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Abstract

Metabolic syndrome (MetS) is a complex syndrome cluster of metabolic disorders, which

greatly increases the risks of diabetic and cardiovascular diseases. Although it has become

a significantly worldwide public health burden, its pathogenesis largely remains unknown. In

this study, we first performed an integrated analysis of proteomic and metabonomic data of

liver tissues of rats between MetS and control groups to reveal possible mechanisms of

MetS. A total of 16 significantly perturbed pathways were identified, of which three pathways

were shared by patients with MetS and diabetes identified by analysis of serum samples,

including alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine bio-

synthesis, and glycine, serine and threonine metabolism. Additionally, it was found that 18

differential metabolites were closely related with 36 differential proteins, which were consid-

ered as significantly discriminant metabolites and proteins between two groups and were

mainly involved in metabolic processes of gamma-aminobutyric acid and acetyl-CoA, bio-

synthetic processes of cholesterol and amino acids. The results of PPI network analysis and

topological parameter calculation of four methods revealed that 16 proteins can serve as

hub proteins of MetS. Followed by searching the PubMed database and molecular docking

of Cyp7a1 and Got1, we concluded that atorvastatin and resveratrol may be potential drugs

for MetS.

Introduction

Metabolic syndrome (MetS) describes a cluster of disorders that include central obesity, hyper-

tension, dyslipidemia and impaired glucose tolerance, which lead to the development of type 2

diabetes mellitus (T2DM) and cardiovascular diseases. Nowadays, it is estimated that 25% of

adults worldwide suffer from MetS and is recognized as a global public health concern [1].
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Insulin resistance and energy imbalance are widely regarded to be the primary causes of MetS

[2]. Although the roles of the two main causes in MetS are plausible, its specific pathogenesis

still remains unknown and it also lacks screening and optimal treatment for this disease. Cur-

rently, proteomics and metabonomics have been promising technologies for elucidating the

mechanisms of diseases, which detect and identify various molecules at the levels of proteins

and metabolites, and study their functions and interrelationships among various molecules [3,

4]. Yu Yuan et al. combined the two techniques to explore the mechanism of doxorubicin-

induced heart failure in rats and found that PTP1B can be used as a potential target for the

treatment of heart failure [3]. In recent years, some metabonomics studies have been used to

detect changing levels of serum metabolites of MetS. Because MetS is a complex disease related

to gene factors and external environment (diet, lifestyle), and lacks for unique diagnostic crite-

ria, there is still no uniform statement on the biomarkers of MetS, which mostly have involved

the abnormal metabolism of amino acids so far [5]. Alanine has been reported to be related to

several characteristics associated with MetS, including body mass index (BMI), waist circum-

ference (WC), triglycerides, hypertension, impaired glucose tolerance, and insulin resistance

[6]. The branch-chain amino acids including isoleucine, leucine, and valine are closely related

to metabolic diseases. A 2018 meta-analysis of four groups of T2DM patients showed that

these three branched chain amino acids increased by approximately 40% in the case of poor

blood glycemic control [7]. These studies have some implications for MetS, but they are stayed

at the metabolite level. Given that proteins are the main performers of life activities and that

alterations in protein expression levels are directly related to disease, drug action or toxin

action, it is clear that if metabolomics and proteomics are integrated, it will provide more pos-

sibilities to understand the underlying molecular mechanisms of MetS.

Considering that the liver is the main organ of metabolism in the body and the metabolism

center of various substances, it plays an important role in the metabolism of the three major

nutrients of carbohydrates, lipids and proteins. It involves many functions such as synthesis,

storage, decomposition, excretion, detoxification and secretion. Thus, liver metabolism likely

plays a significant role in metabolic diseases. An analysis of the physical examination data of

21928 Chinese elderly people over 65 years found that the risk of metabolic syndrome in the

abnormal liver function group is 1.948 times that of the normal liver function group, and all

the main components of metabolic syndrome such as high blood glucose, high triglycerides,

overweight or obesity were closely related to abnormal liver function [8]. Additionally, Ame-

deo Lonardo et al., concluded that nonalcoholic fatty liver disease preceded and was a risk fac-

tor for the future development of the metabolic syndrome based on 19 longitudinal studies [9].

Thus, it can be concluded that changes in levels of metabolites and proteins of liver tissues

can be used to reveal possible mechanisms of MetS, which can reflect molecular processes

closer to the disease state than serum samples. Since MetS is caused by multi-factors including

genetic and environmental factors, animal modeling can minimize the differences between

these two main factors, and is more suitable for preliminary studies of common mechanisms

of MetS in human. At present, MetS modeling methods are mostly induced by diet such as

high-sugar, high-fat diet or high-sugar/high-fat diet. The advantage of the diet-induced model

is that it can simulate environmental factors such as restricting its activities, the modelling rate

is high, and the model is close to the clinic [10]. In this study, high-throughput analysis tech-

nologies including gas chromatography/time-of-flight mass spectrometry (GC-TOF/MS) and

high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) com-

bined with KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis

were performed to detect the differential metabolites and proteins of liver tissues of MetS

model rats to explore potential proteins, pathways and drugs for the prevention and treatment

of MetS.
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Materials and methods

Chemicals

Main chemicals including L-2-chlorophenylalanine (Shanghai Hengbai Biotechnology Inc.

China), saturated fatty acid methyl esters (FAMEs: C8, C9, C10, C12, C14, C16, C18, C20,

C22, C24) (Dr. Ehrenstorfer GmbH, Germany), formic acid (Fisher Scientific, USA), acetoni-

trile (75–05-8, Fisher Scientific, USA), BCA Kit (Fisher Scientific, USA), trifluoroacetic acid

(Fisher Scientific, USA), protease inhibitor cocktail (Roche, Switzerland), Na-upgrader peptide

column (Thermo, USA), trypsin (Promega, Madison, WI), were used.

Animals

This study was approved by the Experimental Animal Ethical Committee of Fujian University

of Traditional Chinese Medicine, Fuzhou, P. R. China (FUTCMME No. 020/2016), and all

experiments were performed strictly according to the Guide for the Care and Use of Labora-

tory Animals (US National Research Council 1996). Liver tissues of Wistar rats in the normal

control and MetS model groups (seven rats in each) were taken from our lab at random [11].

Here, the adult male Wistar rats (2 months) weighing 200±20 g were used in the MetS model-

ing experiment, and the specific information of housing conditions can be seen in the supple-

mental information. Rats in the normal control group were fed with normal diet for 17 weeks,

and rats in the MetS model group were fed with fifteen-week’s high-sugar-fat-diet and two-

week’s high-fat emulsion [S1 File]. The metabolic disorder of the animals was assessed by mea-

suring abdominal perimeters, serum levels of HDL-C and insulin, and insulin-resistances

(HOMA-IR, estimated using the homeostasis model assessment) according to the WHO defi-

nition [12]. After 17 weeks, all these parameters of MetS group were significantly different

from that of normal control group, the specific result can be seen in S1 Fig in S1 File. These

rats were anesthetized with an intraperitoneal injection of 10% chloral hydrate (0.3 mL/100g

body weight), the livers were quickly removed and stored in -80˚C. Here, metabonomics and

proteomics technologies were integrated to analyze differential metabolites and proteins of the

liver tissues of normal control and MetS groups.

Metabonomics analysis

The liver tissue sample of 50±1 mg from each rat was transferred into a 2 mL tube, and 450 μL

pre-cold extraction mixture (methanol/chloroform (v:v) = 3:1) with 10 μL internal standard

(L-2-Chlorophenylalanine, 1 mg/mL stock) were added and centrifuged at 12 000 rpm for 15

min at 4˚C. Then, 200 μL of the supernatant was transferred into a new tube, and simulta-

neously 60 μL of each supernatant was taken out and pooled as quality control samples (QC

samples), respectively. After evaporation in a vacuum concentrator, 30 μL of methoxyamina-

tion hydrochloride (20 mg/mL in pyridine) were put into the extracts, followed by the incuba-

tion at 80˚C for 30 min. Afterwards, 40 μL of the BSTFA regent (1% TMCS, v/v) was added to

samples and then incubated at 70˚C for 1.5 h. Finally, 5 μL of FAMEs (in chloroform) was

added to each QC sample.

Then, an Agilent 7890 gas chromatograph system combined with a time-of-flight mass

spectrometer was carried out to perform the GC-TOF/MS analysis for liver samples [13]. A

DB-5MS capillary column (30 m×250 μm i.d., 0.25 μm film thickness; J&W Scientific, Folsom,

CA, USA) was applied for all analytes. The initial temperature of column was maintained at

50˚C for 1 min, and then gradually increased to 310˚C at a rate of 10˚C/min, and stayed at

310˚C for 8 min. Subsequently, we controlled the temperatures of injection, transfer line and

ion source at 280˚C, 280˚C and 250˚C, respectively. The electron energy was -70 eV. Finally,
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the mass spectrometry data were gained at a rate of 12.5 spectra/second with a solvent delay of

6.25 min from the m/z range of 50 to 500 in a full-scan mode.

Quantitative proteomics analysis

Protein extraction. Rat liver tissue samples were frozen with liquid nitrogen, ground, and

crushed with 1.0 milliliter of lysis buffer (7M urea, 4% SDS, 1x Protease Inhibitor Cocktail),

followed by sonication on ice and centrifugation at 13000 rpm for 10min at 4˚C. Protein quan-

tification was performed by bicinchoninic acid (BCA) method. 100 μg protein per condition

was transfered, alkylated and digested in the centrifugal unit. After digested with sequence-

grade modified trypsin (Promega, Madison, WI) at 37˚C for 12 hours, the resultant peptide

mixture was labeled using chemicals from the iTRAQ8Plex reagent kit (AB Sciex, CA, USA)

according to the manufacturer’s protocol (S1 File). The labeled samples were combined,

desalted using C18 SPE column (Sep-Pak C18, Waters, Milford, MA) and dried in vacuo.

High pH reverse phase separation. The peptide mixture was re-dissolved in buffer A

(buffer A: 10 mM aqueous ammonium formate, pH 10.0, adjusted with ammonium hydrox-

ide), and then separated by high pH using the Aquity UPLC system (Waters Corporation, Mil-

ford, MA) connected to a reverse phase column (BEH C18 column, 2.1 mm x 150 mm, 1.7 μm,

300 Å, Waters Corporation, Milford, MA). The linear gradients were used for high pH separa-

tions from 0% B to 45% B in 35 minutes (B: 10 mM ammonium formate in 90% acetonitrile,

pH 10.0, adjusted with ammonium hydroxide). The column flow rate was set at 250 μL/min,

and the column temperature was fixed at 45˚C. Twelve fractions were collected and vacuum-

dried for further MS analysis, respectively.

Low pH Nano-HPLC-MS/MS analysis. Each fraction was re-suspended in 40μL solvent

C (C: water with 0.1% formic acid; D: ACN with 0.1% formic acid), separated by nanoLC and

analyzed by on-line electrospray tandem mass spectrometry, which was performed on an

EASY-nLC 1000 system (Thermo Fisher Scientific, Waltham, MA) connected to an Orbitrap

Fusion mass spectrometer (Thermo Fisher Scientific, San Jose, CA) equipped with an online

nano-electrospray ion source. 4 μL peptide sample was loaded onto the analytical column

(Acclaim PepMap C18, 75 μm x 25 cm), and eluted using a 110 min linear gradient from 5% D

to 30% D at a flow rate of 300 nL/min. The Orbitrap Fusion mass spectrometer was operated

in the data-dependent mode to switch automatically between MS and MS/MS acquisition. The

Orbitrap Fusion mass spectrometer was operated in the data-dependent mode to switch auto-

matically between MS and MS/MS acquisition. the scanning range of parent ion is 350–1600

m/z, the resolution of primary mass spectrometry is 60000 at 200 m/z, the AGC taget was set

to 1000000, and the maximum injection time was 50 ms. The MS/MS acquisition was per-

formed in Orbitrap with 3 s cycle time, the resolution was 15000 at m/z 200. Ions with charge

states 2+, 3+ and 4+ were sequentially fragmented by higher energy collisional dissociation

(HCD) with a normalized collision energy (NCE) of 30%. In all cases, one microscan was

recorded using dynamic exclusion of 30 seconds.

Data processing

The Chroma TOF 4.3X software of LECO Corporation combined with LECO-Fiehn Rtx5

database were employed to extract peak values and correct the original mass spectra data of

metabonomics for principal component analysis (PCA) and partial least squares–discriminant

analysis (PLS–DA). The standards were variable importance in the projection (VIP) >1.0 and

T-test (P<0.05) to select differential metabolites [14].

Protein identifications were performed using the MASCOT search engine (version 2.3.2;

Matrix Science, London, UK) embedded into Proteome Discoverer 1.4 (Thermo Electron, San
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Jose, CA, USA) [15] (Suplementary information). The LC/MS raw data were searched in the

UniProt-reviewed rat protein database and differentially expressed proteins were screened by

the criteria of up-regulation greater than 1.2 times or down-regulation less than 0.833 and T-

test P value less than 0.05 [3]. The statistical analysis of related data was performed using SPSS

software 20.0.

Integrated metabonomics and proteomics analysis

To associate the proteomics data with the metabonomics data, we conducted a joint pathway

enrichment analysis with differential metabolites and proteins in the KEGG database by Meta-

boanalyst platform, which entitles the weight strategy for different proteomics data universe

and metabolomics data universe with a weighted z-test [16].

Protein-protein interactions analysis

After identification of the key metabolic pathways based on differential metabolites and pro-

teins, differential proteins involved in significantly perturbed joint pathways were further

obtained for interaction analysis. Then, they all were imported into STRING database for pro-

tein-protein interactions analysis to link their interactive actions [17]. Further to search the

hub proteins in the protein-protein interaction (PPI) network, topological parameters were

calculated by four topological methods, including maximal clique centrality (MCC), density of

maximum neighborhood component (DMNC), maximum neighborhood component (MNC),

and Degree algorithms embedded in Cytoscape 3.8.2 [18].

Results

Results of metabolomics analysis

The GC-TOF/MS analysis was performed to detect metabolic profiles of liver tissues of rats in

normal control group and MetS model group by using an Agilent 7890 gas chromatograph

system combined with a time-of-flight mass spectrometer. In total, 696 ion peaks were identi-

fied out in two groups. Followed by searching the LECO/Fiehn metabolomics library, the

majority of the peaks were identified as endogenous metabolites, and some of these peaks were

attributed to the derivatives of byproducts. Besides, metabolic features detected in less than

50% of QC samples were removed. Finally, a total of 258 metabolites in the liver samples of

two groups were matched and quantified.

Then, pattern recognition techniques including PCA and PLS-DA were used to detect met-

abolic differences between two groups. PCA Fig 1(A) and PLS–DA (Fig 1(B)) were built by

using SIMCA software (version 14.0, Sweden). The PCA result showed that some significant

differences exist in the metabolic profiles of the samples but could not be clearly distinguished

between groups. So, the supervised PLS-DA was performed to highlight the differences

between groups and identify differential metabolites. The PLS-DA result showed that it can

identify differential metabolites between two groups. The values of corresponding R2Y (cum)

and leave-one-out cross-validation Q2Y (cum) values of PLS-DA model for the control and

model groups were 0.988 and 0.928, as shown in Fig 1(C), showing that the derived model pro-

duced high predictive abilities and satisfactory effectiveness achieving distinct separations

between the two comparison groups. Additionally, the 200 permutation tests (Fig 1(D)) were

performed, and the results showed that the PLS–DA model was not overfitting and had high

reliability. Therefore, the derived PLS-DA model can distinguish two groups. And, the loading

plot of PLS-DA was presented in Fig 1(E).
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Fig 1. The metabolic profiles analysis of liver samples between two groups. (A) PCA score plots. (B) PLS–DA models. (C)

Fit resutls of PLS-DA model. (D) permutation tests. Red represents the MetS model group, black represents the control group,

Green4 is for R2Y (cum), and blue □ is for Q2Y (cum). (E)The loading score plot of PLS-DA model.

https://doi.org/10.1371/journal.pone.0270593.g001
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In total, 82 significantly changed metabolites (VIP >1 and P<0.05) in liver tissues of rats

were identified in two groups, which were accountable for momentous separations for

PLS-DA model (S1 Table in S1 File). Among these metabolites, 50 metabolites exhibited

higher abudance in the MetS group than those in the control group (P <0.05), including

2-ketobutyric acid, malonic acid, valine, isoleucine, proline, serine, threonine, methionine,

phenylalanine, linolenic acid, tartronic acid, pyruvic acid, oxalic acid, hypoxanthine, pyruvate,

allose and so on. While, the abudance of 32 metabolites in the MetS group were lower than

that in the control group (P <0.05), including xylose, fructose, mannose, oleic acid, N-methyl-

DL-alanine, oxoproline, 4-cholesten-3-one, phosphate, palatinose, etc.

Proteomic analysis

The iTRAQ method was used for the proteomic analysis of liver tissues of rats in normal con-

trol group and MetS model group. By utilization of iTRAQ-based quantitative proteomics, we

identified 2049 proteins in liver tissue samples of the two groups, among which 153 proteins

exhibited significantly altered abundance (fold change>1.2 or<0.833, P >0.05) between two

groups (S2 Table in S1 File). As shown in Fig 2, the abudance of 67 proteins was significantly

increased and 86 proteins were significantly decreased in MetS group, which can be consid-

ered as differential proteins on the bases of coverage. The proteins with increased abudance

mainly included: mitochondrial proton/calcium exchanger protein, 6-phosphogluconate

dehydrogenase, diphosphomevalonate decarboxylase, “Acetyl-CoA acetyltransferase, cyto-

solic”, squalene synthase, ATP-citrate synthase, “aspartate aminotransferase, cytoplasmic”,

“hydroxymethylglutaryl-CoA synthase, cytoplasmic”, farnesyl pyrophosphate synthase, iso-

pentenyl-diphosphate delta-isomerase 1, etc. The proteins with decreased abudance mainly

included: UDP glucuronosyltransferase family 1 member A1, GTP binding protein 1, “thymo-

sin beta 4, X-linked”, signaling threshold regulating transmembrane adaptor 1, “cytochrome

Fig 2. Differential proteins in liver tissues of rats between normal control and MetS groups. Rose red circle

represents up-regulated protein and blue circle represents down-regulated protein.

https://doi.org/10.1371/journal.pone.0270593.g002
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P450, family 2, subfamily b, polypeptide 2”, prostaglandin G/H synthase 1, cytochrome P450

3A18, signaling threshold-regulating transmembrane adapter 1, cholesterol 7-alpha-monooxy-

genase, acyl-coenzyme A thioesterase 12.

Integrated proteomics and metabolomics analysis

To associate the proteomics data with the metabolomics data, we conducted a joint pathway

enrichment analysis with differential metabolites and proteins in the KEGG database. As given

in Table 1, 16 pathways were significantly enriched (P <0.05). By analyzing hit metabolites

and proteins involved in these enriched pathways, 18 differential metabolites and 36 differen-

tial proteins were obtained. Tables 2 and 3 listed the information of these crucial differential

metabolites and proteins, respectively. As shown in Table 1, the integrated analysis of differen-

tial proteins and metabolites revealed that 16 metabolic pathways were significantly perturbed

(P<0.05), including retinol metabolism, alanine, aspartate and glutamate metabolism, argi-

nine biosynthesis, valine, leucine and isoleucine biosynthesis, glycine, serine and threonine

metabolism, arginine and proline metabolism, ascorbate and aldarate metabolism, cysteine

and methionine metabolism, propanoate metabolism, terpenoid backbone biosynthesis, citrate

cycle (TCA cycle), linoleic acid metabolism, pyruvate metabolism, pentose and glucuronate

interconversions, steroid hormone biosynthesis, pantothenate and CoA biosynthesis. These

metabolic pathways can be grouped into amino acid metabolism, fatty acid metabolism, glu-

cose metabolism and biosynthetic pathways.

As shown in Table 1, all impact values of these pathways were greater than 0.2. Generally,

an impact value equal to or greater than 0.1 indicates that this altered pathway is obviously

affected. Thereby, these 16 enriched pathways were significantly perturbed in MetS model

group. Thus, differential metabolites and proteins involved in these 16 perturbed pathways of

MetS can be considered as significantly discriminant metabolites and proteins between two

groups.

Table 1. Significantly perturbed metabolic pathways identified by integrated proteomics and metabolomics analysis.

Metabolic Pathways Total Hits p-value Impact

Retinol metabolism 45 10 5.63E-06 0.54545

Alanine, aspartate and glutamate metabolism 59 10 7.02E-05 0.51724

Arginine biosynthesis 27 6 0.00048 0.5

Valine, leucine and isoleucine biosynthesis 12 4 0.000875 0.36364

Ascorbate and aldarate metabolism 17 4 0.003613 0.1875

Glycine, serine and threonine metabolism 72 8 0.006405 0.47887

Propanoate metabolism 48 6 0.010217 0.3617

Arginine and proline metabolism 78 8 0.010336 0.44156

Terpenoid backbone biosynthesis 36 5 0.012165 0.54286

Cysteine and methionine metabolism 71 7 0.019849 0.64286

Citrate cycle (TCA cycle) 42 5 0.022807 0.43902

Linoleic acid metabolism 17 3 0.026903 0.5

Pyruvate metabolism 45 5 0.02987 0.45455

Pentose and glucuronate interconversions 32 4 0.034805 0.22581

Steroid hormone biosynthesis 175 12 0.038768 0.22989

Pantothenate and CoA biosynthesis 34 4 0.042299 0.30303

The “Total” column represents total numbers of metabolites and proteins involved in the pathways; The “Hits” column represents hit numbers of metabolites or

proteins involved in the pathways.

https://doi.org/10.1371/journal.pone.0270593.t001
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PPI network construction

The 36 differential proteins were obtained after the joint pathway enrichment analysis with dif-

ferential metabolites and proteins in the KEGG database (Table 3). To identify the hub pro-

teins that have many interaction partners, protein-protein interactions analysis was first

constructed based on string database by using Cytoscape 3.8.2 [18]. As a result, a total of 33

nodes and 98 edges were obtained from 36 genes with a PPI enrichment P-value smaller than

1.0e-16. As shown in Fig 3, 31 differential proteins interacted with each other, including 20

increased proteins and 11 decreased proteins in liver tissues of MetS group compared with the

control group. Then, we used four calculation methods of topological parameters by cyto-

Hubba plugin embedded in Cytoscape 3.8.2 to search hub proteins in the PPI network,

including maximal clique centrality (MCC), density of maximum neighborhood component

(DMNC), maximum neighborhood component (MNC), and Degree algorithm. The shared

sets of proteins among these four topological methods were considered as hub proteins of

the PPI network of MetS. The results showed that 16 of the top 20 hub proteins were shared

among four methods, including Hmgcs1, Fdps, Acat2, Mvd, Hsd17b7, Cyp3a18, Cyp2c7,

Cyp2b2, Cyp7a1, Ugt1a1, Got1, Ugt2b7, Aldh1a1, Ass1, Cps1 and Cth. Table 4 gave the topo-

logical parameters of these hub proteins in the PPI network. Among 16 hub proteins, 10 pro-

teins were up-regulated in liver tissues of MetS group, and 6 proteins were down-regulated.

Discussion

Metabolic syndrome is a symptom group caused by abnormal metabolism of the three major

nutrients of carbohydrates, lipids and proteins. The liver is the main organ of metabolism in

the body and the center of the metabolism of various substances, which plays an important

role in the metabolism of the three major nutrients. Therefore, changes in metabolites and

proteins of liver tissues may be used to reveal possible mechanisms of MetS, which may also

find the corresponding drug targets. The current research on the mechanism of metabolic

Table 2. Differential metabolites involved in significantly perturbed metabolic pathways.

KEGG ID Name Fold change p-value

C00022 Pyruvic Acid 1.609 0.0154

C00109 2-Ketobutyric Acid 1.165 0.0429

C05984 2-Hydroxybutyric Acid 2.315 0.0001

C00099 Beta-Alanine 2.342 0.0035

C00183 Valine 1.570 0.0000

C00407 Isoleucine 1.818 0.0000

C00148 Proline 1.581 0.0001

C00122 Fumaric Acid 0.785 0.0409

C00188 Threonine 1.201 0.0030

C00073 Methionine 1.389 0.0000

C00300 Creatine 1.740 0.0376

C00181 Xylose 0.247 0.0170

C00077 Ornithine 1.320 0.0145

C00864 Pantothenic Acid 2.038 0.0229

C00137 Myo-Inositol 0.225 0.0001

C05285 Adrenosterone 2.136 0.0162

C03681 5-Alpha-Dihydroprogesterone 0.460 0.0000

C05485 21-Hydroxypregnenolone 0.113 0.0036

https://doi.org/10.1371/journal.pone.0270593.t002
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syndrome mainly have been focused on the analysis of metabolites in the serum or urine sam-

ples. In this study, the differential metabolites and proteins of liver tissues of MetS rats were

detected to explore possible mechanism of MetS, which may provide some new clues.

Through the fusion of liver metabolome and proteome data, 16 significantly perturbed

pathways were obtained, including 6 pathways of amino acid metabolism, 2 pathways of lipid

metabolism, 1 pathway of glucose metabolism and 7 pathways of biosynthetic pathways. Li

et al. reported 15 metabolic pathways disrupted in MetS patients from serum metabolomics

and 5 pathways were consistent with our finding based on liver tissues, including alanine,

aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, glycine, serine

and threonine metabolism, propanoate metabolism, and citrate cycle (TCA cycle) [19]. Sun

Table 3. Differential proteins involved in significantly perturbed metabolic pathways.

Symbol Uniprot Protein name Biological function Fold p-value

Abat P50554 4-aminobutyrate aminotransferase, mitochondrial Neurotransmitter degradation 1.237 0.0029

Acat2 Q5XI22 Acetyl-CoA acetyltransferase, cytosolic Cholesterol biosynthesis 1.999 0.0041

Acly P16638 ATP-citrate synthase Lipid metabolism 1.338 0.0002

Acot12 Q99NB7 Acyl-coenzyme A thioesterase 12 Lipid metabolism 0.832 0.0019

Agxt P09139 Serine–pyruvate aminotransferase, mitochondrial Gluconeogenesis 1.236 0.0061

Aldh1a1 P51647 Retinal dehydrogenase 1 Retinoic acid biosynthesis 0.715 0.0011

Aldh4a1 P0C2X9 Delta-1-pyrroline-5-carboxylate dehydrogenase Proline metabolism 1.222 0.0004

Aox3 Q5QE80 Aldehyde oxidase 3 Oxidoreductase 1.253 0.0003

Asns P49088 Asparagine synthetase [glutamine-hydrolyzing] Amino-acid biosynthesis 0.597 0.0245

Ass1 P09034 Argininosuccinate synthase Amino-acid biosynthesis 1.378 0.0006

Bhmt O09171 Betaine–homocysteine S-methyltransferase 1 Homocysteine metabolism. 1.314 0.0039

Cps1 P07756 Carbamoyl-phosphate synthase [ammonia] Urea cycle 1.29 0.0003

Cth P18757 Cystathionine gamma-lyase Cysteine biosynthesis 1.277 0.0019

Cyp2b2 P04167 Cytochrome P450 2B2 Oxidoreductase 0.398 0.0421

Cyp2c7 P05179 Cytochrome P450 2C7 Oxidoreductase 1.332 0.0122

Cyp3a18 Q64581 Cytochrome P450 3A18 Oxidoreductase 0.719 0.0006

Cyp3a2 P05183 Cytochrome P450 3A2 Oxidoreductase 0.717 0.0029

Cyp7a1 P18125 Cholesterol 7-alpha-monooxygenase Cholesterol metabolism 0.777 0.0200

Echdc1 Q6AYG5 Ethylmalonyl-CoA decarboxylase Metabolite proofreading 1.433 0.0019

Enpp3 P97675 Ectonucleotide pyrophosphatase/phosphodiesterase 3 Hydrolase 0.803 0.0135

Fdps P05369 Farnesyl pyrophosphate synthase Isoprene biosynthesis 1.988 0.0002

Gls2 P28492 Glutaminase liver isoform, mitochondrial Glutamine catabolism 1.527 0.0002

Got1 P13221 Aspartate aminotransferase, cytoplasmic Amino-acid biosynthesis 1.497 0.0011

Hmgcs1 P17425 Hydroxymethylglutaryl-CoA synthase, cytoplasmic Cholesterol biosynthesis 1.581 0.0003

Hsd17b7 Q62904 3-keto-steroid reductase Lipid biosynthesis 1.618 0.0028

Idi1 O35760 Isopentenyl-diphosphate Delta-isomerase 1 Cholesterol biosynthesis 2.036 0.0012

Mvd Q62967 Diphosphomevalonate decarboxylase Cholesterol biosynthesis 1.555 0.0001

Oat P04182 Ornithine aminotransferase, mitochondrial Amino-acid biosynthesis. 1.475 0.0005

Pck1 P07379 Phosphoenolpyruvate carboxykinase, cytosolic [GTP] Gluconeogenesis 1.248 0.0062

Phgdh O08651 D-3-phosphoglycerate dehydrogenase Amino-acid biosynthesis 0.542 0.0037

Pycr3 Q5PQJ6 Pyrroline-5-carboxylate reductase 3 Amino-acid biosynthesis 0.77 0.0028

Retsat Q8VHE9 All-trans-retinol 13,14-reductase Retinol metabolic process 0.832 0.0024

Sdhd Q6PCT8 Succinate dehydrogenase [ubiquinone] Carbohydrate metabolism 0.797 0.0424

Ugt1a1 Q64550 UDP-glucuronosyltransferase 1–1 Glycosyltransferase 0.722 0

Ugt1a5 Q64638 UDP-glucuronosyltransferase 1–5 Glycosyltransferase 0.694 0.0246

Ugt2b7 Q62789 UDP-glucuronosyltransferase 2B7 Lipid metabolism 0.623 0.0038

https://doi.org/10.1371/journal.pone.0270593.t003
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Fig 3. Protein-protein interactions network analysis. Rose red rectangle represents increased protein and blue

rectangle represents decreased protein.

https://doi.org/10.1371/journal.pone.0270593.g003

Table 4. The topological parameters of hub proteins in the interactive network of differential proteins.

Symbol Protein name Variationtype MCC DMNC MNC Degree

Acat2 Acetyl-CoA acetyltransferase, cytosolic up 146 0.61814 6 8

Aldh1a1 Retinal dehydrogenase 1 down 52 0.58344 5 8

Ass1 Argininosuccinate synthase up 40 0.358 9 9

Cps1 Carbamoyl-phosphate synthase [ammonia], mitochondrial up 32 0.40246 7 7

Cth Cystathionine gamma-lyase up 24 0.36588 7 7

Cyp2b2 Cytochrome P450 2B2 down 96 0.61814 6 6

Cyp2c7 Cytochrome P450 2C7 up 96 0.61814 6 6

Cyp3a18 Cytochrome P450 3A18 down 114 0.52483 8 8

Cyp7a1 Cholesterol 7-alpha-monooxygenase down 78 0.3791 10 10

Fdps Farnesyl pyrophosphate synthase up 150 0.54881 7 7

Got1 Aspartate aminotransferase, cytoplasmic up 65 0.3733 11 12

Hmgcs1 Hydroxymethylglutaryl-CoA synthase, cytoplasmic up 150 0.54881 7 7

Hsd17b7 3-keto-steroid reductase up 138 0.40573 9 9

Mvd Diphosphomevalonate decarboxylase up 144 0.61814 6 6

Ugt1a1 UDP-glucuronosyltransferase 1–1 down 66 0.43736 8 8

Ugt2b7 UDP-glucuronosyltransferase 2B7 down 54 0.52304 6 6

https://doi.org/10.1371/journal.pone.0270593.t004
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et al. identified 17 metabolic pathways perturbed in patients with T2DM and 5 pathways were

the same with our study, including alanine, aspartate and glutamate metabolism, valine, leu-

cine and isoleucine biosynthesis, glycine, serine and threonine metabolism, arginine and pro-

line metabolism, cysteine and methionine metabolism [20]. Among these perturbed pathways,

three pathways of amino acid metabolisms were shared by patients with MetS and diabetes

and our study, including alanine, aspartate and glutamate metabolism, valine, leucine and iso-

leucine biosynthesis, and glycine, serine and threonine metabolism. Additionally, recent

reports found that aberrant levels of glycine and serine caused by glycine and serine and threo-

nine dysmetabolism were associated with obesity, insulin resistance and metabolic syndrome

[21]. Valine, leucine and isoleucine belong to the branch-chain amino acids, which were

repeatedly confirmed to be altered in T2DM and MetS patients attributed to their activity of

insulin-induced impairment [22].

As shown in Table 1, our result also revealed that the TCA cycle was significantly perturbed

in liver tissues of MetS rats caused by differential levels of pyruvic acid, fumaric acid, Acly,

Sdhd and Pck1. The TCA cycle is the final metabolic pathway of carbohydrates, lipids and

amino acids, and is also the hub of the metabolic links among them, which was confirmedly

associated with metabolic diseases such as T2DM. The Acly enzyme cleaves cytosolic citrate to

produce acetyl-CoA, and is up-regulated after consumption of carbohydrates, which plays a

crucial role in lipid metabolisms. Currently, inhibition of Acly as a treatment for metabolic dis-

eases is being tried in clinical trials [23]. Pck1 is an important rate-limiting enzyme in gluco-

neogenesis, which shows a significant role in gluconeogenesis. Rodent models also

demonstrated that over-expression of Pck1 can result in T2DM development [24].

Additionally, as shown in Table 2, 18 differential metabolites were obtained, which were

involved in 16 significantly perturbed metabolic pathways. These 18 differential metabolites

can be considered as significantly discriminant metabolites in liver tissues between the MetS

and control groups, including pyruvic acid, 2-ketobutyric acid, 2-hydroxybutyric acid, alanine,

valine, isoleucine, proline, fumaric acid, threonine, methionine, creatine, xylose, ornithine,

pantothenic acid, myo-inositol, adrenosterone, 5-alpha-dihydroprogesterone, 21-hydroxy-

pregnenolone. Among these metabolites, the level of alanine was the most changed. Alanine is

vital in the glucose-alanine cycle in mammalian liver tissues. Numerous studies have shown

that alterations to the alanine cycle, leading to increased levels of ALT (Alanine aminotransfer-

ase) may have implications in the development of T2DM and hyperglycemia [6]. Furthermore,

alanine levels were increased in obesity and correlate with visceral adiposity in a Japanese pop-

ulation [25]. The difference in concentrations of valine and isoleucine was greatest between

the two groups. Valine and isoleucine belong to the branch-chain amino acids, which were

reported to be altered in T2DM and MetS patients attributed to their activity of insulin-

induced impairment [26].

As listed in Table 3, a total of 36 differential proteins were also involved in these signifi-

cantly perturbed joint pathways. These differential proteins belong to cytochrome P450 family,

HMG-CoA reductase family, the UDP-glycosyltransferase family, rgininosuccinate synthase

family, 6-phosphogluconate dehydrogenase family, the phosphoenolpyruvate carboxykinase

[GTP] family, which referred to metabolic processes of gamma-aminobutyric acid, pyrimi-

dine-containing compound and acetyl-CoA, cellular response to glucagon stimulus, biosyn-

thetic processes of cholesterol and amino acids.

Based on the results of PPI network analysis and topological parameter calculation of four

methods, 16 proteins were considered as hub proteins of the PPI network of MetS, including

10 up-regulated proteins (Hmgcs1, Fdps, Acat2, Mvd, Hsd17b7, Cyp2c7, Got1, Ass1, Cps1,

Cth) and 6 down-regulated proteins (Cyp3a18, Cyp2b2, Cyp7a1, Ugt1a1, Ugt2b7, Aldh1a1).

Significantly, 5 of the 16 hub proteins were engaged in amino acid biosynthetic processes,
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including Aldh1a1, Ass1, Cps1, Cth and Got1. Additionally, 7 hub proteins including Cyp7a1,

Acat2, Fdps, Got1, Hmgcs1, Hsd17b7 and Mvd were engaged in cholesterol biosynthetic pro-

cesses. Besides, Aldh1a1, Fdps, Hmgcs1, Mvd were involved in isoprenoid biosynthetic pro-

cesses. Among the 16 hub proteins, the degrees of Cyp7a1 and Got1 in the network ranked top

two. Generally, the greater a node’s degree is, the more significant the node is in the interactive

network [27]. Thus, Cyp7a1 and Got1 may be more important in the PPT network. CYP7a1 is

a rate-limiting enzyme that catalyzes the decomposition of cholesterol into bile acids in the

liver, and maintains the balance of cholesterol metabolism. Here, the protein abudance of

CYP7a1 was decreased in MetS group, which was also found the same trend in type 2 diabetes

rats [28]. This may be related with that high fat diet can cause repressed mRNA level and pro-

tein level of Cyp7A1 in rats [29]. Got1 (Ast1) is one of the important transaminase enzymes,

which is an indicator of liver function tests to determine whether the liver is damaged in clinic

practices. Here, the increased abudance of Got1 in MetS group implied abnormal liver func-

tion in MetS. This was consistent with the report that serum level of Got (Ast) can be used as a

predictor of MetS based on the MetS incidence of 4053 individuals in 4-year continuous physi-

cal examination [30]. Therefore, Cyp7a1 and Got1 may be potential therapeutic targets of

MetS.

Through protein and drug query in the PubMed database, it is found that both atorvastatin

and resveratrol can increase the expression of Cyp7a1 [31, 32] and decrease the expression of

Got1 [33, 34], which regulate the cholesterol level in the blood, and inhibit the formation of

blood clots from platelets to adhere to the blood vessel wall, thereby inhibitting and reducing

the occurrence and development of cardiovascular diseases. Thus, these two drugs may be

potential drugs for the treatment of MetS. Therefore, molecular docking was carry out to

understanding their interaction with two proteins.

The docking simulation was carried out using the MOE2008 by following steps. First, the

three dimension crystal structures of Cyp7a1 complex with cholest-4-en-3-one (PDB code:

3sn5) and Got1 complex with pyridoxal-5’-phosphate (PDB code: 3ii0) were retrieved from the

RSCB protein databank. Then, the proteins were protonated using AMBER99 force field and

minimized with a RMSD (Root Mean Squared Deviation) gradient of 0.05 kcal/mol Å. Addi-

tionally, the ligand atom mode was utilized to define the binding site, and the docking place-

ment was using triangle matcher algorithm. Finally, two rescoring methods including London

dG and Affinity dG, together with a force field were adopted to compute the interactions.

As shown in Fig 4, atorvastatin can well bind to Cyp7a1 and Got1, and the binding affinity

was greater than that of two enzyme substrates (cholest-4-en-3-one and pyridoxal-5’-phos-

phate). This may be caused by the molecular structures of atorvastatin, of which the conforma-

tion was in good agreement with the amino acid residues of the active sites of enzymes, and

easily formed stronger interactions such as hydrophobic action and hydrogen bonding than

two enzyme substrates. These docking results further confirmed that atorvastatin can increase

activity of Cyp7a1 and inhibit activity of Got1. Although, resveratrol can bind to Cyp7a1 and

Got1 with good docking scores, the binding affinity was not better than that of two enzyme

substrates, which may be due to its relatively rigid skeleton. Additionally, these two drugs have

been also investigated for MetS in many clinical and animal studies [35–37]. Therefore, it can

be confirmed that atorvastatin and resveratrol may be possible drugs for prevention and treat-

ment for MetS.

Conclusion

Currently, the combination of multiple omics has become a hot spot in the study of disease

mechanisms. To the best of our knowledge, we reported for the first time an integrated analysis
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Fig 4. Comparison between the binding modes of atorvastatin. (A) and cholest-4-en-3-one; (B) in the Cyp7a1 active site and Atorvastatin; (C) and

pyridoxal-5’-phosphate; (D) in the Got1 active site.

https://doi.org/10.1371/journal.pone.0270593.g004
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of proteomic and metabolic profiles in liver tissues to reveal possible mechanisms of MetS,

which can reflect molecular processes closer to the disease state than serum samples. In the

metabonomic analysis, 82 differential metabolites were detected, of which the abudance of

50 metabolites were significantly increased and those of 32 metabolites were significantly

decreased in liver tissues of MetS group. Additionally, a total of 153 proteins with significant

changes were identified by quantitative proteomic analysis, of which the abudance of 67 pro-

teins were significantly increased and those of 86 proteins were significantly decreased in liver

tissues of MetS rats. After the joint pathway enrichment analysis of differential proteins and

metabolites, 16 significantly perturbed pathways were identified (P<0.05), of which 3 path-

ways were shared by patients with metabolic syndrome and diabetes identified by serum sam-

ples, including alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine

biosynthesis, and glycine, serine and threonine metabolism. Additionally, it was found that 18

differential metabolites were closely related with 36 differential proteins, which can be consid-

ered as significantly discriminant metabolites and proteins in liver tissues between two groups,

which referred to metabolic processes of gamma-aminobutyric acid, pyrimidine-containing

compound and acetyl-CoA, cellular response to glucagon stimulus, biosynthetic processes

of cholesterol and amino acids. Based on PPI network analysis and topological parameter cal-

culation results of four methods, 16 differential proteins were considered as hub proteins of

the PPI network of MetS, including 10 up-regulated proteins (Hmgcs1, Fdps, Acat2, Mvd,

Hsd17b7, Cyp2c7, Got1, Ass1, Cps1, Cth) and 6 down-regulated proteins (Cyp3a18, Cyp2b2,

Cyp7a1, Ugt1a1, Ugt2b7, Aldh1a1), mainly involved in metabolisms of amino acid and choles-

terol, especially for Cyp7a1 and Got1 with top degree in PPI network, which may be consid-

ered as potential targets for prevention and treatment of MetS. Followed by searching the

PubMed database and molecular docking of Cyp7a1 and Got1, it can be concluded that atorva-

statin and resveratrol may be potential drugs for prevention and treatment for MetS, as both

drugs have also been investigated for MetS in many clinical practices and animal models. In

summary, our results revealed some candidates for proteins, pathways and drugs for the pre-

vention and treatment of MetS, which may give some insights into the mechanism of MetS.
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