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A B S T R A C T   

Radiation-induced lung injury (RILI) is a common and fatal complication of chest radiotherapy. 
The underlying mechanisms include radiation-induced oxidative stress caused by damage to the 
deoxyribonucleic acid (DNA) and production of reactive oxygen species (ROS), resulting in 
apoptosis of lung and endothelial cells and recruitment of inflammatory cells and myofibroblasts 
expressing NADPH oxidase to the site of injury, which in turn contribute to oxidative stress and 
cytokine production. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is a vital transcription 
factor that regulates oxidative stress and inhibits inflammation. Studies have shown that Nrf-2 
protects against radiation-induced lung inflammation and fibrosis. This review discusses the 
protective role of Nrf-2 in RILI and its possible mechanisms.   

1. Introduction 

Radiotherapy is one of the main treatments for malignant tumors, especially lung cancer. It can be potentially helpful in different 
types and stages of lung cancer, both in controlling cancer progression and palliative care [1,2]. With advances in treatment techniques 
and improvements in radiotherapy (RT), the adverse effects of RT have gradually decreased, and treatment outcomes have improved. 
However, radiation-induced lung injury (RILI) is inevitable in sensitive, normal lung tissue [3]. RILI can be divided into early radiation 
pneumonitis (RP) and late radiation pulmonary fibrosis (RPF). Early RILI is usually short-term and occurs approximately six months 
after the end of radiation. The pathological manifests as alveolar fluid exudation, alveolar wall congestion, edema, inflammatory cell 
exudation, megakaryocytic interstitial infiltration, and alveolar membrane damage, and the imaging manifests as ground-glass 
opacity. Advanced RPF usually appears 6–12 months after radiation exposure and is characterized by an irreversible alveolar wall 
or interstitial fibrosis [4]. Current treatment techniques are minimal because of the widespread involvement of the lungs in pulmonary 
fibrosis (PF), and the treatment mainly consists of glucocorticoids in combination with antibiotics, cough and sputum suppression, and 
other symptomatic treatments; there is no precise, effective treatment, which seriously affects the survival and quality of life of patients 
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[3,5]. Therefore, reducing and preventing RILI represents a critical and unmet medical need that will provide significant clinical 
benefits to numerous patients. 

Nrf-2, a critical regulator of antioxidant, drug, carbohydrate, lipid, heme, and iron metabolism, is a transcription factor susceptible 
to oxidative stress. It binds to the nucleus’s antioxidant response element (ARE) and promotes the transcription of various antioxidant 
genes. The antioxidant pathway of Nrf-2 is essential in multiple lung diseases, including acute lung injury/acute respiratory distress 
syndrome, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, asthma, and allergy. It is widely considered a new 
therapeutic target for inflammatory lung diseases [6]. It has been shown that Nrf-2 is involved in radiation-induced oxidative stress 
and has protective effects against radiation-induced acute lung injury and inflammation [7–9]. The regulation of Nrf-2 could serve as a 
novel and more efficacious approach to treating radiation-induced lung damage (RILI). This article discusses the possible mechanism 
of RILI and the protective role of Nrf-2 in lung damage. It also explores the potential protective mechanism of activating Nrf-2 against 
RILI and provides an update on the progress of antioxidant therapy research in this field. 

2. The mechanisms of radiation-induced lung injury 

It is generally accepted that there are two main mechanisms of ionizing radiation damage: direct damage to the deoxyribonucleic 
acid (DNA) and indirect damage through the production of reactive oxygen species (ROS) [10,11]and release of corresponding cy
tokines and molecules through intracellular signal transduction to promote inflammation and the immune response [12]. 

In a very short period after radiation exposure, water molecules ionize to produce ROS, such as nitrogen species (NGS), hydroxyl 
radicals, and superoxide, which interact with proteins, nuclei, organelles, and the extracellular matrix, leading to DNA damage 
[13–15]. Damage to the alveolar epithelial cells and vascular endothelial cells following radiation exposure can lead to impaired 
barrier function. Most of these damaged cells can repair themselves, and the rest may undergo apoptosis or mutations [16]. These 
damaged cells are sensed by inflammatory cells, causing the proliferation of leukocytes and lymphocytes along with the release of 
inflammatory cytokines, such as tumor necrosis factor (TNF-α), interleukin family members, and transforming growth factor (TGF-β1) 
[17]. The persistence of the inflammatory state eventually leads to early reversible toxicity (RP), which can progress to irreversible late 
toxicity (RPF). 

After apoptosis, cells release damage-associated molecular patterns (DAMPs), activating the innate immune system (neutrophils, 
macrophages, white blood cells, and lymphocytes); immune effector cells are recruited and infiltrate the damaged lung tissues. The 
inflammatory factors produced by these cells lead to the activation and proliferation of fibroblasts [18,19]. Simultaneously, the uti
lization of oxygen by the immune cells leads to tissue hypoxia. Hypoxia increases ROS production, regulates TGF-β, and promotes 
collagen formation, thereby reducing alveolar elasticity [20]. In addition, ROS can cause cell loss, alveolar wall edema, increased 
vascular permeability, and protein exudation, further reducing lung elasticity, destroying vascular integrity, and increasing the 

Fig. 1. Signaling pathways in radiation-induced lung injury. Radiation induces lung injury in these ways, showed in the figure. Under ionizing 
radiation, ROS are rapidly produced, and ROS can activate TGF-β. Activated TGF-β can bind to TGF-βRII, phosphorylating Smad2 and Smad3, which 
can form a complex with Smad4. Additionally, Radiation-induced ROS stimulates downstream signaling via the ERK/GSK-3β/snail axis. Increased 
GSK-3β then activates TGF-β and leads to an increase in β-catenin levels, which maintains stemness of type II AEC and promotes its differentiation 
into fibroblasts. IGFBP7 is enhanced by TGF-β and is involved in the EMT of AECs through the ERK signaling pathway. The complex can regulate 
gene expression to promote fibrosis. Activated HMGB1 leads to NF-kB into the nucleus and interacts with DNA, promoting TNF-α, IL-6, and IL-1 
expression, which can cause lung inflammation. 
Abbreviations: ROS: Reactive oxygen species; HMGB1: High-mobility group box 1; TNF: Tumor necrosis factor; IL: Interleukin; TGF: Transforming 
growth factor; AEC: Alveolar epithelial cells; VEGF: Vascular endothelial growth factor; ERK: Extracellular regulated protein kinases; IGFBP7: 
Insulin-like growth factor binding protein 7; GSK-3β: Glycogen synthase kinase-3 beta; EMT: Epithelial-mesenchymal transformation; ET-1: 
Endothelin-1. 
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apoptosis of alveolar type I epithelial cells, thereby promoting alveolar type II epithelial cell proliferation and aggravating lung 
inflammation [10,21]. Under long-term cytokine action, fibroblast recruitment and myofibroblast proliferation lead to the remodeling 
of the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT), resulting in fibrogenesis and scar formation, even
tually replacing the normal lung tissue with the development of advanced PF [22,23]. The specific signaling pathways are shown in 
Fig. 1. 

With the emergence of stereotactic radiotherapy (SBRT) or stereotactic ablative radiotherapy (SABR), the indications for thoracic 
RT are expanding; however, RILI remains the most common complication after RT in patients with thoracic tumors. RILI is classified 
into early- and delayed-radiation PF. Although RP occurs in the early stages of RT and may be cured, there is a limited treatment 
currently for widespread RP, and late PF is considered irreversible. There is still no effective treatment for the prevention and 
treatment of RILI and radiation-induced PF [24,25]. However, although researchers have a new understanding of the mechanism, 
clinical evaluation, and treatment of RILI, more is needed to solve the need for effective clinical treatment of RILI. Hence, while 
radiotherapy may effectively treat cancer patients, the occurrence of severe RILI can significantly impact their quality of life and 
perhaps lead to fatal outcomes. Suppose somebody can explore more targeted therapy can be explored based on the known mechanism 
of RILI. In that case, minimizing radiation damage to normal lung tissue may enable a broader application of chest radiotherapy. 

3. Introduction to Nrf-2 and its role in disease models 

Nrf-2 is an intracellular transcription factor that is degraded in the cytoplasm under normal conditions by interacting with Kelch 
ECH-binding protein 1 (Keap1) inhibitors and then acts as an activator of ubiquitination factor [26]. The Nrf-2/Keap1 axis plays a 
significant role in the cellular regulation of redox homeostasis, mitochondrial physiology, autophagy, protein homeostasis, the im
mune system, and metabolism [27]. 

Studies in mouse models have shown that Nrf-2-mediated gene expression is an essential regulator of cellular response to radiation. 
Recent research indicates that cellular Nrf-2 absence enhances the sensitivity to radiation, resulting in reduced radioresistance. This 
effect is achieved by activating Nrf-2 overexpression, which helps mitigate radiation-induced damage. In conclusion, several pre
clinical experiments have verified that increased Nrf-2 expression can minimize radiation damage to normal tissues. However, the 
current study has not yet answered whether Nrf-2 expression affects the radiation sensitivity of normal human tissues, as it does in 
mice. Nevertheless, we expect additional relevant clinical trials to be carried out in the next few years, which may provide new 
treatment options for RILI. We briefly summarized some preclinical studies on the relationship between Nrf-2 expression and tissue 
radiation injury response, as shown in Table 1. 

Numerous studies have demonstrated that Nrf-2 protects against oxidative lung disorders such as COPD, asthma, IPF, ARDS, 
respiratory syncytial virus disease, etc. Based on the above studies, Nrf-2 also has a specific protective effect against RILI, which 
undoubtedly provides new prevention and treatment ideas for RILI. 

COPD is a progressive respiratory disease characterized by permanent alveolar wall destruction with loss of lung elasticity and 
ultimately irreversible airflow limitation, which is associated with a high mortality rate [38]. Smoking and oxidative stress are 
considered to be significant risk factors for COPD [39,40]. Impaired Nrf-2 has been shown to contribute potentially to the development 
of COPD [41]; this could be due to the Nrf-2 pathway’s role in increasing antioxidant defense and decreasing lung inflammation and 

Table 1 
The role of Nrf-2 in the response to normal tissue radiation injury.   

Intervention Effect Mechanism Outcome Reference 

Hematopoietic 
system 

Theaflavin Nrf-2 
activation 

Alleviated radiation-induced DNA 
damage 

Ameliorate radiation-induced 
hematopoietic system injury 

[28] 

Vam3 Nrf-2 
activation 

Decreased the cellular ROS level Ameliorate radiation-induced 
hematopoietic system injury 

[29] 

TMC Nrf-2 
activation 

Notch pathway activation Ameliorate radiation-induced 
hematopoietic system injury 

[30] 

Tongue CDDO-Im Nrf-2 
activation 

Alleviated radiation-induced DNA 
damage 

Ameliorate radiation-induced oral 
mucositis 

[31] 

Gastrointestinal 
tract 

3,3′- 
Diindolylmethane 

Nrf-2 
activation 

Decreased the cellular ROS level Ameliorate radiation-induced 
intestinal injury 

[32] 

CDDO Nrf-2 
activation 

Alleviated radiation-induced DNA 
damage 

Ameliorate radiation-induced 
intestinal injury 

[33] 

Quercetin Nrf-2 
activation 

Decreased the cellular ROS level Ameliorate radiation-induced 
intestinal injury 

[34] 

Skin Curcumin Nrf-2 
activation 

Down-regulation of both inflammatory 
and fibrogenic cytokines 

Ameliorate radiation-induced 
cutaneous cytotoxicity 

[35] 

Lung Thalidomide Nrf-2 
activation 

Inhibition of TGF-β1/Smad3 pathway Ameliorate radiation-induced lung 
fibrosis 

[36] 

EASM Nrf-2 
activation 

Inhibition of TGF-β1/Smad3 pathway Ameliorate radiation-induced lung 
fibrosis 

[37] 

Abbreviations:Nrf-2:nuclear factor erythroid 2-related factor 2; ROS:Reactive oxygen species; TBI:total body irradiation; TMC:2-trifluoromethyl-2′- 
methoxychalone; TGF: Transforming growth factor; HSC:hematopoietic stem cell; CDDO:1-(2-cyano-3,12-dioxooleana-1,9-dien-28-oyl); EASM:Salvia 
miltiorrhiza. 
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alveolar apoptosis. These mechanisms help protect alveolar cells from the harmful effects of tobacco smoke [42–44]. At the same time, 
recent studies have also shown that activation of the Nrf-2 pathway can balance redox reactions in COPD and restore macrophage 
function, thus playing a protective role [45]. 

Asthma is a genetic disease characterized by chronic inflammation and extensive and variable reversible airway obstruction [46]. It 
has been reported that in mouse models, disruption of the Nrf-2 pathway results in enhanced severity of the asthmatic response, 
possibly due to reduced basal Nrf-2 expression, leading to reduced antioxidant activity in the lungs, as well as significant attenuation of 
the transcription of multiple antioxidant genes [47,48]. Several recent studies have demonstrated the protective effects of sulfo
raphane against asthma. Sulforaphane-activated Nrf-2 signaling plays improves the bronchial protective response to methacholine 
(MCh) [48,49]. 

IPF is a chronic progressive lung disease associated with fibroplasia and excessive ECM deposition, which can eventually lead to 
irreversible interstitial lung fibrosis and respiratory failure. Early studies using mouse models revealed that patients with Nrf-2 
deficiency are more susceptible to IPF-like PF and bleomycin-induced effects, resulting in more pronounced lung inflammation and 
fibrosis [50]. Nrf-2 signaling was also found to enhance antioxidant activity and inhibit bleomycin-induced inflammation in experi
mental PF [51,52]. 

ARDS is a severe clinical condition characterized by dyspnea, refractory hypoxemia, and noncardiogenic pulmonary edema. Nrf-2- 
deficient mice are more likely to develop ARDS with enhanced lung permeability, epithelial damage, and inflammation in response to 
stimulation than wild-type mice [53]. Recently, several studies have reported the protective effects of Nrf-2 activators against ARDS 
[54–56]. 

The respiratory syncytial virus (RSV) is currently considered the leading cause of acute respiratory infections in infants and 
children. RSV infection can significantly reduce the Nrf-2 levels and antioxidant enzymes in the airways and lungs of mice and 
nasopharyngeal secretions in children, which may be due to RSV-induced Nrf-2 degradation [57,58]. Previous experiments have 
demonstrated that Nrf-2-deficient mice develop more severe bronchopulmonary inflammation, epithelial damage, and reduced viral 
clearance in the presence of RSV infection [59]. 

4. The potential role and mechanisms of Nrf-2 in radiation induced lung injury 

The Nrf-2 signaling pathway is key in regulating cell and tissue homeostasis and protecting cells from oxidative and pro-electrical 
stresses [60,61]. Electrophilic reagents or ROS can lead to conformational changes in Keap1, resulting in the dissociation of Nrf-2 from 
Keap1 and its subsequent translocation to the nucleus to activate the antioxidant genes [62,63]. Nrf-2 deficiency impairs ΔNp63 
stem/progenitor cell mobilization after irradiation and promotes EMT of alveolar type 2 cells to myofibroblasts [36,64,65]. In 
addition, recent studies have shown that Nrf-2 plays a crucial role in oxidative homeostasis and inhibition of ferroptosis [66–68], 
strongly suggesting that Nrf-2 is closely associated with the onset and development of RILI. 

4.1. Nrf-2 is related to radiation-induced inflammatory response 

Several studies have shown that the Keap1-Nrf-2 pathway plays an essential role in the cytoprotective response to oxidative and 
pro-electrical stress, and the critical signaling factor in this pathway is the transcription factor Nrf-2 [69–71]. As previously described, 
Nrf-2 remains inactive by forming a complex with Keap1 in the mammalian cytoplasm. Keap1 is a cysteine-rich protein. When exposed 
to ionizing radiation, the reactive cysteine residues in Keap1 are covalently modified, damaging the structural integrity of the 
Keap1-Cul3 E3 ligase complex [72,73]. Subsequently, Nrf-2 dissociates from Keap1, translocates to the nucleus, heterodimerizes with 
the small Maf protein, and activates the target gene through the antioxidant/electrophilic response element (ARE/EpRE). It partici
pates in glutathione synthesis, eliminates ROS, and inhibits oxidative stress to promote cell protection [74–76]. Thus, Nrf-2 can 
mitigate radiation-induced acute lung injury. 

The lethal damage caused by RT is primarily the result of direct DNA damage by ionizing radiation [11]. It has also been suggested 
that Nrf-2 can repair radiation-induced DNA damage through the basal excision repair pathway and repair of broken DNA duplexes 
[77,78]. The basal excision repair pathway has been described in a study by Singh et al. Nrf-2 binds to the OGG1 promoter, and Nrf-2 
deficiency inhibits OGG1 expression [79]. It has been demonstrated that the human OGG1 promoter has an ARE of 29 bp from the 
transcription start site. That alternate splicing of OGG1 leads to the expression of mitochondrial and nuclear proteins [80,81]. Nrf-2 
repairs broken DNA duplexes primarily by regulating 53BP1 [33]; this is in line with previous studies showing that 53BP1 is involved 
in the repair of DNA double-strand breaks and that 53BP1 deficiency increases radiosensitivity [82–85]. 

Furthermore, it has been shown that Nrf-2 deficiency decreases the levels of radiation-induced serum anti-inflammatory cytokines, 
IL-10, and antioxidant proteins, exacerbating the radiation-induced imbalance of serum inflammatory cytokines, thus, the inflam
matory response [86,87]. All the above findings suggest that Nrf-2 has a considerable protective effect against RILI and inflammation. 

4.2. Nrf-2 is involved in the regulation of pulmonary fibrosis 

In the late stage of RILI, PF is a consequence of delayed radiation effects and is often considered an irreversible hazard [4,88]. 
Recent clinical studies have shown that Nrf-2 is associated with radiation-induced PF, and Nrf-2 activators have demonstrated 
anti-fibrotic effects [89]; this is mainly because Nrf-2 deficiency inhibits the mobilization of ΔNp63 stem/progenitor cells while 
amplifying the tendency of alveolar type 2 cells to convert into myofibroblasts under radiation induction [64]. In the injured lung, 
Δp63+/Krt5+ stem cells are significantly mobilized and proliferate. Diphtheria toxin targets the stem cells to damage the regeneration 
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of injured lungs and pulmonary oxygenation while promoting fibrosis. Studies have shown that targeting Nrf-2 can promote epithelial 
cell repair and activate the BRCA1/Nrf-2/miR-140 signaling pathway to reduce the self-renewal of lung fibroblasts while increasing 
their migration and contraction, thereby reducing the risk of pulmonary fibrosis [9,90,91]. Xi et al. claimed that under hypoxic 
conditions in the lung, Notch signaling and Krt5POS basal-like cell expansion are driven by hypoxia-inducible factor (HIF1α) to 
re-encode Δp63+/Krt5+ cells to form basal-like metaplasia [92]. Nrf-2 activation improves the antioxidant capacity of fibroblasts and 
myofibroblast dedifferentiation in IPF [93]. 

The anti-fibrotic function of Nrf-2 is also reflected in the inhibition of EMT and TGF-β1/Smad signaling [94–96]. Nrf-2 deficiency 
promotes TGF-β/Smad signaling, a key factor in promoting EMT. At the molecular level, it has been shown that Nrf-2 can form a 
nuclear complex with nuclear pSmad3 at the CAGA site of the proximal promoter of the TGF-β target gene, thereby inhibiting gene 
expression [97,98]. TGF-β/Smad signaling induces ATF3. The ATF2/Nrf-2 complex binds to the ARE site in the Nrf-2 target gene 
promoter and inhibits the recruitment of CBP to the ARE and expression of Nrf-37 target genes [99,100]. It is generally believed that 
EMT is another major source of myofibroblasts and that Nrf-2 alleviates PF by blocking EMT progression [101]. Moreover, Nrf-2 
attenuates TGF-β1-induced EMT by down-regulating high mobility group box 1 (HMGB1) [102]. Nrf-1, Nrf-148, and Nrf-155 also 
help to alleviate EMT progression [96,103,104]. The current Nrf-2-related signaling pathways and lung inflammation and 
fibrosis-related signaling pathways can be seen in Fig. 2. 

Mont et al. demonstrated that iso-L-prostaglandin (IsoLG) adducts of proteins are formed in radiation-induced and oxidant- 
mediated lung injury and that oxidative stress caused by the loss of Nrf-2 or NADPH oxidase activity can promote IsoLG adduct 
formation [105]. Chronic oxidative stress leads to the accumulation of IsoLG adducts, which can lead to protein toxicity or apoptotic 
events [64]. While this theory presents an alternative hypothesis for regulating pulmonary fibrosis by Nrf-2, it is essential to note that 
both studies are small-sample preclinical studies, which inherently possess certain limitations regarding objectivity. This argument 
would be more convincing if more large-scale clinical studies based on this theory could be carried out. 

4.3. Nrf-2 regulates radiation induced cell ferroptosis 

Ferroptosis is an oxidative stress-dependent cell death process characterized by iron accumulation and lipid peroxidation [106]. 
Research has shown that ferroptosis is important in radiation-induced cell death [107]. ROS overload is the basis of ferroptosis, which 
kills cells by amplifying oxidative stress or inhibiting the antioxidant system [108]. Studies have shown that after treatment of acute 
RILI with ferroptosis inhibitors, the level of ROS in the lungs and serum inflammatory cytokines (TNF-α, IL-6, IL-10, and TGF-β1) 
decreased significantly, leading to reduced radiation damage [109,110]. Ferroptosis can be induced by inhibiting GSH synthesis and 
disrupting the redox balance, thereby increasing the radiosensitivity of tumor cells [111]. A report by Ling et al. suggested that fer
roptosis plays a vital role in regulating EMT in PF [112]. A recent report also demonstrated that miR-let-7, an exosome derived from 
menstrual blood stem cells, can inhibit ferroptosis and improve pulmonary fibrosis through the Sp3/HDAC2/Nrf2 signaling pathway 
[113]. 

Fig. 2. Nrf-2 and signaling pathways. In classical TLRs/NF-κB signal transduction, TLR activates the TAK1-TAB1 kinase complex, leading to the 
synergistic release of NF-κB dimers and IκB phosphorylation by the IKK complex. However, the activation of Nrf-2 can inhibit the phosphorylation of 
IκB in the typical NF-κB pathway, thereby reducing the nuclear accumulation of NF-κB dimers and inhibiting the expression of downstream immune 
response genes, such as IL-1, IL-6, TNF-α, iNOS, and COX-2. Activation of the TGF-β1/Smad pathway leads to a disturbance in the steady-state 
microenvironment, essential for promoting FMD and EMT processes. Activation of Nrf-2 specifically blocks these two processes and protects 
against pulmonary fibrosis. 
Abbreviations: TLR: Toll-like receptor; IκB: inhibitory kappa B; NQO1: NADH quinone oxidoreductase 1; HO-1: Heme oxygenase-1; IL: Interleukin; 
TNF: Tumor necrosis factor; iNOS: inducible nitric oxide synthase; COX-2: Cyclooxygenase-2; Ub: Ubiquitination; TGF: Transforming growth factor; 
EMT: Epithelial-mesenchymal transformation; FMD: fibroblast-myofibroblast differentiation. 
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According to recent research, Nrf-2 is also closely involved in ferroptosis [114,115]. Firstly, Nrf-2 is essential for iron metabolism 
[116]. Nrf-2 positively regulates the transcription of heme oxygenase 1 (HMOX1), increases the storage of iron, and reduces intra
cellular free iron by rapidly upregulating the transcription of ferritin light chain (FLH) and ferritin heavy chain (FTH) [117]. Nrf-2 can 
control FTL/FTH, and the iron transporter (SLC40A1) is responsible for iron transport out of cells [118–120]. Secondly, Nrf-2 can 
participate in the catabolism/detoxification of reactive intermediates, such as AKR1B1, inhibiting the de novo synthesis of glutathione 
[121] and ALDH1A1, enhancing DNA repair [122]. In addition, Nrf-2 directly promotes the expression of GPX4, regulates the 
GCH1/BH4 pathway to mediate the cell redox reaction, and inhibits ferroptosis [123,124]. Studies have revealed that Nrf-2 can also 
mediate glutathione synthesis by promoting the expression of SLC7A11, glutamate cysteine ligase (GCLC/GLCM), and glutathione 
synthetase (GSS), which play crucial roles in preventing ferroptosis [125–127]. Therefore, Nrf-2 can activate downstream genes to 
regulate ferroptosis, and its target genes can be divided into three categories, as shown in Fig. 3. 

In addition, HIF-1α acts as a regulator of ferroptosis. The up-regulation of HIF-1α can buffer radiation-induced ROS and reduce 
ferroptosis, thereby enhancing the radioresistance of cells [128]. Nrf-2 is also involved in HIF-1α-mediated ferroptosis inhibition. Nrf-2 
silencing blocks the accumulation of HIF-1α in hypoxic cancer cells, weakens its regulatory effect on cell metabolism, and leads to an 
imbalance of ROS homeostasis [129]. These results suggest that Nrf-2 can inhibit ferroptosis by regulating proteins associated with 
iron metabolism and ROS-scavenging pathways, thereby reducing radiation-induced oxidative stress and enhancing radiosensitivity. 

5. Therapeutic potential of targeting of Nrf-2 in RILI 

In conclusion, Nrf-2 is an essential predictor of RILI and may play an important role in preventing RILI. Nrf-2 and its target genes 
play a vital role in the development of RILI, and studies have suggested that inhibition of Nrf-2 activity may be a viable strategy for 
improving the radiation response and reducing radiation resistance in cancer [130]. Therefore, antioxidant therapy that activates 
Nrf-2 may be an effective intervention for preventing and treating RILI. Table 2 summarizes the common activators and inhibitors of 
Nrf-2 and their mechanisms of action. 

Antioxidants known to help prevent and treat RILI include thiol compounds, plant antioxidants, antioxidant enzymes, etc [146]. 
The commonly used sulfhydryl compounds mainly include GSH and its precursor N-acetylcysteine (NAC). The primary mechanism is 
to use the active sulfhydryl group of its side chain to combine with free radicals and neutralize free radicals to protect the sulfhydryl 
group on its protein from oxidation. As mentioned above, Nrf-2 can regulate the expression of the downstream genes to mediate the 
synthesis of GSH from glutathione to regulate cellular ferroptosis; GSH can also be reduced to H2O by binding to H2O2 by the enzyme 
glutathione peroxidase to minimize oxidation. NAC, a precursor of GSH, can also act as a direct ROS scavenger and regulate the redox 
state of the cells [147]. Another study demonstrated that NAC may affect mucin expression and act as a mucolytic agent during 
oxidative stress and inflammation [148]. The application of NAC reportedly reduced sputum production in patients with RP, thereby 
reducing the use of expectorants [149]. 

At present, plant antioxidants have gradually gained attention in the prevention and treatment of RILI due to their advantages of 
comprehensive source, low side effects, and high patient acceptance, and have potential effects on radiosensitization of cancer cells 

Fig. 3. Nrf-2 is involved in ferroptosis. Under stress-free conditions, Keap1 homodimers promote Nrf-2 ubiquitination. Under oxidative or elec
trophilic stress, the reactive cysteine residues in Keap1 are covalently modified, allowing Nrf-2 to dissociate from Keap1 and translocate to the 
nucleus, where it regulates ferroptosis through activation of the target genes by the antioxidant ARE. 
Abbreviations: Nrf-2: nuclear factor erythroid 2-related factor 2; Keap1: Kelch ECH binding protein 1; sMAF: small Maf; ARE: antioxidant response 
element; Ub: Ubiquitination. 
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and radiation protection of non-cancer cells [150]. Polyphenols in the diet, such as curcumin, resveratrol, and myrtol, can regulate the 
activation of Nrf-2 and biosynthesis of glutathione to remove ROS, thereby regulating inflammatory factors in macrophages and lung 
epithelial cells to play a therapeutic role [7,151,152]. Hesperidin and naringenin, antioxidants found in citrus peels and seeds, have 
been shown to significantly reduce the inflammatory response of the lung tissue after RT in rats and are potential therapeutic drugs for 
RILI [153,154]. 

The antioxidant enzyme system maintains the redox balance and protects against ROS, including heme oxygenase (HO-1), catalase 
(CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Increased levels of ROS activate Nrf-2 signaling, induce the 
expression of antioxidant enzymes, and protect cells from oxidative stress. At present, there are many studies on SOD in the field of RILI 
prevention and treatment, especially on SOD small-molecule analogs (AEOL 10150). Several studies have revealed that SOD can 
reduce lung injury caused by radiation and significantly improve survival rates of lung cancer patients [155,156]. Antonic et al. found 
that subcutaneous injection of 15 mg/kg bovine SOD 15 h after radiotherapy significantly improved the increased respiratory rate, 
pathological changes in the lung tissue, oxidative stress, macrophage activation, and TGF-β expression in rats [157]. Although this 
study verified that superoxide dismutase (SOD) can reduce reactive oxygen species (ROS) levels, the production of ROS may vary with 
the volume, dose, segmentation, course of treatment, and type of concurrent radiotherapy. If this study had included a comparison of 
the results at different administration times after radiotherapy, it would be of greater relevance. 

Based on these results, we can infer that Nrf-2 promotes the expression of SOD in RILI, which is clinically significant since it can 
reduce the damage and inflammatory response of the normal lung tissue to ROS. These results indicate that Nrf-2 enhances the 
expression of SOD in RILI; this has clinical significance as it could reduce the adverse effects and inflammatory reactions caused by ROS 
in healthy lung tissue. Although Nrf-2 has significant therapeutic potential, somebody should adjust the timing and course of treatment 
with antioxidants to achieve absolute radiation protection. Therefore, the issues of individualization and standardization need to be 
further explored. 

6. Perspective and conclusion 

Injury to normal lung tissue is almost inevitable when cancer patients receive chest radiotherapy. The clinical needs for effective 
prevention or treatment of RILI have not been met. Therefore, it is necessary to consider previously unrecognized mechanisms of RILI 
to determine new effective therapies. The expression of Nrf-2 affects the recovery of radiation injury in a tissue-dependent manner. It 
has a specific protective effect on the skin, hematopoietic system, oral cavity, gastrointestinal tract, and lung. Especially in the lungs, 
Nrf-2 attenuates inflammatory response, oxidative stress, fibrosis, and cell death, ultimately having a protective effect against the 
development of lung diseases. It is considered an important target for clinical prevention of RILI. 

At present, increasing evidence shows that targeting Nrf-2 may be very effective in the treatment or prevention of RILI. However, 
further standardized and large-scale clinical research evidence is needed to clarify the role of Nrf-2 in RILI after radiotherapy. In 
addition, although it has been determined that Nrf-2 is involved in the up-regulation pathway of inhibiting ROS production and down- 
regulating the expression of numerous genes, there is still a lack of understanding of the many downstream pathways mediated by Nrf- 
2; this hinders the transformation of preclinical evidence into clinical practice, providing suggestions for our further research ideas. 
Suppose somebody can control the expression or activity of Nrf-2 to increase radiotherapy’s damage to tumor tissues and reduce the 
radiation damage to normal lung tissues. In that case, it will be of great clinical significance for treating and prognosis patients with 
thoracic tumors. 
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Table 2 
Activators and inhibitors of Nrf-2.   

Compound Mechanism of action Reference 

Nrf-2 activators Resveratrol Modification of Keap1-Cys-151 [94,131] 
Sulforaphane Modification of Keap1-Cys-151 [98] 
Oltipraz Modification of Keap1-Cys-151 [132] 
Dimethyl fumarate Modification of Keap1-Cys-151 [133] 
CDDO; CDDO-Im Modification of Keap1-Cys-151 [134,135] 
Curcumin Modification of Keap1-Cys-151 [136] 
Diallyl trisulfide Modification of Keap1-Cys-288 [137] 
Apigenin Epigenetic modifications of Nrf-2 [138] 
Epigallocatechin-3-gallate Oxidizing the cysteine thiols of Keap1 [139] 

Nrf-2 inhibitors Retinoic Acid Prevention of nuclear translocation of Nrf-2 [140,141] 
Trigonelline Prevention of nuclear translocation of Nrf-2 [142] 
Chrysin Prevention of nuclear translocation of Nrf-2 [143] 
Luteolin Nrf-2 mRNA degradation, Reduction of Nrf2 binding to AREs [144] 
Brusatol Stimulation of Nrf-2 poly-ubiquitination [145] 

Abbreviations: Nrf-2: nuclear factor erythroid 2-related factor 2; Keap1: Kelch ECH binding protein 1; ARE: antioxidant response element; Cys: 
cysteine. 
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