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Fröhlich H. 2017 A Bayesian approach to

estimating hidden variables as well as missing

and wrong molecular interactions in ordinary

differential equation-based mathematical

models. J. R. Soc. Interface 14: 20170332.

http://dx.doi.org/10.1098/rsif.2017.0332
Received: 8 May 2017

Accepted: 23 May 2017
Subject Category:
Life Sciences – Mathematics interface

Subject Areas:
bioinformatics, computational biology,

systems biology

Keywords:
ordinary differential equations, systems

biology, dynamic elastic-net, modelling
Author for correspondence:
Benjamin Engelhardt

e-mail: engelhar@bit.uni-bonn.de
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.3792295.

& 2017 The Author(s). Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
A Bayesian approach to estimating
hidden variables as well as missing
and wrong molecular interactions in
ordinary differential equation-based
mathematical models

Benjamin Engelhardt1,2, Maik Kschischo3 and Holger Fröhlich1,4

1Rheinische Friedrich-Wilhelms-Universität Bonn, Algorithmic Bioinformatics, Bonn, Germany
2DFG Research Training Group 1873, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
3Department of Mathematics and Technology, University of Applied Sciences Koblenz, RheinAhrCampus,
Remagen, Germany
4UCB Biosciences GmbH, Monheim, Germany

BE, 0000-0002-8370-1317

Ordinary differential equations (ODEs) are a popular approach to quantitat-

ively model molecular networks based on biological knowledge. However,

such knowledge is typically restricted. Wrongly modelled biological mechan-

isms as well as relevant external influence factors that are not included into the

model are likely to manifest in major discrepancies between model predictions

and experimental data. Finding the exact reasons for such observed discrepan-

cies can be quite challenging in practice. In order to address this issue, we

suggest a Bayesian approach to estimate hidden influences in ODE-based

models. The method can distinguish between exogenous and endogenous

hidden influences. Thus, we can detect wrongly specified as well as missed

molecular interactions in the model. We demonstrate the performance of our

Bayesian dynamic elastic-net with several ordinary differential equation

models from the literature, such as human JAK–STAT signalling, information

processing at the erythropoietin receptor, isomerization of liquid a-Pinene, G

protein cycling in yeast and UV-B triggered signalling in plants. Moreover, we

investigate a set of commonly known network motifs and a gene-regulatory

network. Altogether our method supports the modeller in an algorithmic

manner to identify possible sources of errors in ODE-based models on the

basis of experimental data.
1. Introduction
Mathematical models of biological systems become more and more complex

and contribute important insights into various biological processes [1–7]. Since

biological systems are naturally open, formulating mathematical models and

specifying their boundaries is a highly non-trivial task [8,9]. Consequently, most

researchers in systems biology are faced with the still unsolved issue to find a com-

promise between model complexity and the limited amount of knowledge, data

and time [9–11]. Researchers in other fields including earth and environmental

sciences are facing similar challenges [12]. In many cases, missed and unknown

external influences as well as erroneous interactions in a model could lead to

severely misleading results [7].

Current research is mostly focused on inference of perturbation effects and

model selection [13–15]. Although, perturbation experiments are labour

and cost intensive, which raises the need for a careful prioritization strategy

[14–17]. On the other hand, statistical model selection and related methods require
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Figure 1. Illustration of the Bayesian approach to estimating hidden influence variables in ODE-based models. Here, a fictional interaction network is shown. (a) True
system (black) with two inputs and one fictive observable measurement as a combination of two nodes (box). (b) In reality, the available knowledge represented by
an a priori model (blue) does not necessarily cover the whole system but only a part of the true system. Hence the nominal model leads to an unsatisfactory fit with
the observable measurement. This may caused by exogenous influences or by misspecified molecular interactions (i.e. missing or wrong edges in the interaction
network). (c) Our approach aims for estimating these hidden influences (red) and the directly involved molecular species. (d ) Some of the estimated hidden influ-
ences may correspond to missing or wrong molecular interactions within the system. Hence, in a last step, our method tries to further distinguish between intrinsic
and exogenous hidden influences. We therefore identify erroneous parts of the nominal ODE system and give detailed hints for their correction.
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a strong knowledge about the system and its alternatives which

is rarely given in practice [7,18]. Thus model selection can be

very difficult, specifically if nothing is known about missing

variables and their possible mechanisms.

In most situations, researchers have partial knowledge and

preliminary hypotheses about their system, which needs to be

integrated into a restricted but still predictive and experimen-

tally validatable model [19]. Even if the biological system is

partially known and the data are given for almost all molecular

species, it is not clear how to deal with insufficient predictions

[7]. Often this ends in trial-and-error approaches and does not

ensure that the selected model reflects the reality rather than

just fitting the given dataset. The question is, how to detect

so far unknown molecules and their interactions in a more

data driven manner. This could guide the modeller towards

points in the given model, where the model is likely erroneous.

In a second step, the modeller can then try to link these

erroneous points to known mechanisms.

Recently, we proposed the dynamic elastic-net (DEN) as a

more principled method to address this issue [20]. The

DEN aims for estimating the dynamics of hidden influence

variables in ordinary differential equations (ODE)-based

systems via a penalized estimation procedure resembling

elastic-net regression [21]. While our previous method was

tested successfully on several applications, such as the erythro-

poietin receptor (EpoR)-dependent signalling network [19], it

has still several shortcomings, which we address in this

paper. More specifically, DEN is not a probabilistic approach

and thus does not fully address the unavoidable uncertainty

about estimates. DEN does not answer the question, whether

estimated hidden influences could be attributed to missed or

wrongly modelled interactions among the known molecular

species. Here we introduce the Bayesian DEN (BDEN) as a

new and fully probabilistic approach, which deals with all

these aspects. In contrast with DEN, our new BDEN method

does not require pre-specified hyper-parameters. We illustrate

the predictive power of BDEN compared with DEN in several
real biological models and test cases. The BDEN thus provides

a systematic Bayesian computational method to identify target

nodes and reconstruct the corresponding error signal including

detection of missing and wrong molecular interactions within

the assumed model. The method works for ODE-based sys-

tems even with uncertain knowledge and noisy data. In

contrast with approaches based on point estimates the Baye-

sian framework incorporates the given uncertainty and

circumvents numerical pitfalls which frequently arise from

optimization methods [22,23].
2. Material and methods
2.1. Motivation
We assume the modelling process to start with an initial, poten-

tially incomplete or partially misspecified nominal model

including all known but not necessarily observable molecules

[24]. Figure 1 illustrates the general idea. In most situations, the

real system differs from the initially modelled nominal system,

which is reflected by an insufficient fit to the given data caused

by (i) hidden influences and (ii) erroneous molecular interactions.

Exogenous hidden influences could, for example, be stimulatory

(e.g. phosphorylation) or inhibitory (e.g. de-phosphorylation)

events affecting the modelled system from outside. In addition,

there could exist stimulatory or inhibitory influences within the

system, which are not included in the model due to lack of know-

ledge, i.e. missing molecular interactions. Similarly, wrongly

included molecular interactions could exist. In biochemical sys-

tems, molecular interactions are based on biochemical reactions,

e.g. phosphorylation and binding events.

Owing to the fact that biological systems are open, the

number of potential erroneous nodes (e.g. proteins or other mol-

ecules) within the nominal model is huge [9]. Without further

knowledge, independent error terms have to be assigned to

each node. If the respective node is in reality not directly targeted

by a hidden influence, the hidden input takes the value zero.

Only nodes directly affected by hidden influences have non-

zero errors. Wrongly modelled or missing interactions between
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two nodes can be represented by two error terms, one for each of

the respective nodes, which will be correlated over time. We

exploited this idea to detect missing or erroneous interactions

in a given ODE-based nominal model.
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2.2. Approach
We assume the dynamical model

_xðtÞ ¼ f ðxðtÞ, uðtÞÞ þwðtÞ, ð2:1aÞ

yðtÞ ¼ hðxðtÞÞ þ eðtÞ ð2:1bÞ

and x(0) ¼ h: ð2:1cÞ

Here, _x denotes the time derivative of the state vector

x(t) ¼ (x1(t), . . . , xN(t))0 with initial value h. The not necessarily

linear function f represents the nominal model, which describes

the current assumptions about the dynamic interactions between

the state variables and in addition the effect of the known input

function u(t).
No model of a biological system can ever be totally complete

and comprehensive. Therefore, we add the hidden influences

w(t) ¼ (w1(t), . . . , wN(t))0 to the nominal model function f. The

additive dynamic hidden influence w(t) subsumes missing or

wrong interactions between the state variables as well as exogen-

ous influences caused by crosstalk with other biological

processes (see electronic supplementary material, §3). Of

course, w(t) is unknown and we aim to estimate these hidden

influences from the data [20]. Notably, the hidden influence

w(t) is not restricted to be constant or linear and thus can be

any arbitrary function of time.

Often it is impossible to measure all components of the state

vector x, e.g. concentrations of reacting substances (due to tech-

nical limitations, e.g. non-availability of phospho-protein

specific antibodies). The map from the state to the measurable

output y(t) ¼ (y1(t), . . . , yK(t))0, with K not necessarily equal to

N, is given by the measurement function h, which we assume

to be known (equation (2.1b)). In addition, we assume white

Gaussian measurement noise e(t) with expectation zero and a

noise covariance matrix Jl [ RK�K, see below.

In practice, the data are given as measurements y(tl) at

discrete time points tl with l [ f1, . . ., Tg. We will use the nota-

tion yk,l ¼ yk(tl) for the measured output k [ f1, . . ., Kg at

measurement time tl and the analogous notation for the other

variables, i.e. xi(tl) ¼ xi,l and hk(x(tl)) ¼ hk(xl). For sake of simpli-

city in the following, we denote the matrix of observed

measurements by y1:T ¼ {y1, . . . , yT} [ RK�T and the corres-

ponding state and hidden influence matrices by x1:T [ RN�T

and w1:T [ RN�T .

From now on, we are interested in hidden influences at

discrete time points. Under this assumption equation (2.1) can

be rewritten as

xl ¼ xl�1 þ
ðtl

tl�1

f ðxð~tÞ, uð~tÞÞ þ ŵð~tÞd~t, ð2:2aÞ

yl ¼ NðhðxlÞ,JlÞ ð2:2bÞ

and x0 ¼ h: ð2:2cÞ

Consequently, we obtain a first-order Markov process over the

state variables x. The function ŵ(t) is obtained by fitting a

cubic smoothing spline through each of the N discrete time

series of hidden influence signals wi,1:T [25].

The assumption of Gaussian measurement noise can, if

necessary, approximately be fulfilled after a variance-stabilizing

transformation [26]. In addition, we assume uncorrelated

measurement noise and thus Jl ¼ diag( j2
1,l, . . ., j2

K,l).
2.3. Marginal likelihood of the data
The likelihood of the observed data

pðy1:T j x0:T , w0:T ,J1:TÞ

¼
YT
l¼1

YK
k¼1

pðyk,l j xl, j
2
k,lÞ � pðxl j xl�1, wl�1:lÞ

ð2:3Þ

can be factorized due to the independence of the measure-

ment noise with respect to time and observables. Note that

p(xl j xl�1, wl�1:l) is defined by equation (2.2a). In addition, xl�1:l

and wl�1:l are conditionally independent from J1:T.

Since typically the number of replicate measurements per

time point is small, the empirical variance is not a reliable estima-

tor of the true measurement noise. Therefore, we impose an

inverse gamma prior on the variance of the measurement noise

j2
k,l � IG(a,b): ð2:4Þ

The marginal likelihood of the data are obtained by marginalizing

over the variance of the measurement noise variable

pðy1:T j x0:T , w0:T ,a,bÞ

/
YT
l¼1

YK
k¼1

ð
pðyk j xl, j

2
k,lÞ � pðj2

k,l j a,bÞdj2
k,l

� pðxl j xl�1, wl�1:lÞ:

ð2:5Þ

This integral can analytically be calculated to yield [27]

pðy1:T j x0:T , w0:T ,a,bÞ

/
YT
l¼1

YK
k¼1

Gðaþ 1=2Þ
GðaÞð2pbÞ1=2

1

ð1þ ð1=2bÞðyk,l � hkðxlÞÞ2Þaþ1=2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pðyl jxl ,a,bÞ�pðxl jxl�1,wl�1:lÞ

: ð2:6Þ

A detailed derivation of equation (2.6) is provided in electronic

supplementary material, §4.

According to Bayes’ theorem, the posterior density over the

hidden input signals w1:T with initial value w0 is given by

pðw1:T j x0:T , y1:T , w0,J1:TÞ
/ pðy1:T j x0:T , w0:T ,J1:TÞ � pðw1:TÞ:

ð2:7Þ

Using equation (2.6), we can directly draw samples from the

posterior density of the hidden influence. For this purpose, we pro-

pose a Bayesian elastic-net prior as detailed in the following sections.

2.4. Smoothness and sparsity via a Bayesian
elastic-net prior

The hidden input signals wl�1:l can be understood as the statisti-

cal residuals of the nominal system, and every deviation of

observations from the nominal system could thus be explained

by non-zero components in wl�1:l. However, we are only inter-

ested in hidden input signals, which are far stronger than

measurement noise. Therefore, we assume that the hidden

input signal is smooth and sparse. Sparsity corresponds to the

a priori belief that only a small subset of state variables is truly

affected by unknown external or internal input signals. In

addition, we assume the hidden input signal to be smooth over

time. Smoothness and sparsity are encoded by a prior distri-

bution inspired by the Bayesian elastic-net, which is here

combined with a first-order Markov process over w0:T [28,29].

Overall our proposed approach is thus a hierarchical graphical

model shown in figure 2. Details can be found in electronic

supplementary material, §5.

Briefly, the Bayesian elastic-net defines a conditional

Gaussian prior over each wi,ljwi,l21 (i ¼ 1, . . ., N, l ¼ 1, . . ., T ).

The scale of the variance of the Gaussian prior is a strongly

decaying and smooth distribution peaking at zero, which

depends on parameters l2, t2 and s2. The parameter t2 is
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Figure 2. Representation of the proposed Bayesian dynamic elastic-net
approach as a probabilistic graphical model. The hidden influences wl form
a Markov chain over all time points l ¼ 1, . . ., T and are directly dependent
on the shared parameters l1 and l2. Since the outcome of one integration
step represents the initial value for the next integration step, the system state
variables x 1, . . . , x T are also successively dependent.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170332

4

itself given by an exponential distribution (one for each

component of vector wi) with parameters l1. In consequence,

sparsity is dependent on the parameter vector l1, whereas

smoothness is mainly controlled by l2 [28,30]. These parameters

are drawn from hyper-priors, which can be set in a non-

informative manner or with respect to prior knowledge about

the degree of shrinkage and smoothness of the hidden influences

[31]. We refer the reader to electronic supplementary material,

§§5 and 7, for details.
2.5. Estimating hidden influences from data
To estimate the hidden input and the parameters in the hierarch-

ical model, we devise a Metropolis–Hastings algorithm with

Gibbs updates of the Bayesian elastic-net hyper-parameters.

The algorithm proceeds sequentially between the different time

points 1, . . ., T by drawing different samples at each supporting

point. At sampling step s and time point l, a random component

wi,l is selected of the hidden input vector (a node in the network)

at the previous time point, which is modified by a sample from a

univariate Gaussian transition kernel p [32]. The resulting vector

ws
l is accepted with probability

Fðws
l j w

ðs�1Þ
l Þ ¼ min 1,

pðyl j xl,a,bÞ
pðyl j xl,a,bÞ �

pðxl j xl�1, ws
l , wl�1Þ

pðxl j xl�1, ws�1
l , wl�1Þ

(

� pðws
l juÞ

pðws�1
l juÞ

)
,

ð2:8Þ

where p(wl ju) is the Bayesian elastic-net prior over the

hidden influences conditioned by hyper-parameters

u ¼ {l1, l2, t2, s2} (for details, see electronic supplementary

material, §§5 and 7). Because of the Gaussian measurement

errors, the discrepancy between data component yk,l and the cor-

responding model output hk(xl) in equation (2.6) is given by the

quadratic error (yk,l � hk(xl))
2. Note that xl is obtained by numeri-

cally integrating the ODE system from time point l 2 1 using xl�1

as initial value according to equation (2.2a). Code for the

sampling algorithm is provided in electronic supplementary

material, §6.
2.6. Estimating endogenous hidden influences: missing
and wrong reactions

After having estimated hidden influences on state components

in the nominal ODE system, the question arises whether these

hidden variables could in fact correspond to missing or wrongly

specified interactions within the nominal system. A simple

strategy, which we followed here, is to rank all state variables

in the nominal system by their temporal correlation with the esti-

mated hidden influences. The essential idea is that in case of a

wrong or missing reaction the estimated hidden time courses

should ‘compensate’ erroneous predictions by the nominal

system (figure 3). In general, wrong or missing interactions

can either have an increasing (stimulatory) or decreasing (inhibi-

tory) influence on the target nodes. This results in a negative

hidden influence with wi , 0 in the case of inhibition and a posi-

tive hidden influence with wi . 0 in the case of stimulatory

events. More specifically, we distinguish several cases which

are listed in table 1 and further illustrated in figure 3. Briefly,

the idea is that an modelled stimulation between two state vari-

ables x1, x4 in the ODE system yields two error signals w1

(influencing x1) and w4 (influencing x4), which are anticorrelated.

This is because w1 and w4 capture the unmodelled dynamics of

the ODE system. Similarly, an unmodelled inhibition yields w1,

w4 < 0 and a positive correlation of w1 and w4. A wrongly

modelled stimulation results in w1 < 0 and w4 . 0 which are

anticorrelated. A wrongly modelled inhibition yields w1,

w4 . 0 and a positive correlation.

As exemplified in figure 3, due to differences in the expected

correlations, our analysis should also allow for distinguishing miss-

ing inhibitory versus stimulating effects of missing monotonous

interactions.

Different measures exist to capture the strength of correlation

between time courses. Apart from the Pearson correlation, we

here used the the cross-correlation coefficient

RXY(t) ¼
X(T�t�1)

(l¼0)

X(lþt)Yl ð2:9Þ

to quantify temporal associations between two time series X and

Y [33]. The cross-correlation RXY(t) depends on the time lag t

which was chosen as argmaxt[RXY (t)].
3. Results
3.1. Tested mathematical models
The EpoR-induced JAK–STAT signalling pathway mediates a

rapid signal transduction from the receptor to the nucleus

related to cell proliferation and differentiation [19]. This path-

way involves a rapid nucleocytoplasmic cycling of the signal

transducer and activator of transcription 5 (STAT5) molecules

which is not directly measurable [19].

The G protein cycling model quantitatively characterizes

the heterotrimeric G protein activation and deactivation in

yeast [34]. This model serves as a fully observed but complex

test case where all states are measured.

In contrast, the model of the UV-B signalling in plants sys-

tematically links several signalling events induced by UV-B

light to a comprehensive informational signalling pathway

[35]. Only combinations of small amounts of the involved

molecules are accessible and thus it serves as a complex and

not fully observed test case.

Network motifs are thought to represent building blocks

of larger biological systems [36]. It is thus informative to test

BDEN with respect to these motifs to better understand the
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Figure 3. Illustration of hidden exogenous and endogenous influences by an arbitrary example system. (a) Hidden exogenous influence. No significant temporal
correlation between x4 and w1 is expected. (b) Hidden endogenous influence as a missing stimulatory interaction (arrow) from x4 to x1. Here, hidden influences w4

and w1 are highly negatively correlated. This is caused by a missing stimulating effect of x4 on x1. The decrease of x4 is correlated with an increase of w1. (c) Hidden
endogenous influence as a missing inhibitory interaction. Here, hidden influences w4 and w1 have a strong positive correlation and compensate a missing inhibitory
effect of x4 on x1. The increase of x4 is correlated with an decrease of w1. (d ) Hidden endogenous influence as erroneous stimulation. Here, hidden influences w4 and
w1 have a strong negative correlation. The increase of x4 goes along with a decrease of w1. (e) Hidden endogenous influence as an erroneous inhibition. The hidden
influences w1 and w4 are concordant and correlate strongly with the state component x4.

Table 1. An endogenous hidden influence is expected to yield different
types of (cross-)correlations with other hidden influences (Corr. HI) and state
variable dynamics (Corr. State), depending on whether a molecular
interaction is missing or wrongly specified in the nominal system. Missing
and wrong molecular interactions can be further distinguished depending on
whether the true molecular interaction is of stimulatory (stim.) or inhibitory
(inh.) nature. Furthermore, molecular interactions between two species can
either be modelled in the correlation between the target hidden influence
dynamics and the related estimated model variables (Corr. State). In case of
endogenous hidden influences, these correlations are expected to be either
strongly positive (þ) or strongly negative (2) if they reflect true molecular
interactions. Figure 3 illustrates all four cases in detail.

event Corr. HI Corr. State

missing stim. 2 1

inh. 1 2

wrong stim. 2 2

inh. 1 1
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possible dependency of the performance of our models on

different basic network topologies.

The dynamic EpoR model reflects the information proces-

sing at EpoR including turnover, recycling and mobilization

of EpoR after stimulation with erythropoietin (Epo) at the

cell membrane [37]. Consequently, it details the first part of

the JAK–STAT signalling pathway. Only combinations of

Epo concentrations in the medium, on the surface and in

the cells are accessible and thus it represents a complex

model with limited experimental data [37].

By contrast, the thermal isomerization of a-Pinene (aP) in

the liquid phase has the purpose to investigate the applicability

of BDEN to small compound reaction networks [38]. The
model details the racemization of aP and its simultaneous

isomerization to dipentene (dP) and allo-ocimene (aO).

To further investigate the utility of BDEN for complex

systems, we used a gene-regulatory network composed of

six genes and related proteins obtained from the DREAM6

challenge [39]. Further details about the described models

are given in electronic supplementary material, §8.

3.2. Simulation study: testing the performance
of Bayesian DEN

We first compared the performances of BDEN as well as our

old DEN approach to correctly predict the location of single

hidden influence for the JAK–STAT signalling model, the het-

erotrimeric G protein cycling, the U-VB signalling in plants

and the aforementioned network motifs [19,34–36]. This was

done on the basis of simulated data for each system. Details

about the simulations are given in electronic supplementary

material. For BDEN, we computed for each �wi (where �wi

denotes the posterior mean taken over MCMC samples) the

area under the predicted hidden influence curve by trapezoidal

numerical integration [40]. For DEN, we applied the same

method based on the provided point estimates of hidden

influence curves. The area under the predicted hidden influence

curve was compared against the simulated existence and

non-existence of a hidden signal at that node. Consequently,

we were able to compute an area under ROC (AUC) value

and a corresponding Brier score (BS), i.e. the squared difference

between the prediction score and the Boolean indicator of a true

hidden influence [41,42]. Table 2 and electronic supplementary

material, table S1, show a favourable overall performance of

our new method for different levels of measurement noise

and simulated errors of kinetic parameter estimates.

Next, we investigated the performance of BDEN to

correctly detect more than one hidden influence. We used



Table 2. Performance of BDEN and DEN regarding the dependence on
measurement noise (median). The median absolute deviation for the AUC
(ROC) and Brier score (BS) are given in brackets.

model
noise
level method AUC BS

JAK – STAT 2.5% BDEN 0.90 (0.15) 0.11 (0.11)

DEN 0.60 (0.40) 0.16 (0.06)

7.5% BDEN 0.83 (0.18) 0.21 (0.19)

DEN 0.43 (0.29) 0.30 (0.14)

12.5% BDEN 0.75 (0.25) 0.26 (0.16)

DEN 0.42 (0.31) 0.41 (0.12)

G protein 2.5% BDEN 0.99 (0.02) 0.04 (0.03)

DEN 1.00 (0.00) 0.09 (0.02)

7.5% BDEN 0.88 (0.13) 0.17 (0.09)

DEN 0.80 (0.13) 0.16 (0.09)

12.5% BDEN 0.80 (0.16) 0.22 (0.10)

DEN 0.71 (0.16) 0.20 (0.11)

UV-B 2.5% BDEN 0.91 (0.11) 0.19 (0.06)

DEN 0.80 (0.19) 0.22 (0.08)

7.5% BDEN 0.88 (0.14) 0.19 (0.04)

DEN 0.80 (0.19) 0.20 (0.06)

12.5% BDEN 0.81 (0.15) 0.19 (0.05)

DEN 0.71 (0.15) 0.19 (0.05)

motifs 2.5% BDEN 1.00 (0.00) 0.00 (0.00)

DEN 0.90 (0.14) 0.11 (0.09)

7.5% BDEN 1.00 (0.00) 0.00 (0.00)

DEN 0.81 (0.19) 0.19 (0.04)

12.5% BDEN 1.00 (0.00) 0.00 (0.00)

DEN 0.80 (0.15) 0.19 (0.05)

Table 3. Performance of BDEN to detect wrong and missing interactions
depending on the measurement noise (median) evaluated for the JAK –
STAT (JS), G protein (GP) and UV-B network. The median absolute
deviation for the AUC (ROC) is given in brackets.

model noise level AUC

missing interaction JS 2.5% 1.00 (0.00)

7.5% 0.83 (0.28)

12.5% 0.80 (0.32)

GP 2.5% 0.81 (0.19)

7.5% 0.78 (0.22)

12.5% 0.62 (0.47)

UV-B 2.5% 1.00 (0.00)

7.5% 0.91 (0.11)

12.5% 0.76 (0.16)

wrong interaction JS 2.5% 1.00 (0.00)

7.5% 0.87 (0.32)

12.5% 0.80 (0.23)

GP 2.5% 1.00 (0.00)

7.5% 0.81 (0.32)

12.5% 0.73 (0.40)

UV-B 2.5% 0.81 (0.20)

7.5% 0.70 (0.24)

12.5% 0.68 (0.30)
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the comparatively large G protein cycle model for this pur-

pose. Results can be found in electronic supplementary

material, table S2. In this simulation, we randomly added

hidden influences for up to 50% of the nodes and still

observed a good prediction performance.

In a similar manner, we investigated the performance of

BDEN to detect wrong and missing interactions (table 3). We

simulated wrong model specifications of the heterotrimeric

G protein cycling, the UV-B signalling in plants and the syn-

thetic JAK–STAT signalling by randomly removing and

adding interactions. As described above, the quantitative pre-

dictions of BDEN are given in terms of (cross-)correlations.

By comparing these correlation values against the true exist-

ence and non-existence of a particular interaction, we were

able to compute an AUC value. Notably, missing and wrong

interaction detection is only possible with our new BDEN

approach. Again we archived a very good performance for

all systems under investigation. On average, 80% of the missing

interactions are correctly detected by BDEN. Among the cor-

rectly identified missing interactions, on average 90% were

correctly classified as ‘stimulating’ and ‘inhibiting’, respect-

ively (electronic supplementary material, table S3). Details

regarding the dependency on the measurement noise are

given in table 3 and results in dependency of deviance of the
parameter estimates are given in electronic supplementary

material, tables S4 and S5.

3.3. Examples with real data
In the following, we further illustrate the results obtained

with BDEN for the JAK–STAT signalling model, the infor-

mation processing at EpoR and the isomerization of aP using

experimental data.

3.3.1. JAK – STAT signalling
The JAK–STAT signalling pathway model (§3.1) consists of

four molecular species.

Unbound STAT5 molecules become phosphorylated

(STAT5p) catalysed by the erythropoietin receptor. Two

STAT5p molecules can form a dimer (STAT5di) and thus are

able to enter the nucleus (STAT5n). Only the amount of phos-

phorylated STAT5 molecules, the total amount of STAT5 and

the erythropoietin receptor are directly accessible. Experimental

measurements are available at 16 time points [19].

Figure 4 illustrates the application of our method when

ignoring the back-translocation of STAT5n into the cytoplasm,

which was hypothesized by the authors [19]. After parameter

fitting the nominal system is not in sufficient agreement

with the data. Introducing hidden influence terms wi leads

to good agreement with the observations. Our method clearly

localized two hidden influences wSTAT5 and wSTAT5n
at STAT5

and STAT5n. Subsequent analysis shows a high positive (cross-)

correlation of wSTAT5 with STAT5n and a negative one with

wSTAT5n
. Exactly the opposite pattern can be observed for

wSTAT5n
. According to our above explained procedure we thus
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predict a stimulatory influence of wSTAT5n
on STAT5. This is in

agreement with the claimed nucleocytoplasmic cycling of the

phosphorylated STAT5 dimer [19,43].
3.3.2. EpoR model
The complex core model of the EpoR regulation via receptor

mobilization, turnover and recycling involves six species and

eight time points. Here the ligand Epo binds to EpoR on the

surface and builds a ligand–receptor complex (Epo–EpoR).

In consequence, Epo–EpoR triggers the phoshorylation of

the cytoplasmic EpoR and thus induces the JAK–STAT sig-

nalling pathway [37]. Several mechanisms affect the amount

of active EpoR. This model covers the ligand-induced recep-

tor endocytosis and thus the internalization of the ligand-

bound receptor (Epo–EpoRi), receptor recycling and
degradation of the internalized ligand-bound receptor.

Location-dependent degradation results in degraded Epo in

cytoplasm (dEpoi) and in medium (dEpoe).

As a test case for BDEN, we wrongly specified a receptor-

induced feedbackon theamount of availableEpo. Inconsequence,

we expect to detect this wrong interaction. As shown in figure

5, BDEN allows to correctly localize and characterize this

erroneous interaction in the nominal model.
3.3.3. aP isomerization
The model of the dynamic isomerization of aP is composed of

four molecular species. Measurements of aP, dP, aO and the

dimer (Di) are available [38]. After heating, aP reacts either

to dP or builds a dimer by reacting with aO. Furthermore, Di

can react to aO.
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To test BDEN the dimerization step was wrongly replaced

with a simple reaction involving only aO. In consequence the

interaction between aP and dP is completely independent

from the interaction between aO and Di. The erroneous nom-

inal system can be corrected by using BDEN as illustrated in

figure 6. BDEN is able to correctly locate and add the falsely

removed reaction.

3.4. Further examples with simulated data
In the following, we further illustrate the results obtained

with BDEN for the G protein cycle in yeast, the UV-B signal-

ling model and a generic gene-regulatory network using

simulated data (2.5% noise level).

3.4.1. G protein cycle in yeast
The heterotrimeric G protein cycle in yeast involves six species

which are directly observable and coupled by several types of

kinetics (for details see electronic supplementary material, §8)

[34]. Experimental data at 8 time points were simulated by

adding Gaussian distributed noise to the predicted values

of the observable variables. We assumed a noise intensity of

2.5% relative to the mean of the related time series for each

observable variable. The nominal system was generated

by adding one additional ‘wrong’ interaction (between the

ligand–receptor complex (LR) and the G proteina-inactive

(GPai)). Electronic supplementary material, figure S1, illustrates

the ability of BDEN to localize and recover the wrong interaction

within the nominal system.

3.4.2. UV-B Signalling
As a more complex example, we simulated seven data points of

the photomorphogenic UV-B signalling in plants [35]. The

model of the photomorphogenic UV-B signalling in the

model plant Arabidopsis thaliana consists of 11 species coupled

by several different kinetic rate expressions and five observable

variables as a combination of seven different species (for

details see electronic supplementary material, §8). As the nom-

inal system, we used the literature given model and included a
missing link by removing one interaction which influences two

different species. Observed data were simulated by adding

Gaussian distributed noise to the predicted values of the obser-

vable variables. We assumed a noise intensity of 2.5% with

respect to the mean of the related time series for each observa-

ble variable. As shown in electronic supplementary material,

figure S2, the BDEN is able to detect the missing molecular

interaction and correctly identifies the corresponding proteins.

3.4.3. DREAM6 Challenge Network
To investigate the applicability of BDEN to gene-regulatory

networks we took a model from the DREAM6 challenge

[39]. The model consists of six genes and six proteins coupled

by mass action and hill kinetics. In this model, all proteins

and one mRNA species are assumed to be directly observable

(for details see electronic supplementary material, §8) [39].

As the nominal system, we used the provided model and

included one inhibitory mechanism. Observed data were

simulated at five time points by adding Gaussian distributed

noise to the predicted values of observable variables accord-

ing to the original challenge [39]. BDEN is able to detect and

correct the spurious interaction, as illustrated in electronic

supplementary material, figure S3.
4. Conclusion
Mathematical modellers in systems biology are frequently con-

fronted with incomplete knowledge and limited understanding

of a complex biochemical system [9–11]. Consequently, there is

a non-negligible chance that relevant molecular species are

missed or interactions are misspecified [8,9]. Our proposed

method addresses this issue by adopting a Bayesian framework

which allows for inferring hidden influence variables, as well as

estimating missing and wrong molecular interactions. It has

been successfully validated in several real models as well as

common network motifs. This was done with simulated as

well as experimental data. Owing to the fully Bayesian formu-

lation all model parameters are sampled. Furthermore, the

Bayesian approach allows to assign confidence levels to
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predictions. Besides these general features of a fully probabilis-

tic framework our newly proposed BDEN method seems to

be more stable and more robust because within the Bayesian

framework, we average over a large number of parameters

and do not rely on stiff integration methods.

A unique feature of our new approach is the distinction

between exogenous and endogenous hidden influences in

the biological system, allowing for the detection of missing

and misspecified equations in the ODE system. Altogether

we thus see our BDEN method as a further step towards a

better automated and more objective revision of ODE-

based models in systems biology and possibly other fields,

such as pharmacokinetics, earth science, robotics and engi-

neering [12,20]. In that context, we emphasize again that

BDEN is not designed to learn ODE systems purely from
data and should thus not be confused with network reverse

engineering methods [44]. Much more, the utility of BDEN is

to ease identification of sources of errors in mechanism-based

mathematical models.
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Fröhlich H. 2012 Joint Bayesian inference of
condition-specific miRNA and transcription factor
activities from combined gene and microRNA
expression data. Bioinformatics 28, 1714 – 1720.
(doi:10.1093/bioinformatics/bts257)

28. Li Q, Lin N. 2010 The Bayesian elastic net.
Bayesian Anal. 5, 151 – 170. (doi:10.1214/
10-BA506)

29. Friedman N, Murphy K, Russell S. 1998
Learning the structure of dynamic probabilistic
networks. In Proc. of the Fourteenth Conf. on
Uncertainty in Artificial Intelligence. UAI’98,
pp. 139 – 147. San Francisco, CA: Morgan Kaufmann
Publishers Inc.

30. Zou H, Zhang HH. 2009 On the adaptive elastic-net
with a diverging number of parameters. Ann. Stat.
37, 1733 – 1751. (doi:10.1214/08-AOS625)

31. Kyung M, Gill J, Ghosh M, Casella G. 2010
Penalized regression, standard errors, and Bayesian
lassos. Bayesian Anal. 5, 369 – 411. (doi:10.1214/
10-BA607)

32. Brooks SP. 1998 Markov chain Monte Carlo method
and its application. J. R. Stat. Soc. D 47, 69 – 100.
(doi:10.1111/1467-9884.00117)

33. Petre S, Moses R. 2005 Spectral analysis of signals.
Upper Saddle River, NJ: Prentice Hall.

34. Yi TM, Kitano H, Simon MI. 2003 A quantitative
characterization of the yeast heterotrimeric
G protein cycle. Proc. Natl Acad. Sci. USA 100,
10 764 – 10 769. (doi:10.1073/pnas.1834247100)

http://www.abi.bit.uni-bonn.de/index.php?id=17
http://dx.doi.org/10.1186/1752-0509-4-92
http://dx.doi.org/10.1186/1741-7007-12-29
http://dx.doi.org/10.1038/nbt.1487
http://dx.doi.org/10.1038/msb.2011.35
http://dx.doi.org/10.1007/s00438-014-0843-3
http://dx.doi.org/10.1038/nbt1330
http://dx.doi.org/10.1038/nbt1330
http://dx.doi.org/10.1126/scisignal.aab0880
http://dx.doi.org/10.1126/science.111.2872.23
http://dx.doi.org/10.1126/science.111.2872.23
http://dx.doi.org/10.1073/pnas.1414026112
http://dx.doi.org/10.1073/pnas.1414026112
http://dx.doi.org/10.1038/ncomms8186
http://dx.doi.org/10.1038/ncomms6415
http://dx.doi.org/10.1093/bioinformatics/btp619
http://dx.doi.org/10.1016/j.copbio.2013.03.012
http://dx.doi.org/10.1016/j.copbio.2013.03.012
http://dx.doi.org/10.1126/scisignal.2000517
http://dx.doi.org/10.1093/bioinformatics/btt638
http://dx.doi.org/10.1093/bioinformatics/btm607
http://dx.doi.org/10.1111/bcp.12582
http://dx.doi.org/10.1111/bcp.12582
http://dx.doi.org/10.1073/pnas.0237333100
http://dx.doi.org/10.1073/pnas.0237333100
http://dx.doi.org/10.1038/srep20772
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1073/pnas.1215508110
http://dx.doi.org/10.1137/0717021
http://dx.doi.org/10.1093/bioinformatics/bts257
http://dx.doi.org/10.1214/10-BA506
http://dx.doi.org/10.1214/10-BA506
http://dx.doi.org/10.1214/08-AOS625
http://dx.doi.org/10.1214/10-BA607
http://dx.doi.org/10.1214/10-BA607
http://dx.doi.org/10.1111/1467-9884.00117
http://dx.doi.org/10.1073/pnas.1834247100


rsif.royalsocietypublishing.org
J.R.Soc.

10
35. Ouyang X, Huang X, Jin X, Chen Z, Yang P, Ge H,
Deng XW. 2014 Coordinated photomorphogenic
UV-B signaling network captured by mathematical
modeling. Proc. Natl Acad. Sci. USA 111, 11
539 – 11 544. (doi:10.1073/pnas.1412050111)

36. Milo R. 2002 Network motifs: simple building
blocks of complex networks. Sciences 298,
824 – 827. (doi:0.1126/science.298.5594.824)

37. Becker V, Schilling M, Bachmann J, Baumann U,
Raue A, Maiwald T, Timmer J, Klingmüller U. 2010
Covering a broad dynamic range: information
processing at the erythropoietin receptor.
Sciences 328, 1404 – 1408. (doi:10.1126/science.
1184913)
38. Fuguitt RE, Hawkins JE. 1947 Rate of the thermal
isomerization of a-Pinene in the liquid phase.
J. Am. Chem. Soc. 69, 319 – 322. (doi:10.1021/
ja01194a047)

39. Meyer P et al. 2014 Network topology and
parameter estimation: from experimental design
methods to gene regulatory network kinetics using
a community based approach. BMC Syst. Biol. 8, 13.
(doi:10.1186/1752-0509-8-13)

40. Atkinson KE. 1989 An introduction to numerical
analysis, 2nd edn. New York, NY: Wiley.

41. Fawcett T. 2006 An introduction to ROC analysis.
Pattern Recognit. Lett. 27, 861 – 874. (doi:10.1016/j.
patrec.2005.10.010)
42. Murphy AH. 1973 A new vector partition of the
probability score. J. Appl. Meteorol. 12, 595 – 600.
(doi:10.1175/1520-0450(1973)012,0595:
ANVPOT.2.0.CO;2)

43. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling
M, Klingmüller U, Timmer J. 2009 Structural and
practical identifiability analysis of partially observed
dynamical models by exploiting the profile
likelihood. Bioinformatics 25, 1923 – 1929. (doi:10.
1093/bioinformatics/btp358)

44. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan
GP. 2005 Causal protein-signaling networks derived
from multiparameter single-cell data. Sciences 308,
523 – 529. (doi:10.1126/science.1105809)
 In
terf
ace

14:20170332

http://dx.doi.org/10.1073/pnas.1412050111
http://dx.doi.org/0.1126/science.298.5594.824
http://dx.doi.org/10.1126/science.1184913
http://dx.doi.org/10.1126/science.1184913
http://dx.doi.org/10.1021/ja01194a047
http://dx.doi.org/10.1021/ja01194a047
http://dx.doi.org/10.1186/1752-0509-8-13
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1973)012%3C0595:ANVPOT%3E2.0.CO;2
http://dx.doi.org/10.1093/bioinformatics/btp358
http://dx.doi.org/10.1093/bioinformatics/btp358
http://dx.doi.org/10.1126/science.1105809

	A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models
	Introduction
	Material and methods
	Motivation
	Approach
	Marginal likelihood of the data
	Smoothness and sparsity via a Bayesian elastic-net prior
	Estimating hidden influences from data
	Estimating endogenous hidden influences: missing and wrong reactions

	Results
	Tested mathematical models
	Simulation study: testing the performance of Bayesian DEN
	Examples with real data
	JAK-STAT signalling
	EpoR model
	[alpha]P isomerization

	Further examples with simulated data
	G protein cycle in yeast
	UV-B Signalling
	DREAM6 Challenge Network


	Conclusion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	References


