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Introduction
Experimental and clinical evidence supports a pathophysiolog-
ical role for oxidative stress in the development and progression 
of arterial hypertension.1,2 The unbalanced production of reac-
tive oxygen species (ROS: superoxide anion, hydroxyl anion, 
and hydrogen peroxide), while contributing to hypertensive 
end-organ damage,1,2 also impairs insulin-mediated glucose 
uptake3 and nitric oxide (NO)-mediated vasomotor regula-
tion,4 two pathophysiologically relevant and interconnected 

parameters5 frequently abnormal in human essential hyper-
tension.6,7 Paraoxonase (PON)1, a high-density lipoprotein 
(HDL)-associated hydrolytic and antioxidant enzyme subject 
to genotypic regulation,8 tends to restore redox balance thus 
protecting vessels from atherosclerosis progression.9

The PON1 gene contains several polymorphisms 
including a glutamine (Q ) to arginine (R) transition at position 
192 (Q192R)8 encoding circulating allozymes with higher 
antioxidant activity.10 Therefore, the Q192R PON1 genotypic 
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variants may contribute to the modulation of insulin sensi-
tivity and NO-mediated vasomotion in essential hypertensive 
patients, a plausible but by and large untested possibility.

The purpose of this study was to test the hypothesis 
of an association between the PON1 Q192R polymorphic 
variants and insulin sensitivity, as estimated by the homeo-
stasis model assessment (HOMA),11 a robust and validated 
clinical tool for the assessment of insulin sensitivity,12 and the 
vasodilatory response to intra-brachial acetylcholine (ACH), 
a NO-releasing muscarinic agonist.13 The study was carried 
out in a group of carefully screened, glucose-tolerant men 
with untreated, uncomplicated mild-to-moderate essential 
hypertension.

Methods
Subjects. Seventy-two never-treated sedentary, Caucasian, 

genetically unrelated hypertensive men [casual blood pressure 
(BP), greater than 140/90 mmHg on at least three occasions as 
outpatients] participated in this study (see Table 1, left-hand 
column, for the overall characteristics of the sample) as part of 
a preventive program for the identification and treatment of 
hypertension and associated risk factors.

Exclusion criteria were glucose intolerance (two-hour 
plasma glucose $ 140 mg/dL after a 75 g oral glucose load), 
renal insufficiency (serum creatinine . 1.2 mg/dL), proteinu-
ria at the dipstick test, and impaired cardiac function (ejection 
fraction ,  50%). Coexisting coronary and vascular diseases 
were excluded based on medical history, physical examination, 
routine blood chemistry, baseline electrocardiogram or, when 
indicated, treadmill test, stress echocardiography, carotid, 
and lower limb echo-Doppler sonography. In all, renal ultra-
sound scans showed normal-sized kidneys and no evidence of 
cortical scarring or obstructive uropathy. Angiograms, when 
indicated, had excluded renal artery stenosis, whereas routine 
clinical and biochemical evaluation excluded other secondary 
forms of hypertension. Screening was completed in two weeks 
period.

The protocol was approved by the local ethics commit-
tee, and all patients signed the required consent form before 
the study.

Genotype determination. Genomic DNA was isolated 
from whole blood cells as described by Blin and Stafford14 and 
stored at 4  °C till assessment of the Q192R polymorphism 
by polymerase chain reaction (PCR) and restriction diges-
tion methods. Amplifications were performed in a final vol-
ume of 20 µL containing 100 ng of genomic DNA, 0.5 µM 
of appropriate primers (MWG Biotech Ebers, Germany), 
and 1 × Mastermix Cat.# M7505 (Promega). Briefly, DNA 
was denaturated at 94  °C for five minutes, and the reac-
tion mixture was subjected to thermocycling on GeneAmp 
PCR System 2700 (Applied Biosystem) by means of 35 
denaturation cycles (60 seconds each) at 94 °C with 60 seconds 
of annealing at 61  °C and 60  seconds of extension at 72  °C, 
and final extension at 72  °C for 10  minutes. Sense primer  

5′-TATTGTTGCTGT GGGACCTGAG-3′ (22-mer) and  
antisense primer 5′-CACGCTAAACCCAAATACATCTC-3′ 
(23-mer) encompassing the 192 polymorphic region of the 
human PON1 gene were used to identify Q192R polymor-
phic variants.15 The 99  bp PCR product was digested over-
night at 37 °C with 2 U of AlwI restriction endonuclease (New 
England BioLabs, Cambridge, MA, USA). The R allele, but 
not the Q allele, contains a unique AlwI restriction site that 
results in the production of two fragments of 68 and 31 bp, 
respectively. Digestion products were separated by 12% poly-
acrylamide gel electrophoresis at 150 mA for two hours and 
visualized by silver staining. To minimize source of bias, two 
independent observers, blinded to the pertinent characteris-
tics, assigned genotypes.

Glucose and insulin determinations. Plasma glucose 
and insulin were measured by the glucooxidase method 
(Glucose Analyzer II, Beckman Instruments, Fullerton, 
CA, USA) and immunoradiometry (INSI-CTK Irma, 
DiaSorin S.p.A., Vercelli, Italy; no cross-reactivity with 
human pro-insulin; interassay variation coefficient  ,  5%), 
respectively.

Forearm studies. Forearm studies were performed in the 
morning in a quiet, air-conditioned room as already described 
in detail.16 Subjects were fasted and instructed to restrain from 
heavy exercise and to avoid smoking and emotional excitement 
from the day before the experiment. Total forearm blood flow 
(FBF) was measured by venous plethysmography with a strain-
gage apparatus (Hokanson, EC 5R Plethysmograph). Strands 
made of silastic tubing of 0.4 mm ID and 0.8 mm OD filled 
with mercury were used. The gage was applied on the domi-
nant arm, 5–6 cm distal to the elbow at a tension sufficient 
to keep the gage in the same position throughout the experi-
ment. Patient forearm was kept on a table, slightly flexed and 
inclined at about 45° to the horizontal plane with the wrist 
and hand supported by sand bags. One minute before FBF 
determination, a pneumatic pediatric cuff was placed around 
the wrist and inflated to suprasystolic arterial BP in order to 
exclude the hand vascular region. A second cuff was placed 
proximal to the plethysmograph and automatically inflated to 
a pressure of 40 mmHg to allow FBF measurement according 
to the venous occlusion method.

Forearm infusions were carried out through a 22-gage 
polyethylene catheter (Angiocath, Becton Dickinson) con-
nected to an infusion pump (Perfusor, Secura FT, Braun) 
after approximately 30 minutes of rest. BP was measured every 
five minutes throughout the study at the contralateral arm by 
an automated device (NIBP KO 7267.004, Kontron Instru-
ments). Forearm infusion studies included administration of 
fresh solutions of ACH HCl (Farmigea, Italy; 7.5, 15, and  
30 µg/minute, five minutes each), a NO-releasing compound,13 
and sodium nitroprusside (NIP, Malesci, Italy) (0.8, 1.6, and  
3.2 µg/minute, five minutes each in syringes protected from 
light through aluminum foil), a NO-independent vasodilator,17 
as a control. Preliminary studies had shown that those infusion 
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periods were sufficient to reach a plateau of FBF response 
without changes in systemic arterial pressure and contralateral 
FBF. Local administration of ACH and NIP was preceded 
and followed by saline infusion (0.6 mL/minute). The infusion 
sequence was randomized, and a 30 minutes interval was left 
between the first and second drug administration.

Other clinical parameters. Office BP, serum creati-
nine, lipids, and anthropometric measurements (height and 
weight) were measured by standard methods. The 24-hour 
BP was measured through an oscillometric monitor (Diasys 
Integra, Novacor). The recording began between 8.30 and 
9.00 a.m. with 15  minute interval readings until midnight, 
and 30 minute intervals from midnight to 8.00 a.m. ($90% 
valid measurements).

Definitions and data processing. Q and R alleles were 
considered as dominant and rare alleles, respectively, and their 
relationship with study variables was analyzed by dominant 
models (Q/Q vs. Q/R + R/R).

Insulin sensitivity was assessed through HOMA11 [fasting 
plasma insulin (µU/mL) × fasting plasma glucose (mMol/L) 
/22.5)]; increasing HOMA-IR values denote progression from 
normal to impaired insulin sensitivity. HOMA values above 
the 75th percentile (cutoff point: 4.7  U) were considered as 
indicative of insulin resistance.

In the absence of BP changes during the infusion, 
forearm studies were analyzed on FBF (mL/dL forearm 

tissue/minute) as relative changes from baseline and area 
under the curve (AUC, trapezoidal rule). ACHAUC values 
below the 25th percentile (cutoff point: 123 mL/dL forearm 
tissue/minute × 15 minutes) were considered as indicative of 
endothelial dysfunction.

Body Mass Index (BMI) was calculated as weight/height2 
(kg/m2). Low-density lipoprotein (LDL)-C was calculated as 
(total C − (HDL-C + triglycerides/5)). Smoking status was 
defined as active smoker versus non-smoker, without distinction 
between former and never smoker. Metabolic syndrome (MetS) 
was diagnosed according to the 2001  National Cholesterol 
Education Program (NCEP)–Adult Treatment Panel (ATP) 
III.18 As all patients were hypertensive and, hence, fulfilled 
one of the criteria for MetS, diagnosis required at least two of 
the remaining four parameters, ie, triglycerides $ 150 mg/dL, 
HDL-C , 40 mg/dL, fasting plasma glucose $ 110 mg/dL,  
and BMI  .  29.5  kg/m2, a validated surrogate cutoff for 
abdominal obesity.19 

Statistics. Differences between continuous variables 
were analyzed by proper Analysis of Variance models and 
categorical parameters by chi-square tests. The association of 
insulin resistance and endothelial dysfunction (present  =  1 
and absent = 0) with Q192R genotypes and other continuous 
and categorical covariates was analyzed by age-adjusted logis-
tic regression (maximum-likelihood method), using a back-
ward stepwise procedure (P-to-remove , 0.05) to identify the 

Table 1. Age and clinical characteristics of the sample overall and by Q192R PON1 polymorphism.

VARIABLES
Q/Q

OVERALL Q/R+R/R Q/Q

N = 72 N = 38 N = 34

Age (yrs) 51 ± 11 50 ± 11 50 ± 11

Fasting serum insulin (µU/mL) 11.1 (8.7) 8.7 (5.5)* 18.3 (13.1)

Fasting plasma glucose (mg/dL) 99 ± 10 97 ± 11& 102 ± 11

BMI (kg/m2) 26.9 ± 3.0 26.4 ± 2.7 27.3 ± 3.4

HDL-C (mg/dL) 44 ± 12 44 ± 11 44 ± 14

Triglycerides (mg/dL) 176 (130) 158 (133) 181 (129)

MetS ATPIII 43% 42% 44%

FBF (ml/dL forearm tissue/min) 3.5 ± 1.1 4.5 ± 1.3 3.9 ± 1.0

ACHAUC (ml/dL forearm tissue/min × 15 min) 196 ± 92 224 ± 95! 169 ± 79

NIPAUC (ml/dl forearm tissue/min × 15 min) 179 ± 46 182 ± 52 174 ± 38

Office SBP (mmHg) 157 ± 15 155 ± 16 160 ± 16

Office DBP (mmHg) 99 ± 8 92 ± 9 96 ± 9

24-hr SBP (mm Hg) 133 ± 15 135 ± 15 141 ± 16

24-hr DBP (mm Hg) 84 ± 9 86 ± 9 90 ± 10

Total-C (mg/dL) 222 ± 45 222 ± 47 217 ± 44

LDL-C (mg/dL) 139 ± 40 140 ± 43 137 ± 38

Smokers 38% 40% 39%

Serum creatinine (mg/dL) 1.0 ± 0.2 1.0 ± 0.1 1.0 ± 0.2 

Notes: Arithmetic means ± SD or geometric means (interquartile range) for skewed distributions and percentages for proportions. For abbreviations and definitions, 
see text. *P = 0.006, !P = 0.009, &P = 0.05.
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independent regressors. Odds ratios (ORs, ie, the exponen-
tiated regression coefficients) were used to estimate relative 
risks and 95% confidence interval (CI). Descriptive statistics 
were means  ±  SD or geometric means (interquartile range) 
for skewed data and percentages for proportions. The level of 
statistical significance was set at P , 0.05.

Results
Genotype and allelic frequencies were consistent with the 
Hardy–Weinberg equilibrium (Table  2). Age, lipids, BMI, 
office and 24-hour BP, smoking status, and serum creatinine 
were homogeneously distributed across genotypes (Table 1).

Fasting insulin, glucose (Table  1), HOMA, and per-
centages of insulin-resistant patients (Fig.  1) were lower in 
Q/R + R/R than in Q/Q patients.

Responses to intrabrachial ACH infusion were greater 
(Fig. 2, left panel) and endothelial dysfunction was less fre-
quent (16% vs. 35%, P = 0.09) in Q/R + R/R than in Q/Q 
patients; responses to NIP did not differ (Fig. 2, right panel), 
a pattern confirmed by ACH and NIP data expressed as AUC 
(Table 1).

Age-adjusted multivariate logistic regression analyses 
with insulin resistance as the dependent variable showed the 
independent contribution of Q192R genotype (OR: 0.13, 95% 
CI: 0.03–0.54, P = 0.002, Q/Q as referent) and MetS (OR: 
4.3, 95% CI: 1.2–15.1, P = 0.016). The prevalence of MetS did 
not differ by Q192R genotypes (Table 1).

When the same analysis was applied on endothelial 
dysfunction, only the Q192R genotype (OR: 0.34, 95% CI: 
0.11–1.07, P = 0.054, Q/Q as referent) played a borderline sig-
nificant role.

Discussion
Q192R PON1 SNP and insulin sensitivity. The 

main and original finding of this genetic cross-sec-
tional study in glucose tolerant, untreated, uncompli-
cated mild-to-moderate hypertensive men was the greater 
insulin sensitivity of homo- and heterozygous carriers 
of the mutant R allele as compared with Q/Q homozy-
gotes. The result, based on a well-validated index such 
as HOMA,11,12 is compatible with a greater antioxidant  
efficiency conferred by the R allele as insulin sensitivity is 

influenced by oxidative stress,3 while PON1 enzymatic func-
tion, at least as assessed through paraoxonase activity, is sev-
eralfold higher in Q/R + R/R than in Q/Q subjects.10 Thus, 
the Q192R polymorphism might contribute to the mainte-
nance of a critical metabolic parameter in essential hyper-
tension, a clinical condition in which increased amount of 
ROS1,2 and oxidized LDL-C20 synergize to impair insulin 
signaling.21 Quite surprisingly in the light of those consid-
erations but in agreement with other reports,22 we found 
no relationship between Q192R PON1 polymorphisms 
and MetS, a well-characterized insulin-resistant state.18 
Moreover, both parameters entered in a multivariate logis-
tic regression analysis were strong and independent predic-
tors of insulin resistance implying that the insulin resistant 
states associated with the Q192R Polymorphism and Mets 
are pathophysiologically dissimillar phenomena.18 Perhaps, 
this puzzling behavior relates to the ambiguity of HOMA, 

Table 2. Absolute and relative distribution of Q192R genotypes and 
R and Q allele frequencies.

GENOTYPES

Q192R  N %

 R /R 5 7%

  Q/R 33 46%

  Q/Q 34 47%

R alleles 43 30%

Q alleles 101 70%
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Figure 1. HOMA values (medians and interquartile range, left ordinate) 
and prevalence of insulin resistance (upper fourth of HOMA values 
distribution, right ordinate) by Q/R + R/R (n = 38) and Q/Q (n = 34) 
PON1 genotypes.
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Figure 2. Forearm response to ACH and sodium NIP infusion by 
Q/R + R/R (, n = 38) versus Q/Q (X, n = 34) PON1 genotypes. Data 
are reported as fold-increase from baseline at each increasing infusion 
step; P value refers to the difference in forearm responsiveness to ACH 
between Q/R + R/R and Q/Q subjects. Means ± SD.
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an index that does not distinguish impaired glucose disposal 
through skeletal muscle from uninhibited hepatic glucose 
output,23 two insulin-mediated pathways23 both sensitive 
to oxidative stress3,24 whose relative role might be dissected 
through the use of the hyperinsulinemic euglycemic glucose 
clamp.25 In this regard, previous reports about the lack of 
association between the Q192R SNP and insulin sensitivity 
as assessed through that technique26 may suggest a role for 
impaired regulation of hepatic glucose output that, however, 
remains a pathophysiologically attractive but purely specula-
tive possibility.

Q192R PON1 SNP and NO-mediated vasomotor 
function. A second interesting outcome of this study was the 
greater responsiveness to ACH, a NO-releasing muscarinic 
agonist,13 with preserved effect of NIP, a NO-independent 
vasoactive drug,17 in Q/R + R/R than in Q/Q patients. This 
diverging pattern, diagnostic of a differential interaction with 
the NO-mediated endothelial pathway, could not be ascribed 
to a series of potentially damaging factors for endothelial 
function such as BP levels, LDL-C, and smoking habits27 or 
pathophysiological factors related to the MetS phenotype28 
because all those variables were evenly distributed across 
Q192R genotypes. Rather, responses to ACH are dependent 
on endothelial NO,13 whose degradation is increased by oxi-
dized LDL and other peroxides29 that PON1 seems to dispose 
to a greater extent in the presence of the mutant R allele.30,31 
This hypothesis contrasts with in vitro evidence,32 although 
in vivo and in vitro regulation of LDL oxidation may differ 
or the Q192R PON1 polymorphism might influence forearm 
response to ACH in hypertension by mechanism unrelated to 
LDL oxidation, eg, by interacting with other functional PON 
gene polymorphisms in the coding or promoter regions.8 
Whatever be the case, our data are consistent with previous 
reports of greater flow-mediated forearm vasodilatation33 and 
preserved epicardial coronary vasodilatation to NO-acting 
substances34,35 in Q/R + R/R patients as compared with their 
Q/Q counterparts. The evidence in the field is, however, con-
troversial36–38 possibly because of heterogeneous experimental 
conditions, different methods to investigate endothelial func-
tion and the specific pathophysiology of the clinical condi-
tions under investigation.

Q192R SNP, insulin resistance, and endothelial 
dysfunction. Some final comment deserves the weaker 
and borderline significant strength of the association of the 
Q192R polymorphism with endothelial dysfunction as com-
pared with the highly significant and quantitatively stronger 
link with insulin resistance. However, forearm vasodilator 
responses to ACH, albeit highly specific for the l-Arginine-
NO system,13 relate poorly to the underlying tonic activity of 
the l-Arginine-NO system. Moreover, they are unpredict-
ably dependent upon endogenous muscarinic receptor reserve 
and ACH-esterase activity39 and mechanisms additional to 
NO40 concur to impair endothelial function in hypertension. 
Quite importantly, the high inter-individual variability of the 

infused forearm model method may have hindered stronger 
associations emerging more clearly in larger series.41

Limitations of the Study
Our study has some important limitations to be taken into 
account. First, we did not assess paraoxonase/arylesterase 
and other esterase activities including thiolactonase activ-
ity targeting homocysteine thiolactone, a main pro-oxidant 
agent,42 an important point because measurement of one 
enzymatic activity alone may not provide a complete sense of 
PON1 metabolism. As a matter of fact, paraoxonase activity 
was increased in non-diabetic subjects with insulin resistance 
as assessed by HOMA,43 confirming how difficult it may be 
to derive functional inferences based on the Q192R polymor-
phism. Second, cross-sectional studies such as ours do not pro-
vide causative relationship but only associations of uncertain 
cause–effect relevance. Third, our sample size was relatively 
limited although the phenotypic penetrance of the Q192R 
polymorphism was evidently stronger than that of other 
potentially relevant polymorphisms44–46 analyzed by us with 
negative results in this same series. Fourth, our all male cohort 
does not allow to extrapolate the present results to females in 
whom, eg, anti-oxidant effects of endogenous estrogens47 or 
increased HDL concentration typical of women48 might be 
conducive to different results.

Conclusions
The presence of the mutant R allele associates with greater 
insulin sensitivity and NO-mediated forearm vasodilatory 
response when compared with the wild Q/Q configuration of 
the Q192R polymorphism in uncomplicated essential hyper-
tensive men. This finding has potentially relevant pathophysi-
ological and clinical implications in need, however, of further 
evaluation.
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