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ABSTRACT

During DNA replication, synthesis of the lagging
strand occurs in stretches termed Okazaki frag-
ments. Before adjacent fragments are ligated, any
flaps resulting from the displacement of the 5’ DNA
end of the Okazaki fragment must be cleaved. Previ-
ously, Dna2 was implicated to function upstream of
flap endonuclease 1 (Fen1 or Rad27) in the process-
ing of long flaps bound by the replication protein A
(RPA). Here we show that Dna2 efficiently cleaves
long DNA flaps exactly at or directly adjacent to the
base. A fraction of the flaps cleaved by Dna2 can be
immediately ligated. When coupled with DNA repli-
cation, the flap processing activity of Dna2 leads to a
nearly complete Okazaki fragment maturation at sub-
nanomolar Dna2 concentrations. Our results indicate
that a subsequent nucleolytic activity of Fen1 is not
required in most cases. In contrast Dna2 is com-
pletely incapable to cleave short flaps. We show that
also Dna2, like Fen1, interacts with proliferating cell
nuclear antigen (PCNA). We propose a model where
Dna2 alone is responsible for cleaving of RPA-bound
long flaps, while Fen1 or exonuclease 1 (Exo1) cleave
short flaps. Our results argue that Dna2 can function
in a separate, rather than in a Fen1-dependent path-
way.

INTRODUCTION

All cells must replicate their DNA before each cell division.
While leading strand DNA synthesis occurs continuously in
a 5 to 3’ direction, the lagging strand is synthesized in short
stretches termed Okazaki fragments due to the 5’ to 3’ po-
larity of DNA polymerases. First, the DNA polymerase a-
primase complex (pol a) synthesizes a ~30 nucleotides (nt)
long RNA-DNA primer. The replication factor C (RFC)
then binds the junction between the RNA-DNA primer
and the parental DNA strand and initiates the loading of
PCNA. Recruitment of PCNA mediates a switch from pol «

to polymerase  (pol 8), which extends the newly synthesized
DNA strand to up to ~200 nt (1,2). RNAse H1 is primar-
ily responsible for the removal of RNA from DNA (3-6).
PCNA binds pol 8 (7,8) and enhances its processivity (9),
and also serves as a binding platform for further replicative
factors including Fenl and DNA ligase I (Ligl or Cdc9)
(8,10-14). After pol & reaches the 5’ end of the downstream
Okazaki fragment it may continue DNA synthesis leading
to the displacement of the RNA-DNA primer. This creates
5-terminated flaps of various lengths that must be cleaved
before ligation by Ligl can occur. This process is also im-
portant for the maintenance of genome stability as it con-
tributes to the removal of RNA as well as DNA from the
initial primer synthesized by error-prone pol « (15,16).

Dna2 is an essential protein that was found to be neces-
sary for DNA replication in vivo (17-19). While it is not nec-
essary for bulk DNA synthesis (20), newly replicated DNA
in dna2—1 cells contained low molecular weight fragments,
showing that Dna2 is required for sealing nicks in newly
replicated DNA, reminiscent of cells lacking Ligl (18,21).
Dna2 has both DNA nuclease and helicase activities (22—
25). While a loss of its nuclease activity is lethal, helicase-
deficient mutants are viable under some growth conditions
(19,24). This suggested that specifically the nuclease activ-
ity of Dna2 is essential for DNA replication. The Pif1 he-
licase was shown to stimulate the displacement activity of
pol 8, leading thus to long flap formation and providing
requirement for Dna2 (26-28). In accord, pifl A mutation
rescues the lethality of dna2A cells (29). Additional dele-
tion of pol32 (pol & subunit responsible for DNA strand dis-
placement activity) further suppresses the growth defects of
PIfIA dna2 A cells (29,30). At the same time, the lethality of
dna2 A cells can be also rescued by a mutation of rad9, lead-
ing to inactivation of DNA damage checkpoint (31). Nev-
ertheless, these data collectively suggest that Dna2 in vivo is
required for the processing of long flaps in Saccharomyces
cerevisiae DNA replication.

Short flaps are primarily processed by Fenl that is a com-
ponent of the Okazaki fragment maturation complex com-
posed of pol 3, PCNA and Ligl (7,8,10-14,32). It has been
demonstrated that Fenl becomes incapable of cleaving flaps
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that are long enough to bind RPA. Thus, RPA mediates
the nuclease switch between Fenl and Dna2 (33). While in-
hibiting DNA cleavage by Fenl (26,33), RPA promotes the
nuclease of Dna2 (22,33,34). However, recombinant Dna2
was shown to only shorten long flaps to ~5-8 nt, even when
used at very high concentrations. DNA cleavage at these po-
sitions did not support ligation and therefore a second nu-
clease activity was needed (22,33,35). As Dna2 was found
to be part of a complex with Fenl in vivo (36), it was pro-
posed that Fenl must act downstream of Dna2 (32,33,35).
Indeed, a combination of recombinant Dna2 and Fenl al-
lowed Okazaki fragment processing in vitro, leading to a
two-step Okazaki fragment processing model (33). In con-
trast to dna2 A cells, rad27 A mutants are viable, albeit grow
slowly and display elevated recombination and mutation
rates (37,38). The viability of rad27A cells seems to con-
tradict the model where Fenl acts downstream of Dna2
(32,33,35). To this point, Fenl activity was proposed to be
redundant with that of Exol (33). Indeed, overexpression
of Exol could suppress some of the phenotypic defects of
rad27 A cells and exol A rad27 A mutant is lethal (39). How-
ever, there is no evidence to date suggesting that Dna2 phys-
ically interacts with Exol, nor that Exol acts downstream
of Dna2. On the contrary, Dna2 and Exol nucleases func-
tion in strictly separate pathways during DNA end resec-
tion (40). Furthermore, the direct interaction between Dna2
and Fen1 could not be confirmed in a later study (41). Also,
overexpression of Dna2 suppressed the growth defects asso-
ciated with deletion of rad27, while overexpression of Fenl
suppressed the lethality of dna2 A cells (36). Also this sup-
ports the notion that Dna2 and Fenl can function in sepa-
rate pathways. Despite that, available in vitro data with re-
combinant Dna2 were in contrast with such an explanation.

Here we show that Dna2 cleaves DNA flaps near their
base, and is thus able to support complete Okazaki frag-
ment maturation without the requirement of Fenl during
DNA replication in vitro. This finding provides a possible
explanation of the diverse phenotypes of dna2 A and rad27 A
cells. It strongly suggests that Dna2 can function as the sole
nuclease in the processing of at least a fraction of long DNA
flaps in DNA replication.

MATERIALS AND METHODS
DNA substrates

The oligonucleotides used to prepare the flapped sub-
strates were as follows: ‘bottom’ X12-4NC and ‘top’
Flap 19 X12-4C were annealed with a variety of ‘top
flap’ oligonucleotides to prepare flapped substrates of 30
(oligonucleotide 292), 8 (293) and 4 nt in length (294):
X12-4NC, 5-GCGATAGTCTCTAGACAGCATGTC
CTAGCAAGCCAGAATTCGGCAGGCTA-3; Flap
19 X12-4C, 5Y-TAGCCTGCCGAATTCTGGC-3; 292,
5-GGTACTCAAGTGACGTCATAGACGATTACATT
GCTAGGACATGCTGTCTAGAGACTATCGC-3'; 293,
S-GGATTACATTGCTAGGACATGCTGTCTAGAGA
CTATCGC-3’; 294, 5-GACATTGCTAGGACATGCTG
TCTAGAGACTATCGC-3'.

For 8 nt double flap substrate, oligonucleotides X12—
4NC, Flap 20 X12-4C and 293 were anncaled. The se-
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quence of Flap 20 X12-4C is: 5-TAGCCTGCCGAATT
CTGGCA-3.

The oligonucleotides were 3?P-labeled at the 3’ end
with [alpha-*’P] cordycepin-5'-triphosphate and terminal
deoxynucleotidyl transferase (New England Biolabs) ac-
cording to manufacturer instructions. Unincorporated nu-
cleotides were removed using MicroSpin G25 columns (GE
Healthcare).

The circular 3.197 kb-long ssDNA wused in the
replication assays was pGEM-3Zf(—) that was pre-
pared as described previously (42). This DNA was
annealed with either pR_T12flap 5-TTTTTTTT
TTTTACCATCTGGCCCCAGTGCTGCAATG-

3 (primer with a 12 nt-flap), pR_T30flap 5'-
ITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTACCA
TCTGGCCCCAGTGCTGCAATG-3' (primer with a 30
nt-flap), or pR_20 ¥-GCGATCTGTCTATTTCGTTC-3¥
(fully complementary primer without a flap).

Recombinant proteins

RPA protein was prepared as described (43). Wild-type
Dna2 as well as nuclease-dead E675A, helicase-dead
K1080E and the E675A/K1080E double mutant were
expressed and purified as described previously (25). We
note that care must be taken during cell lysis to prevent
a loss of activity. Also, Dna2 is particularly sensitive to
oxidation, so reducing agents must be included throughout
the procedure. Yeast LIGI (CD(C9) gene was amplified
from yeast genomic DNA by polymerase chain reaction
(PCR) using primers Ligl_for 5- ACGCATTAGCTA
GCGGATCCCTGGAAGTTCTGTTCCAGGGGCCC
ATGCGCAGATTACTGACCGGTTG-3 and Ligl_rev
5-ACGCATTACTCGAGATTTTGCATGTGGGATTG
GT-3'. The PCR product was digested by Nhel and Xhol
restriction endonucleases (both New England Biolabs) and
cloned into corresponding sites in pFB-MBP-Sgs1-his vec-
tor (44), creating pFB-MBP-Ligl-his. Ligl was expressed
in insect Sf9 cells and purified by affinity chromatography
as described previously for Sgsl (44).

Yeast FENI (RADZ27) was amplified from yeast genomic
DNA by PCR using primers Fenl _for: 5- ACGCATTA
GCTAGCGAATTCCTGGAAGTTCTGTTCCAGGG
GCCCATGGGTATTAAAGGTTTGAATGC-3 and
Fenl_rev: 5- ACGCATTACTCGAGTCTTCTTCCC
TTTGTGACTT-3. The PCR product was digested by
Nhel and Xhol restriction endonucleases (both New
England Biolabs) and cloned into corresponding sites
in pFB-MBP-Sgsl-his vector (44), creating pFB-MBP-
Fenl-his. Maltose-binding protein (MBP) tag was excised
from this vector by digestion with the restriction en-
donuclease BamHI (New England Biolabs) followed by
self-ligation of pFB-Fenl-his. Then, a fragment cod-
ing for PP-MBP (PP is PreScission protease cleavage
site) was amplified by PCR from the pFB-MBP-Sgsl-
his vector (44) using primers Xhol PP2G_MBP _for 5'-
ACGCATTACTCGAGCTGGAAGTTCTGTTCCAG
GGGCCCGGTGGTATGAAAATCGAAGAAGGTAA-
3’ and MBP_Xhol rev 5¥-ACGCATTACTCGAGCCCG
AGGTTGTTGTTATTGT-3. The PCR product was
digested by Xhol restriction endonuclease (New England
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Biolabs) and cloned into pFB-Fenl1-his directly after Fenl,
creating pFB-Fen1-MBP-his. Fenl was expressed in insect
S79 cells. Cells were lysed and MBP-tagged Fenl was first
incubated with amylose resin as described previously for
Sgsl (44). Eluates from amylose resin were applied on
Ni-NTA agarose column and extensively washed with wash
buffer (50 mM Tris—-HCI pH 7.5, 2 mM B-mercaptoethanol,
10% glycerol, 0.5 mM phenylmethylsulfonyl fluoride, 1 M
NaCl and 20 mM imidazole), followed by a wash with
the same buffer, but containing 0.3 M NaCl and 60 mM
imidazole. Protein was eluted with wash buffer containing
0.3 M NaCl and 0.3 M imidazole. MBP and His tags
were cleaved by PreScission protease and the eluate was
incubated with glutathione and amylose resins. The sample
was centrifuged (2000 g, 5 min) and supernatant containing
Fenl was dialyzed into 50 mM Tris—HCI pH 7.5, 5 mM
B-mercaptoethanol, 150 mM NaCl, 10% glycerol and
frozen in small aliquots.

Yeast three subunit pol 8 and pol & exonuclease-deficient
variant Pol3-D520V (3’ exo- Pol3-DV, mutation introduced
by site-directed mutagenesis) were expressed in the yeast
strain WDHG668 as described previously (45) and purified
according to existing protocols (27). PCNA and RFC were
expressed and purified from Escherichia coli by minor mod-
ifications of previously established procedures (46,47).

Nuclease assays

Nuclease assays were performed in a 15 pl volume in 25 mM
Tris-acetate pH 8.5, 10 mM magnesium acetate (unless in-
dicated otherwise), | mM adenosine triphosphate (ATP),
1 mM dithiothreitol, 0.1 mg/ml bovine serum albumin
(BSA, New England Biolabs), 1 mM phosphoenolpyru-
vate, 80 U/ml pyruvate kinase, | nM DNA substrate (in
molecules) and recombinant proteins as indicated. Where
indicated, RPA was present at 27 nM, which is sufficient
to fully cover the entire DNA in the reactions assum-
ing all DNA was single-stranded. Samples were incubated
at 30°C for 30 min, reaction was stopped by adding an
equal amount of formamide dye (95% (v/v) formamide, 20
mM ethylenediaminetetraacetic acid (EDTA), 0.01% bro-
mophenol blue), samples were heated at 95°C for 4 min
and separated on 20% denaturing polyacrylamide gels (ra-
tio acrylamide:bisacrylamide 19:1, Biorad). After fixing in a
solution containing 40% methanol, 10% acetic acid and 5%
glycerol for 30 min, the gels were dried on DE81 chromatog-
raphy paper (Whatman), and exposed to storage phosphor
screens (GE Healthcare). The screens were scanned by Ty-
phoon phosphor imager (GE Healthcare).

Replication assays

Replication assays with plasmid-based substrates were per-
formed similarly as described previously (32) in a 15 pl
volume in 25 mM Tris-acetate pH 8.5, 10 mM magnesium
acetate, 125 mM NaCl, 1 mM ATP, 1 mM dithiothreitol,
0.1 mg/ml BSA (New England Biolabs), 1 mM phospho-
enolpyruvate, 80 U/ml pyruvate kinase, 100 wM dNTPs
(each) and 6.4 nM (molecules, 100 ng) ssDNA substrate.
PCNA (20 nM), RFC (20 nM) and RPA (1 M, concentra-
tion saturating 100% of DNA) were added to the reaction

and preincubated for 1 min at 30°C. Pol & (5 nM), Dna2
and/or yeast Fenl (concentrations as indicated in figures
or figure legends) and Ligl (20 nM) were then added and
the reactions were incubated, if not indicated otherwise, at
30°C for 60 min. The reactions were stopped by adding 5
pl of 2% stop solution (150 mM EDTA, 2% sodium do-
decyl sulphate, 30% glycerol, bromophenol blue) and 1 pl
proteinase K (20.3 mg/ml, Roche) for 10 min at 30°C and
separated on 1% agarose gels containing GelRed (1:10,000
v/v, Biotinum). Gels were analyzed by an Alphalmager gel
imaging system.

Pulldown assays

To test for interactions between Dna2 and RPA or PCNA, 2
pg of recombinant Dna2 was diluted in Tris-buffered saline
(TBS, 50 mM Tris—HCI pH 7.5, 150 mM NacCl), bound to
anti-HA resin (25 pl, Pierce) and washed with TBS-T (TBS
containing 0.05% Tween 20). Then, recombinant RPA (1.33
pg) or PCNA (0.34 pg) were added and the resin was in-
cubated at 4°C for 1 h. The resin was again washed with
TBS-T and proteins were eluted with 0.1 M glycine pH
2.5, according to manufacturer’s instructions. The proteins
in the eluate were analyzed by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis stained with silver.

RESULTS
Dna2 cleaves DNA flaps near their base

Previously, we were able to purify recombinant S. cerevisiae
Dna2 with high levels of DNA helicase and nuclease ac-
tivities (25,34). Here we tested the behavior of Dna2 and
mutant variants (Supplementary Figure S1A) on flapped
substrates that mimic structures arising upon displacement
synthesis during Okazaki fragment processing (Figure 1A).
We first used a substrate with a 30 nt-long 5" ssDNA flap
and examined the exact cleavage position by S. cerevisiae
Dna?2 in the presence of RPA. Cleavage at exactly the base
of the flap (position 0) would produce a fragment of 32
nt in length. It is known that Dna2 must load onto the
5" ssDNA end and translocate along the ssDNA flap be-
fore cleavage occurs (23,35). We show that wild-type Dna2
protein efficiently cleaved the flap at —1, 0 or +1 positions
in most cases (Figure 1B, cleavage at —1 position leaves
behind a flap of 1 nt in length, cleavage adjacent to flap
base within dsDNA corresponds to +1 position). In con-
trast, nuclease-dead (E675A) and double-dead (nuclease-
and helicase-dead, E675A /K1080E) Dna2 variants did not
show any activity, demonstrating that the cleavage is inher-
ent to the nuclease of Dna2 and not a product of a contam-
ination (Figure 1B). These results differ from those pub-
lished previously (33,35), which reported that Dna2 only
shortens flaps up to the length of ~5-8 nt in a vast ma-
jority of cases. The position of cleavage was unchanged in
magnesium concentrations between 2 and 10 mM, indicat-
ing that DNA melting near the flap base cannot explain the
observed position of cleavage (compare Figure 1B with Sup-
plementary Figure S1C). A comparison of DNA flap cleav-
age by Dna2 and Fenl is shown in Supplementary Figure
S1D; Fenl cleaves past the flap just within the dSDNA. Fur-
thermore, Dna2 cleaved the long flap sequentially, with the
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Figure 1. Dna2 cleaves DNA near a base of a flap. (A) Nuclease assay. *, radioactive label. (B) Wild-type (wt), nuclease-dead (E675A) or double-dead
(E675A/K1080E, EA/KE) Dna2 variants (all 2 nM) were incubated with a DNA substrate containing a 30 nt-long flap, in the presence of RPA in a buffer
containing 2 mM magnesium acetate. The reaction products were separated on 20% polyacrylamide denaturing urea gel. Cleavage at the base of the flap
produces a fragment of 32 nt in length (position 0). (C) Increasing concentrations of Dna2 were incubated with a substrate containing a 30 nt-long flap as
in (B), but in 10 mM magnesium acetate buffer, with or without RPA, as indicated. §, substrate cleaved by Dna2 in the absence of RPA. (D) Quantification
of experiments such as in (C). Averages shown, n = 2; error bars, s.e.m. (E) Quantitation of products cleaved within 5 nt of flap base from (C). Averages
shown, n = 2; error bars, s.e.m. (F) Experiment as in (C), but with helicase-dead Dna2 K1080E variant in the presence of RPA.

first cut being ~5-10 nt away from the flap end (Supple-
mentary Figure S1E). This is in agreement with previous
observations that Dna2 must load on a free flap end and
translocate along DNA before cleavage occurs (35). RPA
did not stimulate the overall efficiency of DNA cleavage by
Dna2, but promoted cutting at positions near the flap base
(Figure 1C-E). Without RPA, Dna2 often cleaved at —1 or
0 positions, while no cleavage at +1 position was observed
(Figure 1C, right part). Furthermore, without RPA, a large
fraction of the flap was only cleaved ~20 nt away from the
flap base (Figure 1C, right part), likely due to secondary
structure in the flap that prevents Dna2 translocation along
the ssDNA, which is in full agreement with previous data
(48). With RPA, Dna2 cleaved majority of the substrate in
the vicinity of the flap base (Figure 1C, left part, Figure 1E).
We also show that Dna2 was able to cleave an 8 nt-long flap
in the same manner as the 30 nt-long flap, but could not
cleave a 4 nt-long flap (Supplementary Figure S2A and B),
which is instead as expected a good substrate for Fen1 (Sup-
plementary Figure S2C-E). RPA inhibited the cleavage of
the 30 nt-long flaps by Fenl, while it had no effect on the
processing of the short flaps (Supplementary Figure S2C-
QG), in agreement with previous data (33,35,49-54). The he-
licase activity of Dna2 did not significantly affect the posi-
tion of cleavage (Figure 1F and Supplementary Figure S3A
and B). In summary, these data suggest that Dna?2 is able

to cleave flaps of at least 8 nt in length at or very near their
base.

The product of Dna2 can be directly ligated

The capacity of Dna2 to cut at or near the flap base
prompted us to investigate whether a fraction of the cleaved
flaps can be ligated by the cognate Ligl. Previously, it was
shown not to be the case as Dna2 was leaving a ~5-8 nt
flap behind that prevented ligation in a vast majority of
cases (33). This gave rise to the two-step model where a
second nucleolytic activity was needed (33). We show in
Figure 2A-C that ~10-15% of the cleaved flap structures
could be directly ligated by Ligl, which corresponded to the
flaps cleaved exactly at the base (position ‘0" in Figure 2B).
RPA moderately increased ligation efficiency (Figure 2C,
primary data for reactions without RPA not shown), while
the helicase of Dna2 had no effect (Figure 2D; Supplemen-
tary Figure S3C). Furthermore, ~15-25% of 8 nt-long flap
structures cleaved by either wild-type or helicase-dead Dna2
were ligated by Ligl as well (Supplementary Figure S4A—
D, primary data for reactions without RPA not shown). In
contrast, the nuclease activity of Fen1 resulted in almost un-
detectable ligation efficiency on 4 nt or longer flaps (~1%
product, Supplementary Figure S5A and B). This is most
likely due to the fact that Fenl predominantly cleaves DNA
not exactly at the flap base, but just inside dSDNA (+1 po-
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Figure 2. The product of Dna2 can be directly ligated. (A) Assay. *, ra-
dioactive label. (B) Increasing concentrations of wild-type Dna2 were in-
cubated with a substrate containing a 30 nt-long flap with or without Ligl,
in the presence of RPA. The reaction products were separated on a 20%
polyacrylamide denaturing urea gel. Cleavage at the base of the flap pro-
duces a fragment of 32 nt in length. Ligation of the cleaved intermediate
results in a final product of 51 nt in length. (C) Quantitation of data such
as in (B), with wild-type or mutants of Dna2 (nuclease-dead, E675A; he-
licase and nuclease-dead, EA/KE). The 32P label was placed either at the
3’ terminus of the flapped oligonucleotide or at the 5" terminus of the up-
stream primer. Averages shown, n = 2; error bars, s.e.m. (D) Quantitation
of experiments such as in (B), but with helicase-dead Dna2 K1080E. The
32P label was placed either at the 3 terminus of the flapped oligonucleotide
or at the 5’ terminus of the upstream primer. Averages shown, n = 2; error
bars, s.e.m.

sition, Supplementary Figure S1D) and this cleavage posi-
tion does not produce a substrate for Ligl. In accord, Fenl
is known to prefer a substrate containing an additional 1 nt
3’ flap (55). Taken together, these data indicate that a frac-
tion of flap structures cleaved by Dna2 exactly at their base
(~15-20%) can be directly ligated by Ligl. The nuclease but
not the helicase of Dna?2 is essential for this process.

Dnaz2 is highly efficient in flap processing during replication

In replication, the processing of flap structures occurs cou-
pled with DNA synthesis by pol 8 (1). It was shown that
pol & can accommodate for inaccurate cleavage (9,32,56,57).
Hence, flap cleavage at the +1 position (in dsSDNA), can
be coupled with 1 nt synthesis by pol 8, which creates a
ligatable substrate (9). Likewise, cleavage at the —1 posi-

tion (leaving behind a 1 nt flap) can be accommodated by
the proofreading 3'-5" exonuclease activity of pol 8. By go-
ing 1 nt backward, the exonuclease of pol & likewise leads
to a ligatable substrate (57). We expressed and purified the
three-subunit pol 8, PCNA and RFC to test whether Dna2
on its own can mediate efficient flap processing in the con-
text of ongoing DNA replication. Previously, it was shown
that Dna2 was required for cleavage of exclusively long flaps
(e.g. 30 nt) that are bound by RPA and efficient matura-
tion was only achieved in conjunction with Fenl (32,33).
We used a plasmid based ssDNA substrate with a primer
containing a 30 nt-long ssDNA flap (Figure 3A; B, lane 2).
Pol 8 in conjunction with RFC, PCNA, RPA and Ligl ef-
ficiently synthesized DNA (Figure 3B, lane 3, open circu-
lar DNA, ocDNA), but no covalently closed supercoiled
DNA (scDNA) was detected, showing that the flap struc-
ture prevented ligation. As shown in Figure 3B, lanes 4-8,
supplementing the reactions further with Dna2 resulted in
nearly complete Okazaki fragment maturation already at
sub-nanomolar Dna2 concentrations (see also Figure 3C).
DNA synthesis was fully dependent on the presence of pol
3, PCNA, RFC and RPA but did not require Ligl, while
generation of scDNA required additionally both Dna2 and
Ligl (Figure 3D). The same results were obtained when we
used a substrate with a 12 nt-long flap (Supplementary Fig-
ure S6A-D). Nuclease- and helicase-dead Dna2 was not
able to support the reactions (Figure 3E, Supplementary
Figure S6E). When using a substrate without a flap, the mat-
uration was fully independent of Dna2 (Figure 3F), as ex-
pected, but still required all other components (Figure 3G).
Next, we tested to which extent the Okazaki fragment mat-
uration activity of Dna2 is dependent on the proofreading
exonuclease of pol 8. To this point, we substituted wild-type
pol & with 3’ exo- pol & variant, Pol3-DV, in the replication
assays (Figure 4A). The generation of scDNA was strongly
inhibited in the absence of the pol & exonuclease (Figure 4B,
lane 14 and Figure 4C), showing that the proofreading ac-
tivity of pol 8 is very important for flap processing during
DNA replication in conjunction with Dna2, in accord with
a previous study (57).

Fenl, in contrast, was unable to process the 30 nt-long
flap in the presence of RPA (Supplementary Figure S7A
and B), while it very efficiently supported the reactions with
a 4 nt-long flapped substrate (Supplementary Figure S7C-
E) and to a lesser degree reactions with a 12 nt-long flaps
(Supplementary Figure S7TF-H) as expected (58). Further-
more, Fenl was fully incapable to process the 4 nt-long flaps
without the 3’ exonuclease of pol 8 (Supplementary Fig-
ure S7J and K), most likely due to the increased strand
displacement activity that was described for the Pol3-DV
mutant (57). Genetic studies showed that rad27A pol3-DV
cells grow very slowly and an additional deletion of rad51
is lethal (56,57). However, the lethality of the rad27A pol3-
DV rad51A triple mutant can be rescued by overexpression
of Dna2, suggesting that Dna2 can process these flaps in
the absence of Fenl (57). Our experiments demonstrate that
Dna2 in concert with DNA replication is highly efficient
in flap processing as a single nuclease, thus suggesting that
Dna2 may function in Okazaki fragment maturation as the
sole flap processing enzyme.
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Dna2 does not function with Fenl in a concerted manner

Our data so far indicated that the Dna2 nuclease was
remarkably capable of promoting flap processing during
DNA replication. To test whether Fenl can further stim-
ulate the ligation efficiency in conjunction with Dna2, we
combined the two nucleases together with RPA and Ligl
on the 30 nt-long flap oligonucleotide-based substrate (Fig-
ure 5A). As shown in Figure 5B and C, the presence of
Fenl lowered the ligation efficiency from ~15 to ~5% in a
Fenl concentration-dependent manner, in accord with the
observed cleavage position of Fenl that precludes ligation
(Supplementary Figure S1D).

We next analyzed the activity of Fenl and Dna2 in
replication-coupled assays on plasmid-based DNA sub-
strates. As Fenl was incapable to process the 30 nt-long
flapped substrates (Supplementary Figure S7A and B), we
tested whether it could promote the production of cova-
lently closed DNA in concert with Dna2. Using a subop-
timal Dna2 concentration (0.13 nM), we show in kinetic as-
says that an equimolar concentration of Fenl had no ef-
fect on the ligation efficiency (Figure 5D, E and G). When
a 10-fold higher Fenl concentration was used, a moderate
stimulation of the reaction was observed (Figure 5F and
G). Therefore, Fenl was able to complete the flap process-
ing downstream of Dna2 in some cases. We showed above
that Dna?2 cleaves the flap sequentially; thus, we believe that
Fenl could process the flaps that were previously shortened
by Dna2. The fact that the stimulation occurred at Fenl
concentrations that exceeded those of Dna2 argues against
the notion that both enzymes function in a coordinated
manner. However, this assumes that both protein prepara-
tions contain an identical proportion of an active enzyme.
To study the effect of Fenl on flap processing by Dna2 in
more detail, we next performed experiments with an even
lower Dna2 concentration (32 pM) and titrated Fenl into
the reactions. We observed that Fenl promoted the forma-
tion of covalently closed DNA at concentrations equal or
higher than 128 pM (Supplementary Figure SSA-C). How-
ever, very similar Fenl concentrations promoted the 4 nt-
long flap processing without Dna2 (Supplementary Figure
S7C-E). In case of a concerted reaction, we would expect
Fenl being more efficient in reactions with Dna2 rather then
on its own, which was not the case. We conclude that Dna2
is sufficient for Okazaki fragment processing in most cases
on its own without Fenl. However, we do not exclude that
Fenl can function downstream of Dna2 in a small number
of cases when either Dna2 does not cleave near the base of
the flap or when pol & displaces the annealed 5’ end upon
Dna2 cleavage before ligation occurs. In accord, we ob-
served that Fenl but not Dna2 could promote processing
of a substrate without a flap (Supplementary Figure SOA-
E). These results collectively argue against the requirement
for a cooperation between Dna2 and Fenl in flap process-
ing and rather suggest that their action is not concerted in
most cases.

PCNA has a central function in lagging strand DNA
replication as it interacts with RFC, pol 8, Ligl and Fenl
(7,8,10,11,13,14). PCNA also stimulates Fenl activity (54).
PCNA thus not only promotes DNA synthesis by pol  as a
processivity factor (9), but also serves as a docking platform
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for factors required for Okazaki fragment maturation (59).
We show in Supplementary Figure S10 that Dna2 can also
directly interact with PCNA under physiological salt con-
centrations. In addition, as demonstrated previously (60),
we confirm that Dna2 interacts with RPA (Supplementary
Figure S10). The observation that Dna2 binds PCNA is in
accord with human DNA2, which was found to be in com-
plex with replication component And-1 in vivo (61). Thus,
our data in conjunction with previous work suggest a model
(Figure 6) where Dna2 is primarily responsible for the pro-
cessing of long DNA flaps coated with RPA. This is facili-
tated by the direct interaction between Dna2 and RPA, and
the capacity of Dna2 to degrade RPA-coated ssDNA more
rapidly than naked DNA (10,12,34,35,60,62). Fenl is pri-
marily responsible for short flaps and is recruited to those
via its structure specific DNA-binding capacity (32,35,50).
The polymerase and 3/-5" exonuclease of pol 8 is then re-
quired in most cases downstream of both Dna2 and Fenl
before adjacent fragments can be sealed by Ligl (9,57).

DISCUSSION

Synthesis of the lagging DNA strand is discontinuous and
occurs in short fragments of ~200 nt in length. In order to
complete DNA replication, the adjacent Okazaki fragments
must be ligated to achieve integrity of the nascent DNA.
Direct ligation is often not possible due the displacement
synthesis of the lagging DNA strand by pol 8, which leads
to flap structures of various lengths (1,2). It has been es-
tablished that Fenl cleaves short flaps that are not bound
by RPA (33). The strand displacement activity of pol 8, in
concert with the Pifl helicase, can lead to longer flaps that
become a substrate for RPA (26). Binding of ssDNA by

RPA inhibits the cleavage by Fenl (33). It has been pro-
posed that the nuclease of Dna2 is specifically involved in
the processing of these RPA-bound long flaps (32,33). Im-
portantly, it has been presented that Dna2 only shortens
long flaps to ~5-8 nt. In previous preparations of Dna2,
only a very small proportion of flaps was cleaved at the
base, which was attributed to the dSDNA melting capac-
ity of RPA at low magnesium concentrations, which creates
a substrate that Dna2 can cut (63). Therefore, Fenl was
proposed to function downstream of Dna2 (33,35). This
hypothesis was however in contrast with the viability of
rad27 A but lethality of dna2 A mutants (19,36-38). Previ-
ously, we characterized recombinant Dna2 that exhibited
vigorous nuclease and helicase activities (25). Here we show
that recombinant Dna?2 cleaves efficiently DNA directly at
or on either side of the flap base (Figure 1). The cleavage of
DNA by Dna2 is unchanged in magnesium concentrations
up to 10 mM and requires the nuclease but not the heli-
case activity of Dna2. A fraction of flaps that are cleaved
precisely at their base can be directly ligated by Ligl (Fig-
ure 2). When coupled with DNA replication, Dna2 was re-
markably effective in flap processing by allowing a nearly
complete Okazaki fragment maturation at sub-nanomolar
concentrations (Figure 3), supported by the polymerase and
3’-5" exonuclease activities of pol & (Figure 4) (9,57). This
showed that in most cases the activity of Fenl downstream
of Dna2 is not required, arguing against the two-nuclease
model. We showed that adding Fenl to Dna2 reactions only
led to an increase in ligation efficiency when Fenl concen-
tration exceeded that of Dna2, and we failed to obtain evi-
dence for cooperativity between Fenl and Dna2 (Figure 5).
Our results thus demonstrate that Fenl does not promote
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Figure 5. Effect of Fenl on the flap processing by Dna2. (A) Assay. *,
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the processing of a large fraction of long flaps by Dna2 and
suggest that Dna2 can function in Okazaki fragment pro-
cessing as the sole nuclease. However, we believe that Fenl
can still function downstream of Dna2 in cases when Dna2
cleaves the flap inaccurately or when 5 strand displacement
occurs again upon Dna?2 cleavage before the fragments are
ligated.

Dna2 in multiple organisms was proposed to be part of
the replication complex. It has been shown that Xenopus
laevis Dna2 is forming a complex with Mcm10 (minichro-
mosome maintenance complex component 10) and human
Dna2 was found to be in complex with And-1 during G1/S
transition (61,64). Here we report that S. cerevisiae Dna2 in-
teracts with PCNA (Supplementary Figure S10), similarly
to Fenl (10,12). This, together with previously published
data, might suggest that Dna2 and Fenl travel with the
DNA replication machinery as components of the Okazaki
fragment maturation complex. Alternatively, Dna2 can be
recruited to gapped DNA near unprocessed flaps via its in-
teraction with PCNA post-replicatively. This is supported
by our observation that the levels of Dna2 are low in early
S and increase significantly in late S/G2 phase of the cell
cycle (Levikova, M. and Cejka, P., unpublished results).
In contrast, human FENI is highly expressed in the G1
and S phases of the cell cycle and gets rapidly degraded
in late S/G2 (65). This would suggest that Dna2 functions
rather late in DNA replication to cleave flaps that are refrac-
tory to Fenl and/or Exol. In accord, yeast dna2 mutants
are proficient in bulk DNA synthesis, but arrest in G2/M
phase of the cell cycle (21). Similarly, replication fork pro-
gression is not affected in human cells upon DNA2 down-
regulation; these cells also accumulate in late S/G2 (66). In
contrast fenl cells accumulate in S phase due to a block in
DNA replication at non-permissive temperature (67). Col-
lectively, we show that Dna2 can function in flap processing
independently of Fenl. These results are in agreement with
the lethality of dna2 A mutation (36), viability of rad27A or
exol A cells (37-39), as well as the lethality of rad27 A exol A
double mutants (39). The flap processing activity of Dna2
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described here may also play a role in other processes of
DNA metabolism not limited to DNA replication.
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