/hg18 using IMPUTE2 

(Marchini and Howie, 2010), based on the imputation protocol in the IMPUTE2: 1000 

Genomes Imputation Cookbook (Luan et al., 2014). Haplotypes were phased with SHAPEIT 

(Delaneau et al., 2013), and PLINK and SHAPEIT/IMPUTE2 file formats were converted 

with GTOOL (Freeman, 2007–2012). Out of the 503,450 SNPs that passed quality control 

in the ADNI-1 sample, sporadically missing genotypes were imputed at the 459,517 SNPs 

that were also in the reference panel. Out of the 574,730 SNPs that passed quality control 

in the ADNI-2 sample, sporadically missing genotypes were imputed at the 270,074 SNPs 

that were also on the ADNI-1 chip and in the reference panel. The remaining 189,443 SNPs 

that were not genotyped in the ADNI-2 sample, but were in both the ADNI-1 sample and the 

reference panel, were imputed into the sample. The genotyping rate in the imputed data for 

the ADNI-2 sample was 98.2%, prior to filtering out SNPs with an IMPUTE2 info metric 
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<0.5. The IMPUTE2 metric measures the reliability of imputed genotypes for a SNP, and 

takes a value of 1 when there is no genotype uncertainty in the sample. When the metric 

is <0.5, the sample mean of the posterior variance of imputed genotypes is at least half the 

variance that would be expected if alleles were sampled at random (Marchini and Howie, 

2010).

The quality of the imputation for a SNP is reported based on the IMPUTE2 certainty 

measure, which is the average posterior probability of the best-guess genotypes in the 

sample. In the ADNI-1 data, the average certainty was 100% for all SNPs in the Alzgene 

linkage regions. In the ADNI-2 data, the certainties ranged from 69.1% to 100%, but 98.4% 

of the 31,301 imputed SNPs in the Alzgene linkage regions (defined below) had certainties 

of 90% or more. Due to the scale of the analysis, the imputed genotypes were treated as 

known. Ignoring genotype uncertainty is expected to lead to underestimates of the variance 

in the analysis of the ADNI-2 but not the ADNI-1 data.

2.1.3.4 Alzgene linkage regions: To focus the analysis on regions that are likely to 

contain causal genetic variation, SNPs were included in the analysis if they fell in the 

linkage regions reported by approximate physical position on the Alzgene website (Bertram 

et al., 2007; Biomedical Research Forum, 2013). These linkage regions have been identified 

in meta-analyses of family-based studies of Alzheimer’s disease (Hamshere et al., 2007; 

Butler et al., 2009). A total of 75,845 SNPs from nine chromosomes were included in 

the analysis from the ADNI-1 sample. Table 1 shows the number of SNPs in the ADNI-1 

sample that fall in each linkage region. After filtering SNPs that had an IMPUTE2 info 

metric <0.5, 75,818 SNPs remained in the ADNI-2 sample.

2.1.4 Adjustments for confounding—Covariate information cannot be explicitly 

included in SCCA, so both the imaging and genomic data are adjusted for confounding 

variables in advance. Potential confounders in the analysis are population stratification and 

APOE genotype. Population stratification is the phenomenon of systematic differences in 

allele frequencies in a subpopulation arising because of differences in ancestry, while the 

ε4 allele of APOE is the largest known genetic risk factor for Alzheimer’s disease (Corder 

et al., 1993). Since true population structure is not observed, we adjust for it in the data 

using the top ten principal coordinates from multi-dimensional scaling. The top 10 principal 

coordinates account for 2.6% of the variability in the genotype data. We also restrict the 

analysis to the white non-Hispanic subjects and remove multivariate outliers identified in 

the top two principal coordinates as noted in the Genomic quality control section. We adjust 

for APOE genotype as a precautionary measure, since it can account for the population 

stratification in the data, over and above the principal components or principal coordinates 

(Lucotte et al., 1997).

Ten principal coordinates for each of the ADNI-1 and ADNI-2 datasets were obtained 

using ten-dimensional multi-dimensional scaling on the pairwise IBS distance matrix, 

computed with PLINK from 121,795 and 118,012 approximately uncorrelated SNPs from 

the SNPs that passed quality control filters. The SNP genotypes used to estimate the 

principal coordinates were from the complete imputed data. The number of principal 

coordinate dimensions was chosen to follow a similar protocol for adjustment for population 
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stratification using principal components, in which ten axes of variation are suggested (Price 

et al., 2006).

The data for analysis were obtained by adjusting the minor allele counts and predicted rates 

of change of the brain ROIs for the ten principal coordinates, as well as for dummy variables 

for APOE genotype, using weighted ordinary least squares regression. The weights account 

for certain diagnostic subgroups being over-represented in the sample relative to their 

population frequency. Details on the computation of the weights are presented in the next 

section. The residuals from each regression comprised the genomic (X) and neuroimaging 

(Y) features analyzed.

2.2 Methods

Figure 3 illustrates each step in the data analysis process, from deriving inverse probability 

weights to account for the biased sampling in ADNI-1 and ADNI-2, to discovering, refining 

and validating association between the adjusted minor allele counts at SNPs, which we call 

the genotypes, and the adjusted predicted rates of change at the brain regions of interest, 

which we call the neuroimaging phenotypes.

2.2.1 Inverse probability weights—To account for the biased sampling in the ADNI-1 

and ADNI-2 case-control studies, we estimated inverse probability weights for each subject 

(Horvitz and Thompson, 1952). As subjects with early MCI were excluded from ADNI-1, 

we defined the target population to be non-Hispanic, white Americans and Canadians 

aged 55–90 years who are cognitively normal or have been diagnosed with late MCI or 

Alzheimer’s disease.

The Alzheimer’s Association reports that 5.2 million Americans had Alzheimer’s disease 

in 2014 (Alzheimer’s Association, 2014). Additionally, data from the US census in 2010 

(US Census Bureau, 2011) indicate that approximately 23% of the American population 

is over the age of 55 and that the total population is 308 million people. Based on this 

information, the approximate proportion of the American population aged 55–90 years with 

Alzheimer’s disease is pAD = 7.5%, rounded to the nearest half percent. This calculation 

assumes that individuals aged 90 or more years and patients diagnosed with early MCI 

represent negligible proportions of the population. We used a late MCI prevalence estimate 

of pMCI = 5% based on an urban study of people aged 65+ in New York (Manly et al., 2005), 

and assumed that the remaining pCN = 87.5% of the population of interest is cognitively 

normal. A breakdown of the number of subjects used in the analysis by study is given in 

Table 2.

The inverse probability weights for each disease group, wDX for ADNI-1 and wDX
⋆  for 

ADNI-2, are computed as the assumed prevalence of the disease in the target population 

divided by the number of subjects sampled from the disease group. In the ADNI-1 sample, 

the MCI subjects have wMCI = 0.11, AD subjects have wAD = 0.30 and CN subjects have 

wCN = 3.09, where the weights have been standardized to sum to the ADNI-1 sample size of 

n = 632. In the ADNI-2 sample, the MCI subjects have wMCI
⋆ = 0.13, the AD subjects have 
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wAD
⋆ = 0.44 and the CN subjects have wCN

⋆ = 2.00, where the weights have been standardized 

to sum to the ADNI-2 sample size of n = 265.

2.2.2 Discovery

2.2.2.1 Weighted RV test: We tested the analysis dataset, ADNI-1, for linear association 

between the genomic data and the neuroimaging data. The RV coefficient (Escoufier, 1973) 

is a multivariate generalization of Pearson’s r2 and quantifies the association between the 

columns of X, or the genotypes, and the columns of Y, the imaging endophenotypes. The 

coefficient can be defined in terms of the sample covariance matrices SXX and SYY, and the 

cross covariance matrix SXY (Omelka and Hudecová, 2013), where the (k, l)th element of 

SXY is defined as:

SXk̇Y l̇ = 1
n ∑

i = 1

n
xik − xk yil − yl , (2)

where xk = 1
n ∑i = 1

n xik and yl = 1
n ∑i = 1

n yil. The (k, l)th elements of SXX and SYY are 

defined similarly. The RV coefficient is then written as:

RV =
∑k ∑lSXk̇Y l̇

2

∑k ∑lSXk̇Xl̇
2 ∑k ∑lSYk̇Y l̇

2

and takes values between 0 and 1. When RV = 0, there is no linear association between the 

columns of X and Y, and higher values of RV are indicative of more association.

As the test statistic, we used a weighted version of the RV coefficient (Omelka and 

Hudecová, 2013) that calculates the sample variances and cross covariances accounting for 

the oversampling of AD and MCI patients in the study. A permutation test with P = 10,000 

permutations was used to assess the evidence for association between X and Y, where the 

rows of Y and their associated inverse probability weights were randomly permuted.

2.2.3 Refinement

2.2.3.1 SCCA and resampling: Sparse canonical correlation analysis (SCCA; 

Parkhomenko et al., 2009) is a multivariate method for estimating maximally correlated 

sparse linear combinations of the columns of two multivariate datasets collected on the same 

n subjects, X and Y. To obtain a sparse linear combination of the SNP genotypes that is 

most associated with a non-sparse linear combination of the imaging phenotypes, we used 

SCCA, a penalized version of canonical correlation analysis. Sparse linear combinations 

contain some coefficients which are zero; e.g. in penalized regression analysis, the predicted 

value is potentially a sparse linear combination of the predictors. SCCA operates on the 

cross-correlation matrix, which is equivalent to the cross-covariance matrix SXY as defined 

in Equation 2 when the columns of X and Y are standardized. SCCA estimates sparse linear 

combinations aX and bY that have maximal correlation, where a and b are column vectors of 

length p and q respectively. By operating on the cross-correlation matrix, the distance metric 
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used is Euclidean, which is appropriate since both the columns of X and Y are treated as 

continuous in the analysis; other distance metrics for the genetic data are possible, however 

(Chang, 2017).

We initially applied SCCA to identify a sparse set of SNPs associated with the imaging 

endophenotypes. Ten-fold cross validation was used to select the penalty parameter for the 

SNPs, λu, for the SCCA. A search grid for λu was defined as {0, 10−4, …, 10−1} with 

the values in the search grid being incremented by 0.0005. At the ith element in the search 

grid, λu, i, the sparse canonical-correlation coefficients, ai, j for the SNPs and bi, j for the 

endophenotypes, were computed in training set j. The fitted coefficients from the training 

sets were then used to compute the predicted sample-correlation coefficient in each test set: 

r i, j = Corr ai, jXtestj, bi, jY testj . The SNP penalty parameter λu was chosen as the element 

in the search grid that maximized the sum of the predicted sample-correlation coefficients 

over the ten test sets. Under this cross-validation scheme, variable selection of the SNPs was 

minimal with more than 98% of the SNPs remaining in the active set. Ruling out fewer than 

2% of the SNPs in the Alzgene linkage regions is insufficient refinement for our analysis.

Instead, we chose to incorporate bootstrap resampling to estimate the relative importance 

of each SNP in the multivariate association. This approach of “bootstrap enhancement” has 

been applied previously in neuroimaging studies (Bunea et al., 2011), to guide variable 

selection with the elastic-net and the lasso. We obtained B = 100,000 bootstrap samples 

by sampling subjects with replacement within each disease category. The weighted cross-

correlation matrix SXY
(W ) was computed for each bootstrap sample b, and a sparse linear 

combination of the genomic markers was estimated, using the SCCA penalty parameter 

λu
⋆ = 0.012 for soft-thresholding the SNP coefficients. A value of λu

⋆ = 0.012 was chosen so 

that approximately 10% of the SNPs had non-zero estimated coefficients. If βb = (β1b, β2b, 

… , βpb) denotes the coefficient vector of the sparse linear combination of the p SNPs, from 

bootstrap sample b, then the variable importance probability for SNP k (VIPk) is defined as 

the proportion of bootstrap samples in which SNP k (k = 1, …, p) has a nonzero coefficient, 

or is “selected”:

V IPk = 1
B ∑

b = 1

B
 II  βkb ≠ 0 , where II A = 1if conditionAholdsand0otherwise

2.2.3.2 Gene-set analysis: To reduce the initial list of 75,845 SNPs to a shorter list 

for validation and to gain insight into the biologically related sets of genes associated 

with cognitive decline, we applied a gene-set analysis, as implemented in GSA-SNP 

(Nam et al., 2010). GSA-SNP combines the evidence for SNP-specific associations into 

gene-level summaries and assesses the pattern of association for genes in a given set, 

such as a functional pathway, relative to genes outside the set. We used variable exclusion 

probabilities, VEP = 1 − VIP, to quantify the SNP-specific evidence of association in lieu 

of p-values, and the second smallest VEP for SNPs in a gene as the gene-level summary 

statistic. Our choice of the second smallest was based on the recommendation of Nam et 

al. (2010) to use the second smallest rather than the smallest p-value as the gene-level 
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summary statistic to protect against the spuriously high association signal that may be 

introduced by longer genes. The re-standardized version of GSA-SNP with the maxmean 

statistic (Efron and Tibshirani, 2007) was applied, with default gene padding of 20,000 

base pairs and Gene Ontology gene sets. We took P = 100 samples under the permutation 

null hypothesis of no association to serve as the empirical reference distribution for VEPs 

from ADNI-1. To ensure inclusive selection of SNPs, candidate gene sets were identified 

by Benjamini-Hochberg corrected p-values with a liberal threshold of 0.8 for the false 

discovery rate.

2.2.3.3 Reduced sets of SNPs: Two subsets of the SNPs in the Alzgene linkage regions, 

with estimated importance probabilities ≥50% and 90%, were used for validation in the 

ADNI-2 sample. The cut-off values were chosen to reflect a relatively liberal and stringent 

criterion, respectively. The set of SNPs with VIP ≥ 50% is called the “priority set”, while the 

SNPs with VIP ≥ 90% is called the “top-hit” set.

2.2.4 Validation—We assessed the evidence for linear association between the top-hit 

and priority SNPs and all the imaging phenotypes in the ADNI-2 validation sample using the 

RV-test with 1000 permutation replicates.

2.2.4.1 Interpretation of RV statistic: To further understand the observed association 

between SNPs in the priority set and endophenotypes in the ADNI-2 validation data, we 

decomposed the RV test statistic into its SNP-specific components. Details on how the 

SNP-specific contributions are calculated are described in the Results section.

3 Results

3.1 Discovery

The RV-test in the ADNI-1 data rejected the null hypothesis of no linear association between 

X and Y. The observed RV coefficient was RV = 0.079, and the permutation test p-value was 

p < 0.001.

3.2 Refinement

The resampling procedure coupled with SCCA in the ADNI-1 data produces variable 

importance probabilities (VIPs) for each SNP in the Alzgene linkage regions. Figure 4 is a 

Manhattan-like plot of the variable exclusion probabilities, VEP = 1 − VIP, plotted on the 

−log10 scale, such that SNPs with VIP ≥ 0.9, have values of −log10(VEP) ≥ 1. The dashed 

and dotted reference lines indicate the VIP = 0.5 and VIP = 0.9 cut-offs used to identify the 

priority and top-hit sets of SNPs, respectively.

1694 SNPs had VIP ≥ 0.5, a set of reduced SNPs we call the priority set. As expected, the 

priority SNPs, Xreduced, were associated with the endophenotypes in the ADNI-1 training 

data, based on a permutation RV test (RV = 0.23). Using the stringent cut-off of VIP ≥ 0.9 

for SNP selection, 22 SNPs were included in the “top-hit” set. There was no evidence of 

enrichment in biological pathways based on results from GSA-SNP.
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Figure 4 shows that very few SNPs had VIP ≥ 0.9, as evidenced by the sparse selection 

of SNPs with −log10(VEP) ≥ 1 in the plot. While the linkage region on chromosome 10 

is the largest, it also has the most SNPs with VIP ≥ 0.9 and its SNPs have relatively high 

inclusion probabilities across the entire linkage region, in contrast to the linkage region from 

chromosome 6, for example. The smaller linkage regions p22.3-p-13.3 on chromosome 9 

and q24.3-qter on chromosome 17 have relatively low inclusion probabilities, overall.

3.3 Validation

Let Xreduced
⋆  and Xtop

⋆  be the ADNI-2 validation data at the priority and top-hit sets of SNPs, 

respectively, and let Y* be the validation endophenotype data. We were able to validate 

our finding of association between the priority set of SNPs and the endophenotypes in the 

ADNI-2 data. The RV test of association between Xreduced
⋆  and Y* had an observed test 

statistic of RVobs = 0.073, and a permutation p-value of p = 0.0021. However, there was no 

evidence of association between the top-hit set of SNPs, Xtop
⋆ , and the endophenotypes (p = 

0.79).

Figure 5 depicts the contribution of each SNP as a score, normalized to have mean 1 over 

all the SNPs in the priority set, to the RV statistic. Before normalization, the contribution 

for SNP i in the priority set is a sum, ∑j = 1
q SXreduced, i

⋆ Y j⋆
2

, over the q = 56 endophenotypes 

in the cross-correlation matrix, SXreduced
⋆ Y ⋆

2
, from the ADNI-2 validation data. Each point in 

the plot therefore represents the relative contribution of a given SNP to the RV coefficient, 

summed over the 56 endophenotypes. SNPs with higher relative contributions can be viewed 

as the SNPs driving the association found in the RV test.

Table 3 summarizes information about the top 20 scoring SNPs in the priority set, with 

gene annotations obtained from SNPNexus (Ullah et al., 2012). SNPNexus was queried 

using assembly NCBI36/hg18, the UCSC genome browser (Speir et al., 2015) and AceView 

(Thierry-Mieg and Thierry-Mieg, 2006). The resulting gene symbols for annotated SNPs 

are reported in the Genes column of the table. We used the squared Pearson correlation 

coefficient, r2, to measure the linkage disequilibrium (LD) between SNPs. Values of r2 

were computed in R with the snpMatrix package (Clayton and Leung, 2007) using the N 
= 116 cognitively normal subjects in the ADNI-2 data. LD blocks within the priority set 

are indicated by numbers in the first column of Table 3, and are defined such that all SNPs 

within a block have pairwise r2 greater than 0.7.

4 Discussion

In this report, we have taken a targeted approach to genetic association mapping of 

Alzheimer’s disease by focusing on SNPs in Alzheimer’s disease linkage regions and on 

imaging endophenotypes for brain regions affected by Alzheimer’s disease. We discovered 

association between SNPs in the linkage regions and the imaging endophenotypes, refined 

the set of SNPs by selecting those with high variable inclusion probabilities, and validated 

the refined set in an independent dataset. Here, we discuss our observations about 
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the benefits and pitfalls of applying data-integration methods such as sparse canonical 

correlation analysis and the RV test in a high-dimensional data setting with low signal. We 

also discuss potential links between Alzheimer’s disease and genes in the priority set that 

were ranked highly in the validation data.

Initially, SCCA was used to find a subset of the SNPs in the linkage regions associated 

with the endophenotypes, but very little variable selection was achieved. SCCA uses a 

prediction criterion to identify the optimal soft-thresholding parameters for the sparse 

canonical variables, but using prediction error to select the penalty term includes irrelevant 

variables in the active set (Leng et al., 2006). In addition, the prediction-optimal value 

of the penalty term does not coincide with model selection consistency (Meinshausen and 

Bühlmann, 2006). Instead, we fixed the soft-thresholding parameter for the SNPs to achieve 

variable selection based on the rationale that no more than 7500 SNPs (approximately 

10%) are expected to be associated with the phenotypes. We applied bootstrapped-enhanced 

SCCA, a procedure analogous to the bootstrapped-enhanced elastic net proposed by Bunea 

et al. (2011) for imaging applications. To obtain a reduced set of SNPs to carry forward for 

validation, we thresholded the variable inclusion probabilities at 50%, as suggested by these 

authors, and at 90%. Bootstrapping to aid variable selection has been shown to be consistent 

in high-dimensional settings under some assumptions (Meinshausen and Bühlmann, 2010), 

and can improve recovery of the true model in regularized regression (Bach, 2008).

In a low-signal context, we do not necessarily expect to replicate association of the 22 

“top-hit” SNPs in the validation data. For a fixed sample size, as the number of unassociated 

SNPs increases, the probability of a truly associated SNP being within the top-ranked SNPs 

decreases (Zaykin, 2005). By contrast, the more liberal threshold of VIP ≥ 50% resulted in 

a larger, “priority” set of 1694 SNPs which could be validated and was substantially refined 

from the initial list of 75,845.

The permutation-based RV test of association proved to be a powerful tool in different 

phases of the analysis. This nonparametric test was computationally tractable and allowed us 

to uncover and validate linear association between the two multivariate datasets, one of them 

very high-dimensional, in an analysis setting with a low signal. Despite the evidence for 

association, the observed RV coefficient at each of the discovery, refinement and validation 

stages of the analysis was not large (<0.1), consistent with SNPs having small association 

effects. The presence of SNPs with small effects is anticipated, as previous studies have 

found no large genetic effects apart from APOE (Ridge et al., 2013), for which we have 

already adjusted.

The ADNI studies use a case-control design, in which subjects are sampled conditional on 

meeting diagnostic criteria for either being cognitively normal, having late MCI, or having 

AD. Case-control designs do not result in a random sample from the population and they 

cannot be used to make inference about the population association between SNP genotypes 

and neuroimaging biomarkers without accounting for the biased sampling. To account for 

the biased sampling, we have applied inverse probability weighting in our analyses.
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Investigation of the genes associated with the highest scoring SNPs in the validation data, 

reported in Table 3, identified genes previously implicated in AD. On chromosome 6, 

Glutamate-Cysteine Ligase Catalytic Subunit or GCLC, a gene annotation of the SNP 

rs634364, codes the first, rate-limiting enzyme of glutathione synthesis. Glutathione is 

an important antioxidant which plays an integrated role in the regulation of cell life, 

cell proliferation, and cell death (Pompella et al., 2003). The brain glutathione system 

is hypothesized to play a role in the breakdown of proteins in the brain, such as Aβ 
peptides (Lasierra-Cirujeda et al., 2013), and abundance of glutathione decreases with age 

and in some age-related disease (Liu et al., 2004). On chromosome 10, the complex locus 

STAMPBL1andFAS is an annotation of rs10887866 and codes a protein which plays a 

central role in programmed cell death (Choi and Benveniste, 2004). Through modulation 

of programmed cell death and neuronal atrophy, FAS may play a role in AD (Erten-Lyons 

et al., 2010). Also on chromosome 10, the gene insulin degrading enzyme (IDE) contains 

rs4646957 and codes the enzyme of the same name. IDE has previously been implicated 

in the progression Alzheimer’s disease as it degrades the Aβ peptides which are the main 

components in the amyloid plaques on the brains of subjects with Alzheimer’s disease 

(Edland et al., 2003). Edland et. al. found that three IDE variants were associated with risk 

of AD in subjects without copies of the ε4 APOE risk allele, the allele which constitutes the 

largest genetic risk of AD.

Gene expression from the UCSC RNA-Seq GTEx track was also explored to determine if 

any of the genes reported were highly expressed in the brain. On chromosome 10, Zinc 

Finger Protein 37A (ZNF37A), the gene containing rs7897675, is most highly expressed in 

the cerebellum and cerebellar hemisphere of the brain, regions related to motor function. 

Nebulette (NEBL), the gene annotation of rs2148885 and rs11012530, is most highly 

expressed in the heart, but has next highest gene expression in the brain. In addition, 

association fine-mapping under a linkage peak identified NEBL as a candidate gene for 

vitamin D levels in the blood (Aslibekyan et al., 2016). Low vitamin D blood levels are 

associated with accelerated decline in cognitive function in older adults (Miller et al., 2015).

Ten of the top 20 SNPs in Table 3 did not have associated gene annotations in the UCSC 

genome browser or AceView. For these SNPs, flanking genes were queried with ALFRED 

(Rajeevan et al., 2011) and the UCSC genome browser, since SNPs may “tag” causal 

variants in nearby genes. Genes were considered to be flanking if they were within 1 Mb 

of the SNPs in the priority set, though many of the flanking genes reported are much closer 

to the priority SNPs. On chromosome 3, rs643944 is approximately 22 kb proximal to the 

flanking gene RAB6B. RAB6B is the brain-specific isoform of RAB6 (Wanschers et al., 

2007), a family of proteins which impair the processing of the amyloid precursor protein 

involved in the development of AD (Thyrock et al., 2013). On chromosome 10, DDIT4 

is approximately 17.5 kb proximal to rs7088870. DDIT4 produces the REDD1 protein, 

which enhances stress-dependent neuronal cell death and is involved in dysregulation of the 

mammalian target of rapamycin (mTOR) pathway (Maiese, 2014). Dysregulation of mTOR 

is a hallmark of a wide variety of brain disorders (Polman et al., 2012), and inhibition of 

mTOR is associated with Aβ-peptide-related synaptic dysfunction in AD (Ma et al., 2010). 

Another flanking gene to rs7088870 is DNAJB12, which is approximately 39.2 kb proximal 

to rs7088870, and is involved in protein folding. The process of plaque buildup in AD 

Szefer et al. Page 15

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2022 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



involves the accumulation of misfolded Aβ proteins, and DNAJB12 is highly expressed 

throughout the brain (Tebbenkamp and Borchelt, 2010). Finally, in addition to being the 

gene annotation of rs7897674, ZNF37A is also 15.4 kb proximal to the SNP rs17588142 on 

chromosome 10.

In summary, this analysis illustrates the application of novel methods for integration of 

high-dimensional data with low signal. To focus on regions with increased prior probability 

of containing deleterious variants, the analysis was restricted to SNPs within linkage 

regions for AD. In practice, the same methodology could be applied to all available data 

if no linkage regions have previously been identified. However, we recommend restricting 

analyses to linkage regions whenever possible to leverage information from prior work. The 

objective was to obtain a refined list of SNPs to propose for further investigation. Naive 

application of SCCA did not lead to any refinement, potentially due to the data containing 

many small effects. Instead, we were able to obtain refinement through bootstrapped-

enhanced SCCA. Throughout, the analysis benefited from the RV test to assess the evidence 

of linear association between two multivariate datasets: the high-dimensional genomic data, 

and the multi-dimensional neuroimaging data. RV tests of SNPs selected based on variable 

importance probabilities identified a priority set of 1694 SNPs in the ADNI-1 data that was 

associated with the rates of changes in the brain regions of interest in the ADNI-2 validation 

set. Our final results are encouraging, in that genes corresponding to SNPs with the highest 

contributions to the RV coefficient in the validation data have previously been implicated 

or hypothesized to be implicated in AD, including GCLC, IDE, and STAMBP1andFAS. We 

hypothesize that the effect sizes of the 1694 SNPs in the priority set are likely small, but 

further investigation within this set may advance understanding of the missing heritability in 

late-onset Alzheimer’s disease.
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Appendix

Table 1A:

Imaging phenotypes defined as volumetric or cortical thickness measures of 28 × 2 = 56 

regions of interest (ROIs) from automated Freesurfer parcellations.

ID Measurement Region of interest

AmygVol Volume Amygdala

CerebCtx Volume Cerebral cortex

CerebWM Volume Cerebral white matter

HippVol Volume Hippocampus

InfLatVent Volume Inferior lateral ventricle

LatVent Volume Lateral ventricle

EntCtx Thickness Entorhinal cortex

Fusiform Thickness Fusiform gyrus

InfParietal Thickness Inferior parietal gyrus

InfTemporal Thickness Inferior temporal gyrus

MidTemporal Thickness Middle temporal gyrus

Parahipp Thickness Parahippocampal gyrus

PostCing Thickness Posterior cingulate

Postcentral Thickness Postcentral gyrus

Precentral Thickness Precentral gyurs

Precuneus Thickness Precuneus

SupFrontal Thickness Superior frontal gyrus

SupParietal Thickness Superior parietal gyrus

SupTemporal Thickness Superior temporal gyrus

Supramarg Thickness Supramarginal gyrus

TemporalPole Thickness Temporal pole

MeanCing Mean thickness Caudal anterior cingulate, isthmus cingulate, posterior cingulate, and rostral 
anterior cingulate

MeanFront Mean thickness Caudal midfrontal, rostral midfrontal, superior frontal, lateral orbitofrontal, and 
medial orbitofrontal gyri and frontal pole

MeanLatTemp Mean thickness Inferior temporal, middle temporal, and superior temporal gyri

MeanMedTemp Mean thickness Fusiform, parahippocampal, and lingual gyri, temporal pole and transverse 
temporal pole

MeanPar Mean thickness Inferior and superior parietal gyri, supramarginal gyrus, and precuneus

MeanSensMotor Mean thickness Precentral and postcentral gyri

MeanTemp Mean thickness Inferior temporal, middle temporal, superior temporal, fusiform, 
parahippocampal, and lingual gyri, temporal pole and transverse temporal pole

Each of the phenotypes in the table corresponds to two phenotypes in the data: one for the left hemisphere and the other for 
the right hemisphere.
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Figure 1: 
Flow chart of the steps to process the raw genomic and neuroimaging data into the analysis 

and validation datasets. The target quantities, minor allele counts at SNPs in Alzgene linkage 

regions for the genomic data and predicted rates of change at brain regions of interest for 

the neuroimaging data, are computed. Then, both sets of targets quantities are adjusted for 

potentially confounding variables to obtain the data for analysis (ADNI-1) or validation 

(ADNI-2).
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Figure 2: 
Heatmap of the neuroimaging phenotypes, clustered by similarity among ROIs and subjects. 

Each row corresponds to a subject in the sample and each column corresponds to one of 

the 56 ROIs. The rows are annotated by the disease group of the subject. The adjusted, 

predicted rates of change are shown for each region, where blue values indicate decreases 

in the volume of thickness in the brain region, and orange values indicate increases in the 

volume of the brain region. Values for the ventricles clustered on the far right, have an 

inverted relationships compared to the other ROIs since the ventricles are cavities in the 

brain which expand as brain atrophy progresses. The thickness of gray matter, by contrast, 

decreases with atrophy.
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Figure 3: 
Flow chart of the analysis steps. The first row of column headings indicate the data sample 

used in the analysis step. The second row of column headings denote the step in the analysis 

beginning with computing weights, discovering association, refining the set of SNPs to 

investigate, and ending with validation of association with refined sets of SNPs and the 

neuroimaging phenotypes.
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Figure 4: 
Plot of the −log10(VEP) of the SNPs in each of the Alzgene linkage regions. The dashed 

and dotted reference lines indicate the VIP = 0.5 and VIP = 0.9 cut-offs used to define the 

priority and top-hit sets of SNPs, respectively.
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Figure 5: 
SNP-specific scores at the priority set SNPs in the ADNI-2 validation data, with scores 

defined as described in text. SNPs with higher score contribute relatively more to the RV 
coefficient between Xreduced*  and Y*. The dashed horizontal reference line corresponds to a 

score of 1, or the average score for a SNP in the priority set in the ADNI-2 validation data.
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Table 1:

The chromosome, band, and location on the Mb scale of the linkage regions of interest.

Chromosome Band Mb N

1 p31.1-q31.1 83–185 12,005

3 q12.3-q25.31 103–173 10,689

6 p21.1-q15 43–91 6785

7 pter-q21.11 0–78 13,292

8 p22-p21.1 13–28 4149

9 p22.3-p13.3 20–35 2868

9 q21.31-q32 80–100 3483

10 p14-q24 10–100 15,274

17 q24.3-qter 67–79 2319

19 p13.3-qter 8–54 4981

N denotes the number of SNPs in the ADNI-1 data that fall in each linkage region.
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Table 2:

The number of subjects, nD, from each disease group D that were analyzed in each study.

Sample n CN n MCI n AD n

ADNI-1 179 296 157 632

ADNI-2 116 104 45 265

The total number of subjects analyzed in each study is denoted by n.
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Table 3:

The 20 SNPs with highest SNPs scores in the ADNI-2 dataset. Gene annotation obtained from SNPNexus 

queried with the UCSC genome browser and AceView. LD blocks comprise blocks of SNPs where all SNPs 

are in LD with R2 > 0.7.

LD block SNP Score* CHR BP Band VIP Genes

rs17328231 5.96 1 95791119 1p31.1-q31.1 0.54

rs6439445 4.24 3 135119256 3q12.3-q25.31 0.72

rs16856619 4.08 3 146493435 3q12.3-q25.31 0.58

rs345015 5.70 3 146667792 3q12.3-q25.31 0.62

1 rs634364 4.18 6 53575551 6p21.1-q15 0.57 AK126334, BC050580, AK125128, GCLC

1 rs525248 4.18 6 53576038 6p21.1-q15 0.57 AK126334, BC050580, AK125128

2 rs2148885 3.82 10 21413099 10p14-q24 0.57 NEBL

2 rs11012530 5.06 10 21444536 10p14-q24 0.58 NEBL

3 rs7897675 5.06 10 38448572 10p14-q24 0.55 ZNF37A

3 rs17588142 5.06 10 38467714 10p14-q24 0.55

3 rs7080636 5.06 10 38659180 10p14-q24 0.50

3 rs34350622 5.17 10 41848403 10p14-q24 0.51

rs12255371 5.15 10 41970728 10p14-q24 0.51

rs7088870 3.91 10 73723319 10p14-q24 0.59

4 rs7094314 3.83 10 82321942 10p14-q24 0.55 SH2D4B

4 rs7904557 3.77 10 82326243 10p14-q24 0.56 SH2D4B

rs12768174 5.82 10 84889167 10p14-q24 0.74

rs10887866 4.48 10 90661730 10p14-q24 0.56 STAMBPL1, KIAA1373, STAMBPL1andFAS

rs4646957 4.26 10 94219892 10p14-q24 0.54 IDE

rs1235382 4.13 19 49711347 19p13.3-qter 0.89 CEACAM20

*
SNP-specific score indicating relative contribution to the RV statistic, as defined in text.
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