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ABSTRACT

Background: Florfenicol might be ineffective for treating Staphylococcus aureus small colony 
variants (SCVs) mastitis.
Objectives: In this study, florfenicol-loaded chitosan (CS)-sodium tripolyphosphate (TPP) 
composite nanogels were prepared to allow targeted delivery to SCV infected sites.
Methods: The formulation screening, the characteristics, in vitro release, antibacterial activity, 
therapeutic efficacy, and biosafety of the florfenicol composite nanogels were studied.
Results: The optimized formulation was obtained when the CS and TPP were 10 and 5 mg/
mL, respectively. The encapsulation efficiency, loading capacity, size, polydispersity index, 
and zeta potential of the optimized florfenicol composite nanogels were 87.3% ± 2.7%, 5.8% 
± 1.4%, 280.3 ± 1.5 nm, 0.15 ± 0.03, and 36.3 ± 1.4 mv, respectively. Optical and scanning 
electron microscopy showed that spherical particles with a relatively uniform distribution 
and drugs might be incorporated in cross-linked polymeric networks. The in vitro release 
study showed that the florfenicol composite nanogels exhibited a biphasic pattern with the 
sustained release of 72.2% ± 1.8% at 48 h in pH 5.5 phosphate-buffered saline. The minimal 
inhibitory concentrations of commercial florfenicol solution and florfenicol composite 
nanogels against SCVs were 1 and 0.25 µg/mL, respectively. The time-killing curves and live–
dead bacterial staining showed that the florfenicol composite nanogels were concentration-
dependent. Furthermore, the florfenicol composite nanogels displayed good therapeutic 
efficacy against SCVs mastitis. Biological safety studies showed that the florfenicol composite 
nanogels might be a biocompatible preparation because of their non-toxic effects on the 
renal tissue and liver.
Conclusions: Florfenicol composite nanogels might improve the treatment of SCV infections.
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INTRODUCTION

Staphylococcus aureus (S. aureus) seriously threatens human and animal health and leads 
to enormous economic losses worldwide [1]. S. aureus is associated with subclinical and 
persistent mastitis and greatly impacts the dairy industry [2,3]. The plasticity of the S. aureus 
genome promotes the development of multidrug-resistant strains, a serious health problem 
for dairy cows [4]. Moreover, S. aureus could persist in the host in the form of S. aureus small 
colony variants (SCVs) for a long time, evade the effects of antibacterial drugs, and lead to 
long-term and repeated mastitis infections [5,6]. The failure of treatments for dairy cow 
mastitis caused by SCVs is becoming increasingly prevalent [7]. Therefore, the antibiotic 
treatment of dairy cows’ mastitis caused by SCVs becomes more and more challenging. The 
minimal inhibitory concentration (MIC) of florfenicol against S. aureus was 4 µg/mL [8]. On 
the other hand, florfenicol has strong antibacterial activity against SCVs causing mastitis; it 
may be ineffective for their treatment because of insufficient therapeutic drug concentrations 
and inadequate residence time in the mammary gland [9]. Thus, targeted delivery systems 
for florfenicol are required to enhance the therapeutic concentrations and residence time.

Nanogels are characterized by excellent structural stability and take advantage of both 
nanoparticles and hydrogels, such as their good response to various environmental stimuli 
[10-11]. Inspired by the special micro-environment of the mammary gland (e.g., pH 5.5), 
the responsive nanogels can improve the therapeutic drug concentrations and residence 
time of florfenicol and achieve targeted delivery to the infected site of SCVs [12]. Chitosan 
(CS) has good biocompatibility, biodegradability, and pH-responsiveness, as well as natural 
antibacterial properties, non-toxic characteristics, and a wide range of sources. Therefore, 
it has been used widely in medicine and pharmacy [13-15]. The drug was loaded on CS 
hydrogels to facilitate targeted delivery to the infected sites of SCVs [16,17]. This will enable 
the drug to reach the required drug concentration quickly in the target area, reduce the drug 
loss, improve the curative effect, and reduce the possible toxic and side effects of the drug on 
normal tissues [18,19].

In this study, CS and sodium tripolyphosphate (TPP) were used to wrap florfenicol into 
CS-TPP composite nanogels to improve its therapeutic concentrations and residence time, 
which in turn ensures targeted delivery to SCVs infected sites and is considered the major 
benefit of the current study (Fig. 1). The formulation screening, characteristics, in vitro 
release, antibacterial activity, treatment effect, and biosafety of the florfenicol-loaded CS-TPP 
composite nanogels were studied.

MATERIALS AND METHODS

Materials
Florfenicol solutions (10%) and florfenicol (≥ 98.0%) were provided by Chuang Xin 
Pharmaceutical Co., Ltd. (China) and Jinan Xinbao Star Animal Pharmaceutical Co., Ltd. 
(China), respectively. CS, TPP, and dimethylformamide were purchased from Dingyuan Co., 
Ltd (China). The Live/Dead backlight bacterial viability kit, Mueller-Hinton (MH) broth, 
Luria-Bertani (LB) broth, Tryptic soy agar (TSA), and phosphate-buffered saline (PBS) were 
obtained from Shanghai Bestbio Biotechnology Co., Ltd (China). The SCV strains were 
obtained from China Agricultural University (China) and characterized using the protocol 
reported elsewhere [20].
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High-performance liquid chromatography (HPLC)
The florfenicol concentration was determined using a Waters 2695 series reverse-phase HPLC 
and performed with a detection wavelength of 225 nm at 30°C for the column. A Symmetry® 
C18 column (250 mm × 4.6 mm i.d., 5 µm) was used for separation. The mobile phase was 
acetonitrile and ultrapure water in the proportion of 24:76 with a mobile phase flow rate of 
1 mL/min. In addition, the injection volume was 20 µL. The standard curves of florfenicol 
ranged from 0.1 to 50 µg/mL, R2 = 0.9992 with a recovery rate > 86.5% and relative standard 
deviations < 8.3% for the intra-day and inter-day variation. All samples were measured three 
times, and the average value was taken.

Formulation of florfenicol-loaded CS-TPP composite nanogels
The florfenicol-loaded CS-TPP composite nanogels were formulated by ionic gelation. Briefly, 
CS (100, 200, or 400 mg; Dingyuan Co., Ltd) was added to 20 mL of a 1.0% acetic acid solution 
with magnetic stirring for complete dissolving. One-milliliter dimethyl formamide (Dingyuan 
Co., Ltd) containing 400 mg florfenicol (Jinan Xinbao Star Animal Pharmaceutical Co., Ltd) 
was added to 20 mL of a CS solution at 1400 RPM. Simultaneously, TPP (50, 100, 200, 400, 
or 800 mg; Dingyuan Co., Ltd) was dissolved in 19 mL of ultrapure water. Finally, the TPP 
solution was added slowly to the CS mixture solution dropwise under magnetic stirring at 1400 
RPM to form florfenicol-loaded CS-TPP composite nanogels. The loading capacity (LC) and 
encapsulation efficiency (EE) were used to determine the optimal concentration of CS and TPP. 
Each sample was prepared in triplicate, and the data are expressed as mean ± SD.

Characterization
Surface morphology determination
The appearance of the optimal florfenicol composite nanogels was photographed in an 
inverted bottle. Furthermore, the optimal florfenicol composite nanogels were characterized 
by scanning electron microscopy (SEM, Hitachi S-4800; HITACHI, Japan). Briefly, 1 mg of 
florfenicol composite nanogels were suspended in 1 ml of distilled water, and 2 μl of the 
suspension was placed on a coverslip. After oven drying, the samples were coated with gold 
by ion sputtering and examined at an accelerating voltage of 20 kV. Subsequently, the optimal 
florfenicol composite nanogels were freeze-dried using a lyophilizer (FDU-1200, Japan), and 
freeze-dried images were evaluated by optical microscopy.

https://doi.org/10.4142/jvs.22046

Antibacterial activity of florfenicol composite nanogels

Chitosan

Florfenicol

Chitosan-florfenicol
mixture solution

Sodium
tripolyphosphate

Florfenicol loaded chitosan-sodium
tripolyphosphate composite nanogels

Staphylococcus aureus
small colony variants Mastitis model

pH 5.5

Hydrolysis

Treated breast

Fig. 1. Preparation process and potential release mechanisms of the florfenicol-loaded chitosan-sodium 
tripolyphosphate composite nanogels.
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The mean size, zeta potential (ZP), and polydispersity index (PDI)
The mean size, ZP, and PDI were measured by photon correlation spectroscopy using 
a Zetasizer ZX3600 (Malvern Instruments, UK) at 25°C. Before the measurement, the 
florfenicol composite nanogels were diluted to 2.5 mg/mL by ultrapure water to obtain 
the optimal kilo counts per second of 20–400 for the measurements. The diameter of the 
particles was calculated using the Stokes–Einstein equation. All measurements were repeated 
three times using the samples from independent batches. The mean and SD of the triplicate 
measurements were reported.

In vitro release
The florfenicol composite nanogels were placed in a dialysis bag (MW: 3500) and then in 
500 ml of different (pH 5.5 and 7.4) PBS at 37 ± 0.5°C. At 0.5, 1, 2, 3, 4, 6, 8, 12, 24, 36, and 
48 h, 1 mL of the dialysate was taken out, and the florfenicol concentration was determined 
by HPLC. Thus, the cumulative release curve of florfenicol composite nanogels was drawn 
according to the cumulative release percentage.

Antibacterial activity studies
Determination of MICs
The MICs of florfenicol solution and florfenicol composite nanogels against SCVs were 
determined using the broth macrodilution method with reference to the Clinical and 
Laboratory Standards Institute (CLSI). Briefly, 128, 64, 32, 16, 8, 4, 1, 0.5, 0.25, 1.25, 0.625, 
and 0.3125 μg/ml of the florfenicol solution and florfenicol composite nanogels in MH broth 
(Shanghai Bestbio Biotechnology Co., Ltd) were prepared. The final concentration of the 
SCV strains was 5 × 105 CFU/mL. After 24 h incubation of the cultures at 37°C, the MICs of the 
florfenicol solution and florfenicol composite nanogels against SCVs were determined as the 
lowest concentration inhibiting the visible growth of bacteria. The experimental results were 
repeated three times.

Time-killing curves
The in vitro killing curves of florfenicol solution and florfenicol composite nanogels against 
the SCV strains were obtained by plotting time as a function of log10 CFU/mL. The SCVs 
strain was recovered in 3 ml LB broth (Shanghai Bestbio Biotechnology Co., Ltd), streak-
inoculated on TSA, and added to 2 ml of MH broth, giving a starting inoculum of 106 CFU/ml. 
Subsequently, a serial concentration corresponding to 1/2 × MIC, 1 × MIC, 2 × MIC, and 4 × 
MIC of the florfenicol solution and the florfenicol composite nanogels were obtained. Finally, 
the bacterial count (CFU/mL) was calculated at 1, 2, 4, 8, 12, 24, 48, and 72 h, and the in vitro 
killing curves were plotted.

Live/dead bacterial staining analysis
The viability of the florfenicol solution and the florfenicol nanogels composite solution after 
treatment was quantified using a live/dead background viability detection kit (Shanghai 
Bestbio Biotechnology Co., Ltd). The SCV strains (1 × 106 CFU/mL) were treated with a serial 
concentration corresponding to 1/2 × MIC, 1 × MIC, 2 × MIC, and 4 × MIC of florfenicol 
solution and florfenicol composite nanogels for 2 h. Subsequently, all samples were treated 
with the live/dead backlight bacterial viability kit. Eventually, 5 μL of bacterial suspension was 
dropped onto the slide and evaluated by fluorescence microscopy.

https://doi.org/10.4142/jvs.22046
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Animal experiment
Mouse mastitis model
The mouse mastitis model was established using the SCV strains according to previous 
reports [21]. Briefly, twelve healthy Kunming species mice (18–23 g) were separated randomly 
into two groups (n = 6). Subsequently, 0.1 mL of SCVs containing approximately 1.2 × 109 
CFU/ml was administered to each mouse to produce the mouse mastitis model. Each mouse 
was then inoculated orally by gavage with 0.1 mL of a 0.9% NaCl solution to construct the 
non-infected control group model. After inoculation, all mice were euthanized 24 h post-
infection, and the mammary gland was collected aseptically. The successful establishment 
of the mouse infection model was determined by polymerase chain reaction (PCR) analyses 
[22]. All experimental protocols were carried out following the requirements of the 
Animal Care and Use Committee of Huazhong Agricultural University (approved number: 
HZAUSW-2019-009).

Treatment schedules
Thirty mice were separated randomly into the following five groups of six animals [23]: 
group NC 1 (non-infected control group); group IC 1 (infected control group and treated with 
10 mg/mL CS solution); group IC 2 (infected control group and treated with 5 mg/ml TPP 
solution); group Native 1 (infected group and treated with florfenicol solution, 0.02 mL/20 g, 
administered by the mammary gland injection); group Native 2 (infected group and treated 
with florfenicol composite nanogels, 0.2 mL/20 g, administered by the mammary gland 
infusion). Subsequently, all mice of each group were euthanized on day 5 post-infection. 
In addition, the mammary gland of mice was harvested for PCR analyses on day 5. The 
therapeutic efficacy of the florfenicol solution and florfenicol composite nanogels on the 
mouse SCVs mastitis model was compared by PCR.

In vivo biosafety study
In vivo biosafety study was performed in twelve healthy Kunming mice through a breast 
injection with a 0.2 mL 0.9% (w/v) NaCl solution and florfenicol composite nanogels (0.2 
mL/20 g). The renal and liver functions of the mice were evaluated by hematoxylin and eosin 
(H&E) staining and blood biochemistry analysis. Blood biochemistry analysis included the 
indicators of aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea 
nitrogen (BUN), and creatinine (CREA).

Statistical analysis
The experimental data are expressed as mean ± SD and analyzed by one-way ANOVA using 
the SPSS 19.0 software (IBM Corp., USA). A p-value less than 0.05 was considered significant.

RESULTS

Optimization of florfenicol-loaded CS-TPP composite nanogels
The florfenicol-loaded CS-TPP composite nanogels were formulated by ionic gelation. The 
formulation was optimized using the CS and TPP concentrations as variables, and LC and 
EE as assessment indices. The EE and LC of preparation were the largest, and the optimal 
formula was obtained. The mean LC and EE of the florfenicol composite nanogels prepared 
using different CS and TPP concentrations were different (Table 1). When the concentrations 
of chitosan were the same, there was an exponential relationship, in which the LC and EE 
increased with increasing TPP concentrations. On the other hand, the LC and EE decreased 
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when the concentrations of TPP exceeded 10 mg/mL. When the concentrations of TPP 
were the same, however, the chitosan concentration was 5 mg/mL, and the LC and EE were 
the largest. Thus, the optimized formulation of the florfenicol-loaded CS-TPP composite 
nanogels was obtained when CS and TPP were 10 and 5 mg/mL, respectively, and the LC and 
EE were 5.8% ± 1.4% and 87.3% ± 2.7%, respectively.

Properties of florfenicol-loaded CS-TPP composite nanogels
The florfenicol-loaded CS-TPP composite nanogels showed homogenous transparent 
hydrogels in an inclined bottle, as shown in Fig. 2A. Interestingly, the appearance of 
lyophilized florfenicol-loaded CS-TPP composite nanogels displayed a uniform across-linked 
network by optical microscopy (Fig. 2B). SEM revealed a spherical shape with a relatively 
uniform distribution (Fig. 2C). The florfenicol-loaded CS-TPP composite nanogels were 
distributed evenly and were spherical with a smooth appearance. Fig. 2C showed that the 
particle size of the florfenicol-loaded CS-TPP composite nanogels was approximately 200 nm. 
The results of the lyophilized appearance and SEM images were consistent with the pattern 
diagram. Thus, the florfenicol-loaded CS-TPP composite nanogels had been developed. The 
particle size, PDI, and ZP of the optimal florfenicol composite nanogels were 280.3 ± 1.5 nm, 
0.15 ± 0.03, and 36.3 ± 1.4 mv, respectively (Fig. 2D and E).

https://doi.org/10.4142/jvs.22046
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Table 1. Optimization of the florfenicol-loaded chitosan-sodium tripolyphosphate composite nanogels (n = 3)
Sodium tripolyphosphate (mg/mL) Chitosan (mg/mL) Loading capacity (%) Encapsulation efficiency (%)
1.25 5 1.9 ± 0.3 67.3 ± 1.5
2.5 5 2.6 ± 0.4 70.5 ± 2.2
5 5 4.3 ± 0.6 84.4 ± 1.7
10 5 5.8 ± 1.4 87.3 ± 2.7
20 5 5.5 ± 0.3 83.9 ± 0.3
10 2.5 4.8 ± 0.6 83.8 ± 0.2
10 10 4.8 ± 0.2 78.4 ± 0.5
Data are presented as mean ± SD.
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In vitro release study
The pH of the inflammatory sites caused by SCVs infection is usually ≍5.5 [10,11]. Therefore, 
the release of the florfenicol-loaded CS-TPP composite nanogels in pH 5.5 and 7.4 PBS was 
determined to evaluate the pH-responsive release. In pH 5.5, 72.2% ± 1.8% was released from 
florfenicol-loaded CS-TPP composite nanogels at 48 h, while 63.4% ± 3.1% was released in 
the pH 7.4 PBS at 48 h (Fig. 3). The in vitro release study showed that the florfenicol composite 
nanogels exhibited a biphasic pattern with sustained release in the pH 5.5 PBS. The results 
suggested that the florfenicol-loaded nanogels had obvious sustained-release performances 
and might help treat infections caused by SCVs.

Antibacterial activity
Fig. 4 presents the antibacterial activity of florfenicol solution and florfenicol composite 
nanogels. The MICs of florfenicol solution and florfenicol composite nanogels against SCV 
strains were 1 and 0.25 µg/mL, respectively. The in vitro time-killing curves showed that 
the bactericidal effect of the florfenicol solution and florfenicol composite nanogels was 
remarkable (Fig. 4A and B). The bactericidal ability of florfenicol solution and florfenicol 
composite nanogels also increased with increasing drug concentration. In particular, the 
concentration of florfenicol solution and florfenicol composite nanogels were all 2 × MIC 
(2 and 0.5 µg/mL), and the radical killing effects were observed. When the concentration 
was 2 × MIC (2 µg/mL), the florfenicol solution could completely kill the SCV strains at 48 h. 
Similarly, florfenicol composite nanogels could almost completely kill the SCV strains at 48 h 
when the concentration was 2×MIC (0.5 µg/ml). In addition, the SCV strains were processed 
with a florfenicol solution and florfenicol composite nanogels by live–dead staining after 2 h 
of incubation. Compared to the florfenicol solution group, there were fewer live SCV strains 
(dyed green) in the florfenicol composite nanogels (Fig. 4C). In particular, the florfenicol 
composite nanogels exhibited more potential antibacterial activity against SCVs than the 
florfenicol solution.

Therapeutic experiment
Compared to the non-infected control group model, the results of PCR showed that the 
SCVs mastitis model had been established. The mouse mastitis model was established when 
the bands (279 bp) were amplified by PCR in the mouse mastitis model, and no bands were 
amplified in the non-infected control group model (Fig. 5A). The cure rate was calculated 
to evaluate the treatment effect of florfenicol solution and florfenicol composite nanogels 
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on the SCVs mastitis model. The treatment was classified into groups NC, IC 1, IC 2, Native 
1, and Native 2. PCR was performed to determine if the infected mice were cured (Fig. 5B). 
The infected mice were completely cured when there were no amplified bands by PCR (279 
bp). The cure rates of the groups NC, IC 1, IC 2, Native 1, and Native 2 were 100%, 10%, 
0.0%, 76.6%, and 80.0%, respectively (Fig. 5C). CS had slight antibacterial activity, with a 
cure rate of only 10%. TTP had no antibacterial activity (cure rate of 0%). The cure rate of 
the commercial florfenicol solution (76.6%) was lower than that of florfenicol composite 
nanogels (80.0%), which may be due to the following: 1) CS was added to the florfenicol 
composite nanogels, and florfenicol and CS played an antibacterial role. 2) The florfenicol 
composite nanogels showed sustained-release performance, which led to an increase in cure 
rate. 3) The preparation of florfenicol composite nanogels enhanced the antibacterial activity 
of florfenicol. Hence, the same dose of florfenicol composite nanogels might have the same 
therapeutic efficacy as a commercial florfenicol solution.

Biosafety studies
In this study, the biosafety of the florfenicol composite nanogels was evaluated by H&E 
staining and in vivo blood biochemistry analysis. The mammary gland, liver, kidneys, 
and blood were collected for biosafety studies through a mammary gland injection with 
florfenicol composite nanogels. There was no significant pathological change in the 
mammary gland, liver, and renal tissues through a breast injection with the florfenicol 
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composite nanogels relative to the control group (Fig. 6A and D). The blood biochemistry of 
all mice showed that the ALT, AST, BUN, and CREA levels were within the normal ranges in 
the NC, Native 1, and Native 2 groups. On the other hand, the difference was not statistically 
significant (Fig. 6E and H). These results suggest that the florfenicol composite nanogels had 
no toxic effects, particularly on the mammary glands, liver, kidneys, and blood.

DISCUSSION

The prepared nanogels can enhance the concentration and residence time of drugs at the 
infection sites, thereby improving the antibacterial effect of drugs, which has attracted 
increasing attention [24]. In this study, florfenicol-loaded CS-TPP composite nanogels were 
successfully formulated by ionic gelation. The formula of the florfenicol-loaded CS-TPP 
composite nanogels was optimized considering EE and LC as evaluation indicators, as well as 
CS and TPP concentration as variables. A higher EE and LC of the florfenicol-loaded CS-TPP 
composite nanogels meant successful formations of florfenicol composite nanogels [25]. The 
optimized formulation of the florfenicol-loaded CS-TPP composite nanogels was obtained 
when CS and TPP were 10 and 5 mg/mL, respectively.
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The florfenicol composite nanogels did not flow and showed gelatinous consistency in 
an inclined bottle. The florfenicol composite nanogels were successfully formulated to 
a certain extent. In general, freeze-dried hydrogels displayed a network structure [25]. 
This phenomenon was verified by electron microscopy (uniform across-linked networks). 
Thus, florfenicol composite nanogels might be incorporated into a cross-linked polymeric 
network. This observation agrees with previous studies [26]. The SEM image (spherical with 
a relatively uniform distribution) was similar to another previous study [27], suggesting 
that the florfenicol-loaded CS-TPP composite nanogels were successfully developed by ionic 
gelation. The results of the lyophilized appearance and SEM images were consistent with the 
pattern diagram of the florfenicol-loaded CS-TPP composite nanogels.

In this study, the particle size, PDI, and ZP were 280.3 ± 1.5 nm, 0.15 ± 0.03, and 36.3 ± 
1.4 mv, respectively. This showed that the florfenicol-loaded CS-TPP composite nanogels 
were nanoscale and dispersed uniformly. This means that drugs can pass through bacterial 
cell membranes easily and kill bacteria. Interestingly, florfenicol-loaded nanogels with 
a positive charge could have a more substantial bactericidal effect through electrostatic 
interactions with the bacterial membrane with a negative charge. Nano-drugs can improve 
the bioavailability of drugs and allow targeted and sustained release [28]. The in vitro release 
study showed that florfenicol composite nanogels exhibited a biphasic pattern with sustained 
release in pH 5.5 PBS. Therefore, the in vitro release showed that the prepared florfenicol-
loaded CS-TPP composite nanogels had targeted and sustained release, which had great 
advantages in treating SCV infection.

The antibacterial activity was evaluated by MICs, time-killing curves, and live/dead bacterial 
staining analysis to determine if the florfenicol composite nanogels have a stronger 
bactericidal effect than a commercial florfenicol solution. The MICs showed that the 
florfenicol composite nanogels (0.25 µg/mL) could enhance the susceptibility to florfenicol 
compared to the florfenicol solution (1 µg/mL). Hence, the antibacterial activity of florfenicol 
was enhanced during the production of florfenicol composite nanogels. This may also be 
due to the addition of chitosan. Chitosan has antibacterial activity [12]. The time-killing 
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curves and live/dead bacterial staining showed that florfenicol composite nanogels had 
more potential antibacterial activity against SCVs than florfenicol solution. Moreover, the 
bactericidal ability of florfenicol solution and florfenicol composite nanogels also increased 
with increasing drug concentration. This suggests that the effect of the florfenicol solution 
and florfenicol composite nanogels against the SCV strains was concentration-dependent. 
Thus, the area under the concentration-time curve/minimum inhibitory concentration 
(MIC) might be a more appropriate parameter to formulate the dosage regimen of florfenicol 
composite nanogels against SCVs [29]. Furthermore, the therapeutic experiments suggested 
that the florfenicol composite nanogels had an excellent therapeutic effect (80%) on mouse 
SCVs mastitis than the florfenicol solution (76.6%). This may be attributed to the following 
three reasons. 1) CS has an antibacterial effect. When used as hydrogel excipients, it may 
improve the antibacterial activity of florfenicol and the therapeutic effect. 2) The cure rate of 
florfenicol composite nanogels was increased because of the sustained-release performance. 
3) The antibacterial activity of florfenicol was enhanced during the production of florfenicol 
composite nanogels. Thus, the florfenicol composite nanogels were more advantageous 
than the florfenicol solution for treating cow mastitis caused by SCV strains. The biosafety 
studies showed that florfenicol-loaded CS-TPP composite nanogels had no obvious side 
effects or toxic implications (especially mammary gland, liver, kidney, and blood), and it had 
a practical application prospect. Overall, the prepared florfenicol-loaded CS-TPP composite 
nanogels had an ideal therapeutic effect against cow mastitis caused by SCV strains.

In this study, novel florfenicol-loaded CS-TPP composite nanogels were successfully prepared 
by ionic gelation to improve their therapeutic concentrations and residence time, ensuring 
the target delivery to the SCV-infected site. The results suggested that florfenicol composite 
nanogels have obvious sustained-release performances in pH 5.5. More importantly, the 
designed florfenicol composite nanogels had a stronger antibacterial activity against SCVs 
than the florfenicol solution. On the other hand, it had an excellent therapeutic potential on 
mouse SCVs mastitis. Moreover, the prepared florfenicol composite nanogels had no side 
effects or toxicity and have practical application prospects. Therefore, the present study may 
provide a strategy to enhance the therapeutic efficacy of florfenicol against cow mastitis 
caused by SCV strains.
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