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Abstract: Gene regulatory networks (GRNs) control biological processes like pluripotency, differentiation,
and apoptosis. Omics methods can identify a large number of putative network components (on the
order of hundreds or thousands) but it is possible that in many cases a small subset of genes control the
state of GRNs. Here, we explore how the topology of the interactions between network components
may indicate whether the effective state of a GRN can be represented by a small subset of genes. We
use methods from information theory to model the regulatory interactions in GRNs as cascading and
superposing information channels. We propose an information loss function that enables identification of
the conditions by which a small set of genes can represent the state of all the other genes in the network.
This information-theoretic analysis extends to a measure of free energy change due to communication
within the network, which provides a new perspective on the reducibility of GRNs. Both the information
loss and relative free energy depend on the density of interactions and edge communication error in a
network. Therefore, this work indicates that a loss in mutual information between genes in a GRN is
directly coupled to a thermodynamic cost, i.e., a reduction of relative free energy, of the system.

Keywords: gene regulatory networks; mutual information; channel cascades; free energy;
network reducibility

1. Introduction

Complex metabolic and regulatory functions in biology are realized through the
interaction of gene products with each other. The emergent biological properties like
homeostasis and differentiation are not only a function of the biochemistry of the participant
genes, but also the architecture of the interactions among them [1,2]. Stuart Kauffman’s
method of modeling regulatory interactions among genes as a Boolean network was
established in the late 1960s [3,4]. In the last two decades, experimental characterization
has provided a repository of gene network models for processes like apoptosis [5], immune
response [6], embryonic development [7], and more [8].

Models of gene regulatory networks (GRN), or transcriptomic interaction networks [9],
can be presented as graphs, G = (V, E), with a set of genes (or vertices or nodes), V,
connected to each other with a set of edges, E. A node vi is connected with a directed
edge to vj, if vi directly regulates the expression of gene vj. Each node is characterized by
2 degrees: the number of incoming edges to the node vi is the in-degree, deg(v−i

)
, and the

number of edges emanating from the node vi is the out-degree, deg(v+i
)
. A strictly source

node has deg(v−i ) = 0 and a strictly sink node has deg(v+i ) = 0. Hence, gene network
models focus on the interaction between the states of the genes and coarse grain all the
intermediate biochemical reactions (e.g., DNA binding, transcription, translation, etc.) that
are involved in gene expression.

Graph analysis of experimentally-determined GRNs has identified attributes that
are present across various species (both prokaryotic and eukaryotic) and irrespective of
regulatory function, which include hierarchical organization [10], modularity [11,12] and
criticality [13]. However, there is more to gene regulation than topological properties.
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Fundamentally, all biochemical reactions involved in gene regulation are subject to the
laws of non-equilibrium thermodynamics. A thermodynamically reducible network is
the one where a small subset of genes controls the free energy change that accompanies
the navigation of the microstates of phenotypes. Therefore, in the context of network
reducibility, it is obvious to ask what is the thermodynamic benefit of a particular gene
network topology above others? Since phenotypic microstates can be represented as an
energy landscape [14,15], the free energy change associated with the state of a GRN is
a measure of thermodynamic benefit. To quantitatively answer the above question, in
Section 2 we formulate a computational method for global transfer of information in a GRN,
and in Section 3 we compute the loss of information as a field over all possible pairs of
source-receiver nodes in a network. In Section 4 we use the thermodynamics of information
transfer [16] to evaluate the free energy of the communication map associated with a gene
network. This work establishes a method for calculating information loss in biological
networks in thermodynamic terms. We use these metrics to identify the characteristics of
networks that permit them to be reducible.

2. GRNs as Cascades of Interfering Information Channels

The topology of experimentally-determined GRNs is a topic of active research [17,18].
Topology of transcriptomic interactions across prokaryotes and eukaryotes is claimed to be
scale-free [9], although a survey of biological networks has shown that the occurrence of
scale-free topology is rare, but noticeably higher than other areas of application of network
theory (e.g., social networks, communication networks) [19]. Therefore, we present a
computational approach that is applicable to all types of GRN topologies and can identify
the thermodynamic benefit of various topologies.

We use the stochastic interpretation of the model Boolean GRNs [20,21], where the
state of a gene, vi, is a Boolean random variable associated with a discrete probability
distribution, P(vi) = {P(vi = 0), P(vi = 1)}, with 0 as the OFF (or low expression) state
and 1 (or high expression) as the ON state. Commonly, a thresholding criterion is used to
map gene expression values from copy numbers to the ON/OFF states [22,23]. A directed
arrow from gene vi to gene vj means either upregulation

(
vi ↑ vj

)
or down regulation(

vi ↓ vj
)
. Upregulation is promotion of expression of vj by vi, and downregulation is

repression of the expression of vj by vi. The state transition equation for upregulation of vj
by vi is, {

P
(
vj = 0

)
P
(
vj = 1

) } =

[
1− ρ0 ρ1

ρ0 1− ρ1

]{
P(vi = 0)
P(vi = 1)

}
(1)

where ρ0 is the probability of the input state vi = 0 erroneously producing an output state
vj = 1, and ρ1 is the probability of the input gene state vi = 1 producing an output state
vj = 0. The two probability terms (ρ0, ρ1) are errors that cause a bit-flip, i.e., 1 to 0 or 0 to
1, and Equation (1) is a binary information channel model [24] for

(
vi ↑ vj

)
. Similarly, a

binary channel model for vi ↓ vj is:{
P
(
vj = 0

)
P
(
vj = 1

) } =

[
ρ0 1− ρ1

1− ρ0 ρ1

]{
P(vi = 0)
P(vi = 1)

}
. (2)

We will assume ρ0 = ρ1 and focus on the accumulation of error due to the topology
of communication. The transition matrices in the regulatory Equations (1) and (2) are
the same as the matrices for information transfer through binary symmetric channels
(BSC) [24]. Therefore, we can model a directed edge from an input gene to an output
gene as an information channel, or more specifically a BSC. The maximum mutual in-
formation or the channel capacity of a binary symmetric channel is C(ρ) = 1− H(ρ),
where H(ρ) = −ρ log2 ρ − (1− ρ) log2(1− ρ), which is a binary entropy function. We
refer to an upregulating transition matrix for a BSC with bit-flip error ρ as Tup(ρ), and a
downregulating transition matrix as Tdown(ρ).
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Equations (1) and (2) govern the information transfer between adjacent (or nearest
neighbor) genes vi and vj that are directly connected with an edge. The propagation of
information between non-adjacent nodes in a GRN is subject to cumulative communication
errors associated with the connecting edges and superposition, due to signaling from
multiple source nodes.

The global state vector of a GRN with N nodes is a 2N dimensional vector with
PG[2i, 2i + 1] = {P(vi = 0), P(vi = 1)}. The trajectory of PG due to the flow of information
through the network is governed by the adjacency matrix of the GRN graph. Let the
adjacency matrix of the graph be A, where an element aij is 1 if there is a directed edge
from gene vi to gene vj, or 0 otherwise. The global transition matrix for the graph, TG, is a
2N × 2N matrix. The submatrices of TG are defined as:

TG[2i, 2i + 1; 2j, 2j + 1] =



1
deg(v−i )

Tup(ρ) if aij = 1 and vi ↑ vj

1
deg(v−i )

Tdown(ρ) if aij = 1 and vi ↓ vj

02,2 if aij = 0
I2 if i = j and deg−(vi) = 0

(3)

The normalization by the in-degree, in Equation (3), assures that the effective state of
a node vi is the superposition of all the states resulting from all the edges communicating
information to the node. The last case in Equation (3) is for the source nodes in the graph
and whose state remain constant during the process of information transfer [9].

Each multiplication of TG with PG updates the state of the GRN by communicat-
ing information among the nearest-neighbor nodes, which is equivalent to propagating
information by one time step:

P(k+1)
G = TGP(k)

G . (4)

If the initial state of the GRN is P(0)
G , then Equation (4) produces a trajectory of states{

P(0)
G , P(1)

G , · · · , P(n)
G

}
that defines the evolution of the GRN state from the initial condition

to the stationary state PSS
G .

The information propagation model in Equation (4) is similar to the evolution of a
multidimensional gene network probability distribution under drift and diffusion-driven
Fokker-Planck dynamic. Sisan et al. [14] and Ridden et al. [15] have shown that the
probability distribution from Fokker-Planck model of GRNs can be used to construct an
energy landscape over the continuum gene expression state space. Our approach using
information theory produces a discrete probability distribution of the GRN state, which
can be used to build and discrete counterpart of the energy landscapes described in [14,15].

The state of the GRN, P(k)
G , is the conditional distribution given the initial state P(0)

G
after k steps of information propagation. For each step of information propagation with a
time step of ∆t, P(k)

G is updated by multiplication with TG. If the initial condition of the GRN
exists at t0 then the state of a node vj after k steps of information propagation from source
node vi is P(vj, t0 + k∆t

∣∣vi, t0) . This conditional probability distribution is equivalent to
the solution of a Fokker-Planck model of the same GRN [25]. Hence, the thermodynamic
analysis of a multidimensional probability distribution resulting from a Fokker-Planck
model of GRNs is also applicable to the probability distribution P(k)

G resulting from our
information propagation model.

The stationary state solution to the information propagation model PSS
G is a coarse-

grained and discretized representation of the stationary state of a Fokker-Planck model of
the same GRN, where values of transcription factor copy number are mapped to discrete
macrostates 0 (low) and 1 (high). Therefore, the continuum energy landscape that exists
for a Fokker-Planck solution to a GRN [14,15] has a discretized equivalent based on the
stationary state solution PSS

G to the information propagation model.
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3. Effective Information Loss Function for GRNs

Here, we examine how communication accuracy can affect network reducibility. How
good (or lossless) is the communication from a source node vi to a receiver node vj?
Commonly, noise in gene expression is used to measure the loss in signal quality in genetic
circuits [26,27]. The single edge communication bit-flip error, ρ, introduced in the previous
section, is a coarse-grained representation of the noise in a single transcriptomic regulation
step. A noiseless (or error-free) edge has a channel capacity (C) of 1 bit, and the capacity
approaches 0 as ρ→ 0.5 . So, we can quantify the loss in a single edge communication
as 1− C bits. We measure the loss for any source-receiver pair in a GRN, beyond nearest
neighbors, in a similar way.

Increasing loss of information due to passage through multiple edges with error ρ is
expected [28]. However, the complexity of GRNs introduces other avenues for information
loss: (1) Superposition of states due to information propagating from multiple source nodes,
which reduces the correlation between a single source-receiver pair, and (2) the mixture of
both up and downregulation edges to a receiver node, especially if these opposing signals
can be induced by the same source node. We quantify the loss for a source-receiver pair
under the conditions that causes maximum interference from the other nodes.

The highest entropy state of a node is Pmax = {0.5, 0.5}, which is also the input state at
which a BSC achieves the channel capacity [24]. If we set the state of all the source nodes in
the GRN to Pmax, then at the stationary state of the GRN, PSS

G , the state of the all the nodes
in the GRN is also Pmax. If we change the state of a source node vi to {1, 0} and find that
a receiver node vj is still at {0.5, 0.5}, then there is high loss of information from vi → vj .
On the other hand, if the relative entropy of the state of vj is low with respect to the state
{1, 0}, then the information loss is lower.

The actual steps for quantifying the loss function from source node vi to a receiver
node vj are the following:

(1) Compute the stationary state solution to the GRN for two initial conditions: (a)

Pi,OFF ≡ P(0)
G [2i, 2i + 1] = {1, 0}, and (b) Pi,ON ≡ P(0)

G [2i, 2i + 1] = {0, 1}, with the
rest of the source nodes at Pmax. The solution at a receiver node vj is PSS

G (vj
∣∣Pi,OFF)

and PSS
G (vj

∣∣Pi,ON) , respectively.
(2) Construct the effective transition matrix for communication from vi → vj as:

Teff(i→ j) :=
[

PSS
G
(
vj
∣∣Pi,OFF

)
PSS

G
(
vj
∣∣Pi,ON

) ]
=

[
PSS

G
(
vj = 0

∣∣vi = 0
)

PSS
G
(
vj = 0

∣∣vi = 1
)

PSS
G
(
vj = 1

∣∣vi = 0
)

PSS
G
(
vj = 1

∣∣vi = 1
) ]. (5)

(3) Compute the loss function in bits for communication from vi → vj as:

L(i→ j) = 1− c(Teff(i→ j)). (6)

The second term in Equation (6) is the channel capacity in bits for the effective transi-
tion matrix. The loss function defined in Equation (6) is a field over all existing pairs of
source-receiver combinations in a GRN. By definition, L(i→ i) = 0, and L(i→ j) = 1 if
there is no path from vi → vj .

We demonstrate the loss function, Equation (6), using numerical results from model
graphs generated using the Barabási–Albert preferential attachment model (Section S1) [29].
All of our analysis uses graphs with 100 nodes. Two parameters are used to control the
graph generation process: (1) The in-degree of every node in the graph, m, while placing
no constraint on the out-degree, and (2) the ratio of downregulation edges to upregulation
edges in the graph, β (Section S2). The in-degree to a node is the number of other nodes
that can directly regulate that gene. Hence, in our simulation we have assumed that every
gene in the network is directly regulated by m other genes. Obviously, the in-degree is
inhomogeneous in a real GRN, but this assumption allows us to conveniently study the
impact of increasing density of direct transcriptomic regulation in a GRN on the global
information loss. Our method of information propagation and subsequent analysis is not
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restricted to the model GRNs chosen for demonstration and is applicable to all types of
directed graphs.

Increasing m increases the number of nodes in the GRN that have a path to a sin-
gle node, which we refer to as the accessibility score (Section S3). This is illustrated
in Figure 1a using three Barabási–Albert graphs with m = 1, 2, and 3, respectively. Every
node is shaded in proportion to the number of other nodes in the graph that can access it—a
node with a darker shade means more nodes have a path to it. Rather than the distribution
of shades in a single graph in Figure 1a, it is more important to note the global prevalence
of darker shade nodes with increasing m. The increasing fraction of darker shaded nodes
means an increase in global accessibility across all the nodes in the network (Figure S1).
The mean accessibility score, or the average accessibility to a node from all other nodes in
the network, increases with m by design.
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Figure 1. Topological factors that increase the information loss field, Equation (6). Blue arrows represent upregulation edges
and red arrows represent downregulating edges. (a) Model GRNs with 100 nodes generated using the Barabási-Albert
model. Each of the graphs has a fixed in-degree for every single node (m). There are no constraints on the out-degree.
Higher values of m and the mean accessibility scores of the graphs indicate greater global connectivity between nodes in the
graph. More highly accessible nodes are indicated by a darker color. A high accessibility score increases signal interference
and reduces the effective channel capacity between a single source-receiver pair. (b) The effect of a mixture of up and down
regulation edges between nodes for graphs of type m = 2. β represents the ratio of down-regulating edges to up-regulating
edges in the graph. nmixed is the number of nodes in the graph that are receiving both up and down regulating signal.
Increasing β increases the number of nodes that can receive mixed signals.

The other factor that can reduce the effective information transfer is the mixture of up
and down regulation signals to a given node in the network. Figure 1b shows that how
increasing the ratio of downregulation edges to the upregulation edges in the graph, β,
increases the number of nodes in the graph that are receiving mixed signals, nmixed. If the
signal from a source node forks into two separate pathways to a receiver node, and one
path ends with an upregulation edge and the other with a downregulation edge, then the
effective information transfer to the receiver node is reduced.

As illustrated in Figure 2a, the state of a receiver node, vj, is determined by the states
of all contributing source nodes, using Equations (3) and (4). The 3rd panel of Figure 2a
shows that when all the source nodes are at maximum entropy, the receiver node is also at
maximum entropy and independent of up or downregulation and the edge bit-flip error,
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ρ. On the other hand, when a single source node, vi, is at low entropy, then the bit-flip
error values for the edges on the source-receiver path determine the state of the receiver
node as shown in the first and second panels of Figure 2a. Furthermore, the state of the
receiver node is superposed with the maximum entropy state of the other source nodes.
Therefore, the low entropy input from a single source gains entropy as a function of the
edge bit-flip errors and from superposition from other sources. The information loss field
computation using Equations (3)–(6) determines the effect demonstrated in Figure 2a for
GRNs involving a large number of genes and complex information propagation pathways.
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Figure 2. Information superposition and loss field, as defined in Equation (6), for the model GRNs shown in Figure 1.
(a) Effective state of entropy (indicated by color opacity, higher opacity corresponds to higher entropy) at a receiver node
(colored black) due to edge communication errors and interference from other source nodes (colored green). Blue arrows
represent upregulation edges and red arrows represent downregulation edges. The numbers in the braces represent
probabilistic state of the individual nodes as {P(v = 0), P(v = 1)}. The exact error values are important only for the edges
that are in the source-receiver path. Maximum entropy inputs at all source nodes results in the maximum entropy state at
the receiver node independent of the edge error or the type of regulation. (b) Loss field values for model graphs showing
the effect of increasing superposition, as a function of increasing m with β = 0 and with two different values of edge
communication error ρ. The first row of loss fields is for ρ = 0.01 and the second row is for ρ = 0.1. The nodes are numbered
in the descending order of their access to other nodes, i.e., node 0 can send signal to most of the other nodes in the graph
and node 99 does not send information to any other node. The loss values are the lowest for the source node 0, which
is the node with access to most of the other nodes in the graph. If a receiver node vj is inaccessible from source node vi,
then L(i→ j) = 1 bit by default. (c) Loss field values for GRNs with mixture of up and downregulation, as shown in
Figure 1b. ρ = 0.01 for these loss fields. Increasing the ratio of down regulation to up regulation increases the loss only for
the dominant source nodes (i ≤ 5 in this example). For (b) and (c), the color bar scale indicates the loss field values, L(i→ j)
as determined using in Equation (6).

When we evaluate the loss field for every source-receiver pair in the model GRNs
shown in Figure 1a, we notice that the information loss due to superposition increases
markedly with increasing m, as shown in Figure 2b. The sensitivity of the loss field to
the in-degree m, also depends on the edge bit-flip error value ρ. When the bit-flip error is
small, ρ = 0.01 (1st row in Figure 2b), then the contrast between the loss field for m = 1
and m = 3 is significant, increasing approximately from 0.2 bits to 0.9 bits. When the
bit-flip error is larger, ρ = 0.1 (2nd row in Figure 2b), then the increase in loss field from the
m = 1 type GRN to m = 3 is smaller, approximately from 0.8 bits to 1 bit. Hence, the loss
field quantifies the effective deterioration of signaling due to combination of superposition
and edge communication errors. Though the m = 3 type GRN has more source-receiver
pairs compared to the m = 1 type GRN, abundance of accessibility reduces the quality of
communication as apparent in the respective loss fields.

As evident from the loss fields in Figure 2b, a low entropy input of Pi,OFF or Pi,ON
from a single source node can be diminished if high entropy information from the rest
of the source nodes in the graph is superposed on the receiver, leading to a high global
entropy for the network. Therefore, for graphs with a high mean accessibility score, which
increases with m, it is harder to control or correlate the state of all the nodes in the GRN
using a single source node without cooperation from other source nodes. The increase
in information loss with increasing m is most prominent for the dominant source nodes,
which can send information to all the nodes in the graph (near 0 on the source node axis in
Figure 2b).

Increasing the ratio of up and down regulation edges (β) for a fixed GRN increases
the loss field value only for the dominant source nodes as shown in Figure 2c, which in
this example are the first five source nodes (i < 5). Increasing the mixture of up and
down regulation does not change the loss field for the lower ranked source nodes, i.e., the
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source nodes that can propagate information to only a small subset of the receiver nodes in
the GRN. Moreover, comparing Figure 2b,c reveals that information loss is more greatly
affected by the increase in superposing pathways (i.e., m) than by the increasing mixture of
up and downregulation.

The large difference in loss field contrasts between m = 1 and m = 3 in Figure 2b
suggests that we can claim that network of type m = 1 allows for an ideal master regulator
that can communicate to all the other nodes in the GRN with minimal information loss
when the communication error in every single edge is low. The value of loss for the m = 3
GRN is high because of the existence of many pathways, so it is challenging for a single
node (or gene) to emerge as a master regulator. Therefore, a relatively low number of
superposing pathways supports the existence of a master regulator and can be an indicator
of a reducible network, unless the communication error in the edges is very high.

4. Relative Free Energy and Reducibility of GRNs

The method of calculating the effective transition matrix, Equation (5), and the loss
field, Equation (6), has a direct thermodynamic interpretation. Low information loss be-
tween a pair of genes means the network topology and the edge communication error
values are such that there exists high mutual information, or correlation, between the
states of two genes. Parrondo et al. has shown that the existence of high mutual infor-
mation between the two components of a system equates to a proportionate increase in
the nonequilibrium free energy of the system [16]. Since the amount information loss,
or mutual information, is a consequence of the information propagation in GRNs, Equa-
tion (4), we can effectively compute the free energy change associated with the information
propagation.

More specifically, a lower information loss, Equation (6), from a source gene vi to a
receiver gene vj means when the source node is at low entropy then the receiver node is
also close to a low entropy state. But if the information loss from vi to vj is high, then the
receiver node is closer to the maximum entropy state. A set of low loss values from a single
source node to all the other nodes in the network, like for the source node v0 in the m = 1
type GRN for ρ = 0.01 shown in Figure 2b, means a single source node shifts all the other
nodes in the network close to a low entropy state. The relative entropy of the state of an
individual node with respect to the maximum entropy state, Pmax, provides the relative
free energy of a single node. Summing over this relative entropy over all the nodes in the
network determines the relative free energy induced by the single low entropy source node.
Therefore, the reduction in entropy of all the nodes due to information propagation results
in an increase in the free energy of the network with respect to the maximum entropy state
of the network.

The highest entropy state of a network is the equilibrium state where each node is
in the maximum entropy state, Pmax. Changing the state of a single source node, either
to Pi,OFF or to Pi,ON and propagating the information using Equation (4) to achieve the
stationary state, PSS

G , results in moving individual nodes from the highest entropy state to
a lower entropy state. The relative free energy associated with the global lower entropy
stationary state PSS

G is,

1
kBT

∆F(Pi,ON) = ∑
j∈V

∑
a∈{0,1}

PSS
G
(
vj = a

∣∣vi = 1
)

log2
PSS

G
(
vj = a

∣∣vi = 1
)

Pmax
(
vj = a

) (7)

where PSS
G (vj

∣∣vi = 1) is the stationary state of node vj when the source node vi is ON. We
can similarly compute a free energy change due to Pi,OFF or due to any other state of the
input, P(vi). Since each edge in the model GRNs is a binary symmetric channel, the free
energy change in the network due to setting a node vi to Pi,ON or Pi,OFF is the same.

Therefore, we anticipate that the lower loss field for source node v0 for the graph
m = 1 shown in Figure 2b means that a single source node can push the entire GRN to a
lower entropy more successfully than the other two cases (for m = 2 or 3). So, for m = 1
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type graphs the relative free energy of the GRN due to the low entropy state of source node
v0 should be higher than for graphs where m > 1.

In Figure 3 we present network relative free energy distributions resulting from edge
errors, as a function of signal superposition. Unlike the loss field results in Figure 2b,c,
which were for graphs with the same communication error value ρ, we assumed that the
communication error for an edge is a uniformly distributed random variable in the domain
[0,0.5]. The distributions in relative free energy for each type of network, i.e., m = 1, 2, or 3,
were obtained by simulating 5000 replicates of a graph with the same connectivity but a
different set of error values for the edges, sampled from the uniform distribution U [0, 0.5].
An example of type m = 1 network with a random edge communication error field is shown
in Figure 3a. This calculation is similar to observing the relative free energy distribution in
a cell population, where each cell has the same GRN topology but there exists a variability
in edge communication errors within each cell’s network. If the distribution in the edge
errors, ρ, is narrower than a uniform distribution the result will be a reduced variance in
the relative free energy distributions shown in Figure 3.
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Figure 3. Distribution of relative free energy of networks with different mean accessibility scores and a uniformly distributed
edge error field, ρ ∈ U [0, 0.5]. (a) The graph shown is one among the 5000 realizations of a random error field on a type
m = 2 Barabási-Albert graph, which has a mean accessibility score ≈ 9. (b–d), show the resulting distributions in relative
free energy over 5000 realizations due to the same uniformly distributed error field, but for graphs with different accessibility
scores originating from the choice of m.

The relative free energy distribution for m = 1 (Figure 3b) is asymmetric, but for GRNs
with high number of superposing pathways, as in m = 3 type graphs, the relative free
energy is distributed like a normal distribution. The broader distribution suggests that the
relative free energy of each replicate network simulation is uncorrelated due to increasing
interference. Correlation among replicates is a combined consequence of m and the edge
communication error values. If the edge errors are distributed in low range of values,
e.g., uniformly distributed between [0.0,0.1] then in spite of the effects of superposition,
the probabilistic states (the global state vector PSS

G ) of the replicates will be closer to each
other. However, when the edge errors vary over a wider range, e.g., uniformly distributed
between [0.0,0.5], then increasing m, which increases the number of edges and pathways
for information transfer, increases the variability in the probabilistic GRN states among
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replicates. Hence, if a GRN has a high mean accessibility score, then the relative free energy
values present in individual cells in a population are more uncorrelated with each other.
Since experimentally observed phenotypic manifestations caused by a GRN are a function
of the free energy change that are induced by a GRN [14,15], we claim the distributions in
observed phenotypes are analogous to the distributions in ∆F, especially for the graphs
with lower mean accessibility score.

Performing the relative free energy calculations for multiple source nodes in the
model GRNs, instead of only the most dominant one, reveals a thermodynamic criterion
for reducibility. Figure 4a shows the relative free energy distributions for the top ten source
nodes (ranked by the number of other nodes they can send signal to) in the model GRNs
due to a uniformly distributed edge error value. An order exists in the relative free energy
distributions as a function of source nodes for m = 1 type graph. Not only does the source
node v0 induce significantly higher relative free energy compared to the other source
nodes, but also the median value of ∆F for the m = 1 graph is higher than the value for
m = 2 and m = 3 graphs. Therefore, the relative free energy distributions are a criterion for
thermodynamic hierarchy for source nodes and help to identify candidate master regulators
in GRNs. Comparison of the ∆F distributions for multiple source nodes reveals whether
that hierarchy exists or not. We claim that the existence of a strongly resolvable hierarchy,
i.e., ordered median ∆F values and low overlap in the ∆F distributions for different source
nodes, implies that the GRN is thermodynamically reducible. In a network with a small m
value, most of the communication to other genes originate from the source node that has the
highest out-degree, which creates an outgoing communication hub. Whereas, in a network
with a large m value, there are multiple pathways for communication among genes in
addition to the ones originating from the outgoing hub. However, the presence of several
communication pathways is accompanied with the cost of a lower inducible relative free
energy and the lack of hierarchy among the source nodes (Figure 4a). Interestingly, outgoing
hubs have been observed in naturally-occurring GRNs [30,31], which may be justified using
the thermodynamic hierarchy resulting from the relative free energy distributions.

Entropy 2021, 23, x FOR PEER REVIEW 10 of 14 
 

 

pathways for information transfer, increases the variability in the probabilistic GRN states 
among replicates. Hence, if a GRN has a high mean accessibility score, then the relative 
free energy values present in individual cells in a population are more uncorrelated with 
each other. Since experimentally observed phenotypic manifestations caused by a GRN 
are a function of the free energy change that are induced by a GRN [14,15], we claim the 
distributions in observed phenotypes are analogous to the distributions in ∆𝐹, especially 
for the graphs with lower mean accessibility score. 

Performing the relative free energy calculations for multiple source nodes in the 
model GRNs, instead of only the most dominant one, reveals a thermodynamic criterion 
for reducibility. Figure 4a shows the relative free energy distributions for the top ten 
source nodes (ranked by the number of other nodes they can send signal to) in the model 
GRNs due to a uniformly distributed edge error value. An order exists in the relative free 
energy distributions as a function of source nodes for 𝑚 = 1 type graph. Not only does 
the source node 𝑣଴ induce significantly higher relative free energy compared to the other 
source nodes, but also the median value of ∆𝐹 for the 𝑚 = 1 graph is higher than the 
value for 𝑚 = 2 and 𝑚 = 3 graphs. Therefore, the relative free energy distributions are a 
criterion for thermodynamic hierarchy for source nodes and help to identify candidate 
master regulators in GRNs. Comparison of the ∆𝐹  distributions for multiple source 
nodes reveals whether that hierarchy exists or not. We claim that the existence of a 
strongly resolvable hierarchy, i.e., ordered median ∆𝐹 values and low overlap in the ∆𝐹 
distributions for different source nodes, implies that the GRN is thermodynamically re-
ducible. In a network with a small 𝑚 value, most of the communication to other genes 
originate from the source node that has the highest out-degree, which creates an outgoing 
communication hub. Whereas, in a network with a large 𝑚 value, there are multiple 
pathways for communication among genes in addition to the ones originating from the 
outgoing hub. However, the presence of several communication pathways is accompa-
nied with the cost of a lower inducible relative free energy and the lack of hierarchy 
among the source nodes (Figure 4a). Interestingly, outgoing hubs have been observed in 
naturally-occurring GRNs [30,31], which may be justified using the thermodynamic hier-
archy resulting from the relative free energy distributions. 

 

Entropy 2021, 23, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 4. Ordering in the inducible relative free energy distributions caused by a variable edge com-
munication error field. (a) Relative free energy distribution of the top ten source nodes for 𝑚= 1,2, 
and 3 type graphs, which have mean accessibility scores 4, 9, and 14, respectively. The communica-
tion error for every edge in the graphs were assumed to be uniformly distributed in the domain 
[0.0,0.5]. (b) Free energy distribution for top ten source nodes in type 𝑚 = 2 (mean accessibility 
score 9) for increasing domain of variability in the edge communication error value. 

The existence of the order in ∆𝐹 distributions is a function not only of topology and 
also of the distribution in the edge communication error values. We demonstrate this in 
Figure 4b using the ∆𝐹  distributions for 𝑚 = 2 type graphs, but with increasing the 
range of values of 𝜌. When the edge error value is uniformly distributed within a more 
constricted range, 𝜌 ∈ ሾ0,0.1ሿ, we still observe a strong hierarchy in ∆𝐹 distributions—
the median ∆𝐹 values for different source nodes are separated beyond the dispersion in 
the individual distributions. However, this hierarchy is lost upon increasing the extent of 
variability in 𝜌 to uniformly distributed in [0.0,0.5], the ∆𝐹  distributions for different 
source nodes become similar to each other, and the median ∆𝐹 values decrease for all the 
source nodes compared to the two narrower distributions in 𝜌. Thus, increasing variabil-
ity in edge error values diminishes the possibility of the existence of a small subset of 
thermodynamic master regulators. 

The choice of a probabilistic edge error field instead of a fixed error value for all edges 
is a better model for real biological GRNs. For a specific regulatory process, the set of 
intracellular reactions is the same for all cells in a steady state population. We explicitly 
considered variability in 𝜌, which could result from stochastic fluctuations in concentra-
tions, binding rates, diffusion, etc, due to heterogeneity in the internal environment of the 
cells. Therefore, the variability in the edge error values result in the distributions of ∆𝐹. 
In fact, experimental observations of the heterogeneity in gene expression in steady state 
distributions of cell population phenotypes resulting from [14] are highly reminiscent of 
the frequency distributions shown in Figure 3. We have previously demonstrated that 
distributions of phenotypes in cell populations represent microstates of a potential land-
scape, which is consistent with these observations of distributions in ∆𝐹. 

5. Conclusions 
Scale-free or power law topologies are popular models for biological regulatory net-

works. We found that even within these topological classes, the quality of information 
transfer can vary due to interference of signal from multiple sources and superposition of 
up and down regulation signals. We developed the concept of a loss field to quantify the 

Figure 4. Ordering in the inducible relative free energy distributions caused by a variable edge communication error field.
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distributed in the domain [0.0,0.5]. (b) Free energy distribution for top ten source nodes in type m = 2 (mean accessibility
score 9) for increasing domain of variability in the edge communication error value.
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The existence of the order in ∆F distributions is a function not only of topology and
also of the distribution in the edge communication error values. We demonstrate this
in Figure 4b using the ∆F distributions for m = 2 type graphs, but with increasing the
range of values of ρ. When the edge error value is uniformly distributed within a more
constricted range, ρ ∈ [0, 0.1], we still observe a strong hierarchy in ∆F distributions—the
median ∆F values for different source nodes are separated beyond the dispersion in the
individual distributions. However, this hierarchy is lost upon increasing the extent of
variability in ρ to uniformly distributed in [0.0,0.5], the ∆F distributions for different source
nodes become similar to each other, and the median ∆F values decrease for all the source
nodes compared to the two narrower distributions in ρ. Thus, increasing variability in edge
error values diminishes the possibility of the existence of a small subset of thermodynamic
master regulators.

The choice of a probabilistic edge error field instead of a fixed error value for all edges
is a better model for real biological GRNs. For a specific regulatory process, the set of
intracellular reactions is the same for all cells in a steady state population. We explicitly
considered variability in ρ, which could result from stochastic fluctuations in concentrations,
binding rates, diffusion, etc, due to heterogeneity in the internal environment of the cells.
Therefore, the variability in the edge error values result in the distributions of ∆F. In
fact, experimental observations of the heterogeneity in gene expression in steady state
distributions of cell population phenotypes resulting from [14] are highly reminiscent
of the frequency distributions shown in Figure 3. We have previously demonstrated
that distributions of phenotypes in cell populations represent microstates of a potential
landscape, which is consistent with these observations of distributions in ∆F.

5. Conclusions

Scale-free or power law topologies are popular models for biological regulatory
networks. We found that even within these topological classes, the quality of information
transfer can vary due to interference of signal from multiple sources and superposition of
up and down regulation signals. We developed the concept of a loss field to quantify the
pairwise communication among nodes, and the algorithm to compute this loss field. The
loss field can be used to identify potential master regulators by determining the quality
and uniformity of communication from a single node to all the other nodes in the network.
Relatively low connectivity is necessary for the existence of a master regulator and is an
indicator of a reducible network. In the absence of high edge errors, a source node in
a network that has fewer superposing pathways is more influential for communication
efficiency and that network is more likely to be reducible.

We found a fundamental connection between the magnitude of information loss and
the relative free energy that can be induced in a network using a single source node, i.e.,
without co-operation (or correlation) with other source nodes. Moreover, the relative free
energy distributions induced by individual nodes emerge as a criterion for a thermody-
namic hierarchy of source nodes (and identification of candidate master regulators) in
GRNs. We claim that the existence of a strongly resolvable hierarchy, i.e., ordered median
∆F values and low overlap in the ∆F distributions for different source nodes, means the
GRN is thermodynamically reducible. Calculation of this free energy for a variable commu-
nication error field produces distributions of the inducible free energy change that serve as
a signature of the quality of communication. Specifically, if the information loss is high then
the distribution in relative free energy of the microstates of the network is closer to a normal
distribution. On the other hand, if the information loss is low, and there is a dominant
node, then this inducible relative free energy distribution is asymmetrical. Therefore, the
deviation of the relative free energy distribution from a normal distribution is associated
with lower information loss, higher relative free energy, and a more reducible network.
By calculating the relative free energy change that can be obtained by different nodes in
a network, ranked according to their accessibility to other nodes, we can determine how
many nodes are required to achieve a threshold relative free energy. Hence, our combined
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approach of information propagation followed by relative free energy calculation informs
us about the minimum set of nodes in the network that are relevant to determine the
thermodynamic states of the network.
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