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ABSTRACT: Background: Homozygous and
compound heterozygous variants in glucocerebro-
sidase (GBA) can cause Gaucher disease (GD),
whereas heterozygous variants increase the risk of
developing Parkinson’s disease (PD). GD patients dis-
play altered peripheral immune proteins. However, it is
unknown if these are altered in GBA carriers with PD.
Objectives: To determine whether plasma cytokines
and immune biomarkers associated with GD are also
altered in GBA carriers with or without PD.

Methods: Inflammatory cytokines and established GD
biomarkers, ferritin, CD162, CCL18, and chitotriosidase
(28 biomarkers) were measured in GBA pathogenic
variant carriers with (n = 135) and without (n = 83) PD,
and non-carriers with (n = 75) and without PD (n = 77).
Results: PD patients with biallelic pathogenic variants
in GBA had elevated plasma levels of ferritin, CCL18,
and MIP1α. These biomarkers were not elevated in
heterozygous GBA carriers.
Conclusion: GD plasma biomarkers are not promising
candidates for stratifying the risk for PD in carriers
of heterozygous GBA pathogenic variants. © 2021 The
Authors. Movement Disorders published by Wiley Peri-
odicals LLC on behalf of International Parkinson and
Movement Disorder Society
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Homozygous and compound heterozygous mutations
in GBA, which encodes the enzyme β-glucocerebro-
sidase (GCase), cause the lysosomal storage disorder
Gaucher disease (GD).1 GD patients, as well as hetero-
zygous carriers of pathogenic variants, are at risk for
Parkinson’s disease (PD).2-5 The penetrance of patho-
genic GBA variants for PD is estimated at 10%–30%,
indicating that the majority of mutation carriers will
never develop PD.6-9 Thus, biomarkers that can inform
which GBA variant carriers are more likely to develop
PD are required. Moreover, a number of strategies
targeting the GCase pathway are currently being
explored as potential therapeutics for PD,10-12 so there
is much interest in finding biomarkers that can identify
efficacious trial compounds.
The link between pathogenic GBA variants and PD

highlights the potential role of the immune system in
PD. Cells of the reticuloendothelial system (eg,
macrophages), are particularly affected in GD. Accumu-
lation of lipids (primarily glucocerebroside) in macro-
phages results in macrophage dysfunction and increased
systemic inflammation in GD patients13 and in preclini-
cal models.14,15 Indeed, a number of monocyte activa-
tion markers have been validated as biomarkers for
monitoring patient responses to GCase enzyme replace-
ment therapy or substrate reduction therapy, the stan-
dard treatments for GD. These include CD163,16

chitotriosidase (CHIT1),17 CCL18,18 and IL-1β.19 Impor-
tantly, monocyte dysfunction and elevated peripheral
inflammation have also been reported in PD patients.20-22

In the present study we used plasma from a cohort of
GBA pathogenic variant carriers with and without PD,
as well as PD patients without GBA mutations, and
matched controls to determine whether cytokines
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and/or peripheral immune biomarkers associated with
GD, were also elevated in carriers of GBA pathogenic
variants associated with PD.

Materials and Methods

Samples were obtained from participants of the Spot
study at Columbia University Irving Medical Center
(CUIMC) and the Icahn School of Medicine at Mount
Sinai (ISMMS). Details of patient recruitment and
assessment are provided in the supplementary methods.
All clinical study procedures were approved by the
Columbia University IRB (and ISMMS IRB, if collected
at Mount Sinai, NY), and all participants signed
informed consent. All samples were shipped to Sydney,
Australia on dry ice. All biomarker studies were
approved by the University of Sydney Human Research
Ethics Committee (2017/076 and 2017/857).

Multiplex Cytokine ELISAs
Bio-Rad Bio-Plex Pro Human Cytokine 27-plex

assays (#M500KCAF0Y, 1:4 plasma dilution) were
used to measure cytokines and chemokines with details
provided in the supplementary methods.

CCL18, CD163, and Ferritin ELISA Assays
Human PARC (CCL18, #EHCCL18, 1:500 plasma

dilution), CD163 (#EHCD163, 1:50 plasma dilution),
and ferritin (#EHFTL, 1:20 plasma dilution) were mea-
sured by enzyme-linked immunosorbent assay (ELISA)
(all Thermo Scientific) with details provided in the sup-
plementary methods.

Chitotriosidase Activity Assay
CHIT1 activity was measured using a BioVision

Chitotriosidase Activity Assay Kit (Fluorometric,
#K512-100, 1:4 dilution) with details provided in the
supplementary methods.

Statistical Analysis
Statistical analyses were performed using SPSS v25

Statistics software23 unless otherwise specified. The
mean of each replicate sample was determined for each
marker and those below the level of detection were given
a notional value of 0. Principal component analysis was
used to determine clustering of the measured plasma
protein profiles. Multivariate analysis of covariance
(MANCOVA) was performed on log10 +1 transformed
variables and unless otherwise indicated included age,
sex, and PD status as covariates. An overall significant
effect for MANCOVA analysis was accepted at P < 0.05
using Wilks’ Lambda test. Significant MANCOVA
effects were followed with pairwise comparison post
hoc tests using the estimated marginal means. A

Bonferroni corrected P < 0.002 (0.05/28 variables) was
applied where appropriate to correct for multiple test-
ing. To detect differences between groups in clinical or
demographic variables, one-way ANOVA with least-
significant difference multiple comparison post hoc tests
was used. Spearman’s correlations were performed to
identify any associations between plasma proteins and
clinical data. Graphs were made with Prism (v8.00 Gra-
phPad Software). More specific analysis details are pro-
vided in the supplementary methods.

Results
Demographic Comparisons

The demographics and phenotype of GBA carriers with
PD (GBA+/PD+, n = 135), GBA carriers without PD
(GBA+/PD−, n = 83), non-carriers with PD (GBA−/PD+,
n = 75), and non-carriers without PD (GBA−/PD−,
n = 77) are presented in Table 1. A breakdown of the
mutation types is provided in Table S1. The groups were
matched by age and sex, and the PD groups were also sim-
ilar in age at onset, disease duration, levodopa equivalent
daily dose, and Unified Parkinson’s Disease Rating Scale
Part III (UPDRS-III) scores. The GBA+/PD+ group had a
significantly lower Montreal Cognitive Assessment
(MoCA) score than all other groups (P = 0.001), indicating
greater cognitive dysfunction in this group. Principal com-
ponent analysis was then used to determine any clustering
of the measured plasma proteins across the entire cohort.
This did not indicate any clear separation between groups;
however, three high inflammatory individuals clearly sepa-
rated from the cohort majority (Fig. 1A) and were
removed from the analysis (see supplementary methods).
The absolute values for the 28 proteins that could robustly
be detected in plasma for the remaining participants are
shown in Table S2.

Increased Ferritin, MIP1α, and CCL18 in
Biallelic GBA Pathogenic Variant Carriers

Six subjects in the study carried biallelic GBA patho-
genic variants, four of which also had a diagnosis of
GD, of whom two were receiving enzyme replacement
therapy. As anticipated, multivariate analysis covarying
for age and sex indicated that biallelic mutations had a
significant overall effect on the plasma protein profile
compared to no GBA mutation carriers (P = 0.002).
Post hoc analysis indicated that ferritin (P = 0.002,
Fig. 1B), CCL18 (P = 0.001, Fig. 1C), and MIP1α
(P < 0.001, Fig. 1D) were significantly increased in the
biallelic group. Chitotriosidase activity was also
included in the multivariate analysis and was not
increased in the biallelic group (Fig. S1).
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No Change in Inflammatory Plasma Biomarkers
in Heterozygous GBA Pathogenic

Variants Carriers
To determine any differences in the levels of the 27

measured plasma proteins and chitotriosidase activity
in heterozygous carriers of GBA mutations, two-factor
MANCOVA analysis using transformed data and

covarying for age sex was performed. The results
showed that neither PD (P = 0.097) nor GBA mutation
status (P = 0.157) were significantly associated with the
plasma levels of the measured proteins. The statistical
analysis also revealed that there was no interactive or
additive effect between GBA mutation status and PD
status on the plasma proteins (P = 0.670). Removing

TABLE 1. Demographic and clinical characteristic data. Participants were grouped by the presence or absence of either
Parkinson’s disease or a GBA mutation

Parameter GBA−/PD− GBA+/PD− GBA−/PD+ GBA+/PD+

n 77 83 75 135
Age (yr) 62.6 � 1.2 62 � 1.2 62.4 � 1.2 64.4 � 0.9
Sex (M/F) 40/37 32/51 37/38 84/51
AAO − − 57.5 � 1.3 58.8 � 0.9
MoCA 26.8 � 0.3 26.5 � 0.3 26.2 � 0.4 25.1 � 0.4ab

Education (yr) 16.7 � 0.3 17.6 � 0.4 17 � 0.4 17 � 0.3
UPDRS-III 1 � 0.2 1.5 � 0.3 17.3 � 1.2a 18.8 � 1a

LEDD − − 413.8 � 46.2 446.1 � 33.4

Values are presented as mean � SEM. Data were analyzed by one-way ANOVA with a least-significant difference post hoc test except sex, which was analyzed
by Kruskal–Wallis followed by Mann–Whitney U.
aP < 0.05 compared to the control group.
bP < 0.05 compared to the PD group without a GBA mutation.
Abbreviations: PD, Parkinson’s disease; M, male; F, female; AAO, age at clinical onset; MoCA, Montreal Cognitive Assessment; UPDRS-III, Unified Parkinson’s
Disease Rating Scale Part III; LEDD, levodopa equivalent daily dosage.

FIG. 1. Increased plasma proteins in biallelic GBA mutation carriers. (A) Principal component analysis was performed to determine clustering of the measured
28 plasma proteins (n = 371). Three participants clearly separated from the cohort (indicated with red arrows) due to high expression of multiple inflammatory
cytokines and these participants were excluded from downstream analysis. MANCOVA analysis covarying for age and sex was used to compare the 28 mea-
sured plasma proteins between biallelic GBA mutation carriers (n = 6) and subjects with no GBA mutation (n = 138). Ferritin (B), CCL18 (C), and MIP1α (D) were
significantly higher in biallelic GBA mutation carriers compared to those with no mutation. Homozygous GBA N370S carriers are blue and compound heterozy-
gous GBA carriers are orange. Graphs show individual values and also the mean ± SE. *P ≤ 0.002.
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the eight GBA mutation cases which also had a LRRK2
mutation from the analysis did not alter the results (all
P > 0.05). The same analysis was performed using only
heterozygous N370S mutation carriers, with the same
result of no significant difference due to either PD
(P = 0.108) nor N370S mutation status (P = 0.272).

Correlations Between Inflammatory Plasma
Markers and Clinical Variables

Spearman’s correlation analysis was performed to
determine whether any of the measured plasma proteins
correlated to the clinical scores for motor severity and
cognitive dysfunction. The UPDRS III score signifi-
cantly positively correlated to IL4, IL8, MCP1, TNFα,
and MIP1α, while the MoCA score significantly nega-
tively correlated to IL17RA, CXCL10, MIP1α, and
CCL18, and significantly positively correlated to PDGF
(Table S3).

Discussion

In the current study we measured 28 peripheral
immune proteins across a cohort of 371 individuals.
We found that biallelic GBA mutation carriers, which
included four homozygous N370S carriers clinically
diagnosed with both PD and GD, had significantly
higher plasma levels of ferritin, CCL18, and MIP1α
compared to those with no GBA mutation. Hyper-
ferritinemia is commonly observed in GD patients and
indicates immune dysregulation,24-26 and treatment of
GD can be effective for decreasing or normalizing ferri-
tin.25 Likewise, CCL18 released from macrophages is
markedly elevated in GD patient plasma,27 and is useful
for monitoring disease severity and response to treat-
ment.28 In contrast, these proteins were not increased
in heterozygous GBA mutation carriers. That neither
ferritin, MIP1α, nor CCL18 were increased in heterozy-
gous N370S carriers suggests that the increased plasma
levels of these proteins observed in biallelic carriers was
due to the presence of GD rather than PD.
Elevated plasma levels of the inflammatory chemokine

MIP1α (also known as CCL3) have also been documented
in GD patients,29 and MIP1α was another protein
increased in biallelic GBA mutation carriers in the current
study. Intriguingly, MIP1α was also strongly correlated
with the UPDRS III PD severity scores. A recent study in a
large PD cohort indicated that higher plasma levels of
MIP1α were associated with faster PD disease
progression,30 and stimulation of peripheral immune cells
from PD patients with the inflammatory agonist lipopoly-
saccharide (LPS) resulted in higher secretion of MIP1α, that
again associated with disease severity.31 Moreover, LPS
stimulation of peripheral PD immune cells also results in
higher secretion of MCP1, IL8, TNFα, CCL5, and IL-1β,31

with MCP1, IL8, and TNFα also correlating with disease

severity in the current study. A number of reports have
demonstrated an underlying inflammatory phenotype in
PD patients; however, the extent of any inflammation cer-
tainly varies across studies.32 Inflammatory medication use,
recent illness, or the presence of other comorbid inflamma-
tory diseases can contribute to variability in peripheral
cytokine measures and were not recorded in the current
study. Furthermore, it is possible that measurement of cyto-
kines in other biofluids (eg, CSF) may provide additional
information. Importantly, associations between inflamma-
tory cytokines/chemokines and disease severity measures
were independent of GBA pathogenic variant type or pres-
ence, and thus more likely a feature of PD in general.
The major strengths of this study are the relatively

large number of GBA pathogenic variant carriers and
the blinding of the laboratory that measured the cyto-
kines. Our study did not include GD patients without
PD however, and thus it could not be determined if the
above biomarkers can distinguish between GD patients
with and without PD. Also, among all genotypes, only
the N370S group was sufficiently large enough to com-
pare carriers with and without PD. Lastly, we did not
genotype for CHIT1 mutations, which would affect
chitotriosidase plasma levels.33 Future studies exploring
the potential role of plasma chitotriosidase as a PD bio-
marker should stratify analyses by CHIT1 genotype.
In summary, these results, based on a large number

of GBA pathogenic variant carriers, indicate that
plasma cytokines and biomarkers used to monitor the
severity of GD, are not promising candidates for strati-
fying the risk of developing PD for carriers of heterozy-
gous GBA pathogenic variants.
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