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Abstract

Habitat restoration can play an important role in recovering functioning ecosystems and improving biodiversity. Restoration
may be particularly important in improving habitat prior to species reintroductions. We reintroduced seven brown
treecreeper (Climacteris picumnus) social groups into two nature reserves in the Australian Capital Territory in south-eastern
Australia. This study provided a unique opportunity to understand the interactions between restoration ecology,
behavioural ecology and habitat ecology. We examined how experimental restoration treatments (addition of coarse woody
debris, variations in ground vegetation cover and nest box installation) influenced the behaviour and microhabitat use of
radio-tracked individuals to evaluate the success of restoration treatments. The addition of coarse woody debris benefited
the brown treecreeper through increasing the probability of foraging on a log or on the ground. This demonstrated the
value of using behaviour as a bio-indicator for restoration success. Based on previous research, we predicted that variations
in levels of ground vegetation cover would influence behaviour and substrate use, particularly that brown treecreepers
would choose sites with sparse ground cover because this allows better access to food and better vigilance for predators.
However, there was little effect of this treatment, which was likely influenced by the limited overall use of the ground layer.
There was also little effect of nest boxes on behaviour or substrate use. These results somewhat confound our
understanding of the species based on research from extant populations. Our results also have a significant impact
regarding using existing knowledge on a species to inform how it will respond to reintroduction and habitat restoration.
This study also places great emphasis on the value of applying an experimental framework to ecological restoration,
particularly when reintroductions produce unexpected outcomes.
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Introduction

Habitat destruction and degradation are major causes of

biodiversity loss worldwide [1,2]. The ability of remaining habitat

to support functioning populations of native species may be

diminished because of the condition of the habitat. Therefore,

restoration can play an important role in regaining functioning

ecosystems and biodiversity [3,4].

Species reintroductions will become an increasingly important

part of ecosystem restoration, particularly where the poor dispersal

capabilities of a species prevents natural re-colonisation. However,

reintroductions must also work in concert with habitat restoration.

Habitat restoration may be a necessary prerequisite to species

reintroduction, especially for degraded habitats [5]. Restoration

activities may aid in improving the habitat suitability of the release

site, which is a vital factor influencing the success or failure of a

translocation [6,7,8].

Unfortunately, knowledge of how to restore habitat is hampered

by the under-utilization of an experimental framework within

restoration projects [9]. Furthermore, the effectiveness of restora-
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tion efforts is typically assessed by analysing the resulting species

composition and richness within the habitat [10,11]. Yet, such

techniques do not establish a functional connection between

species presence and the experimental treatments, or necessarily

reflect the quality of the restored habitat and its effect on species

survival and reproduction [12,13]. An improved understanding of

how individual animals utilise habitat and the importance of

particular resources can be obtained through examination of how

they behave in restored habitat [11,14]. Behavioural patterns can

provide valuable information for conservation biology [15] by

revealing information on food availability [14], foraging prefer-

ences in different habitats [16], and factors influencing reproduc-

tive success [17]. In restored environments, documentation of

patterns of behaviour and microhabitat use can verify whether or

not the effects of habitat features are as predicted for a particular

species based on prior ecological information in intact environ-

ments. Thus, species behaviour can identify variation in habitat

quality, act as a bio-indicator for the success or failure of

restoration treatments [18], and hence inform land management

and further ecological understanding.

Mulligans Flat and Goorooyarroo Nature Reserves are

temperate woodlands in south-eastern Australia that are currently

being restored through a large-scale experiment [19]. Experimen-

tal manipulations throughout the reserves include the addition of

2,000 tonnes of coarse woody debris, variation in ground

vegetation cover (partly through management of kangaroo

grazing) and the installation of nest boxes. We reintroduced the

brown treecreeper, Climacteris picumnus, a bark and ground-foraging

and hollow-nesting passerine, into these reserves as a part of this

ecosystem restoration experiment. Seven brown treecreeper social

groups, comprised of 43 individuals, were released in November-

December 2009 [20]. These social groups were sourced from two

wild populations in the Murrumbidgee region of New South

Wales.

The brown treecreeper recently disappeared from the reintro-

duction site possibly due to the effects of habitat degradation and

fragmentation [21,22,23]. However, the experimental manipula-

tions within the reserves were specifically designed to ameliorate

any effects of habitat degradation for this and other ground-

foraging birds, which are declining throughout their range [23,24].

In particular, coarse woody debris provides refuges for treecree-

pers from predators [25,26], as the species flees to nearby hollows

in trees or logs when under threat from air-borne predatory or

aggressive species [27]. The species may act less cautiously (i.e.

forage more on the ground) when near these structures, since an

individual’s distance from a refuge is likely to influence its

perceived predation risk [28,29,30]. Further, added coarse woody

debris has increased invertebrates within the reserves [31], and

provides suitable foraging substrates for the brown treecreeper

[32,33].

Variations in the level of ground vegetation cover (enhanced by

areas excluding kangaroo grazing) may influence the accessibility

of food [34,35] and the perceived predation risk of individuals

foraging in the ground-layer [36]. A relatively low level of ground

vegetation cover has been associated with increased reproductive

success for the brown treecreeper because it may improve foraging

efficiency and facilitate the detection of, and the escape from,

predators [37]. Finally, installed nest boxes may provide additional

escape hollows when birds are under threat from predation (along

with providing opportunities for nesting). Therefore, the brown

treecreeper is an appropriate focal species for testing the

effectiveness of restoration treatments [18].

In the reintroduction program we report here, we analysed the

behaviour and micro-habitat use of reintroduced brown treecree-

pers to examine how well the species responded to habitat

restoration and hence also the effectiveness (or success) of the

restoration actions. We hypothesised that the addition of coarse

woody debris, the maintenance of relatively low levels of ground

vegetation cover, and the installation of nest boxes would improve

the habitat for this species, which would be reflected in the use of

particular behaviours and substrates in these different treatment

areas. Specifically, we predicted that:

1. Increased levels of ground vegetation would decrease the

probability of individuals using the ground layer, particularly

for foraging.

2. Increased levels of ground vegetation would reduce the ability

to detect predators and thus decrease the probability that

individuals would display vulnerable behaviours (resting and

preening), particularly when on the ground and on logs.

3. Increased levels of ground vegetation would reduce the ability

to detect predators and thus increase the probability that

individuals would display vigilance, particularly when on the

ground and on logs.

4. The addition of coarse woody debris would increase the

probability that individuals would forage on the ground and on

logs.

5. The addition of coarse woody debris would provide more

refuges from predators and aggressive species and thus increase

the probability that individuals would display vulnerable

behaviours (resting and preening) and decrease vigilance.

6. The installation of nest boxes would provide more refuges from

predators and aggressive species and thus increase the

probability that individuals would display vulnerable behav-

iours (resting and preening) and decrease vigilance.

Testing these predictions through an experimental reintroduc-

tion successfully integrated three sub-fields of ecology that are

typically addressed separately: restoration ecology, habitat ecology

and behavioural ecology. This study will provide a greater

understanding of 1) the effectiveness (or success) of ecosystem

restoration, 2) the biology and behaviour of the brown treecreeper,

and 3) the reintroduction process, including the importance of

habitat suitability and the utilization of existing knowledge on

species populations to inform species reintroductions.

Materials and Methods

Ethics Statement
This study was conducted in strict accordance with animal

ethics approval obtained through The Australian National

University Animal Experimentation Ethics Committee, which

specifically approved this study (C.RE.55.08). All reasonable

actions were taken to minimise the impact on the welfare of the

animals involved, including utilising appropriate methods for the

capture, transport and monitoring of reintroduced brown

treecreepers.

The project was conducted under a Scientific Licence (licence

number S12906) and an Export Licence (licence number

IE095650) both issued from the New South Wales Office of

Environment and Heritage. The study was also issued a Licence to

Import (licence number LI2008330) from the Australian Capital

Territory Department of Territory and Municipal Services.

Accessed land was a mixture of private property, travelling stock

reserves managed by the Hume Livestock Health and Pest

Authority and Nature Reserves managed by the Australian

Capital Territory Department of Territory and Municipal

Services. Full details of the capture, transportation and release of
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reintroduced brown treecreepers are provided in Bennett et al

[20]. We did not sacrifice any individuals.

Study Area
Mulligans Flat Nature Reserve and Goorooyarroo Nature

Reserve are located in the Australian Capital Territory and were

established in 1995 and 2004 respectively. They were previously

leasehold grazing land. In total, the reserves cover 1623 ha of

predominantly partially-modified lowland temperate woodland

and dry forest [38]. Australia’s temperate woodlands are an

extensively modified ecosystem [39,40]. Human-induced distur-

bances within temperate woodlands include vegetation clearing

and fragmentation, removal of coarse woody debris for firewood

and fencing, livestock grazing, the loss of mature trees (an

important source of nesting hollows), the invasion of exotic species,

and the dominance of aggressive species such as the noisy miner,

Manorina melanocephala [38,39,40,41]. Restoring such habitats

within an experimental framework is highly desirable [19,39].

Mulligans Flat Nature Reserve has an 11.5 km mammalian

predator-proof fence erected around its perimeter which excludes

predators such as feral cats and the red fox (Vulpes vulpes), and will

therefore allow reintroductions of locally extinct native mammal

species in future years.

Mulligans Flat and Goorooyarroo Nature Reserves are the

location of the ‘Mulligans Flat – Goorooyarroo Woodland

Experiment’ [19,38]. This experiment aims to quantify biodiver-

sity responses to restoration treatments within temperate wood-

lands [19]. For that experiment, the reserves were stratified into

‘polygons’ according to vegetation type and structure. Twenty-four

polygons containing woodland were selected as experimental

polygons. Each experimental polygon was subject to the addition

of 80 tonnes of coarse woody debris (CWD) in an attempt to

reverse the negative effects of previous removal of timber over the

past 150 years. The addition of CWD in each polygon was

arranged within four 1 ha sites: (1) no added CWD; (2) 20 tonnes

of CWD in a dispersed pattern; (3) 20 tonnes of CWD distributed

to mimic a tree fall (clumped); and (4) 40 tonnes of CWD with

both dispersed and clumped distributions. In addition, the

intensity of grazing across the reserves, and thus the cover and

biomass of ground vegetation, was manipulated through the

creation of kangaroo exclusion areas [19]. Experimental manip-

ulations within the reserves commenced in spring 2007.

Experimental Framework
We classified each of the experimental polygons according to

two additional experimental treatments: 1) high or medium

ground vegetation cover; and 2) the presence or absence of nest

boxes. We categorised ground vegetation cover using data on

vegetation characteristics collected by McIntyre et al. [42]. We

extracted data on total biomass and live plant basal area of all

herbaceous plants plus sub-shrubs (,50 cm tall) for each polygon.

We incorporated both basal area and biomass since both could

influence ground layer quality and the manoeuvrability of brown

treecreepers while ground-foraging. We created standardised

scores of each of these variables (Student’s t statistics, i.e. z-scores

for a population that has only been sampled and is not fully

known) and summed the scores to create a single measure for

ground vegetation. We then ranked the experimental polygons

according to this measure to create categories of ground vegetation

cover (medium and high), with the lower 50% classified as

containing ‘medium’ levels of ground vegetation (average score

21.00; range 22.17 to 20.16) and the upper 50% classified as

containing ‘high’ ground vegetation (average score 1.07; range

20.11 to 3.99).

Brown treecreepers also utilised areas that were outside the

experimental polygons previously established. These areas were

used during the extensive dispersal of individuals, but also after

settlement as final home ranges [43]. For these areas, we classified

non-experimental woodland areas as medium or high ground

vegetation cover through comparison with experimental polygons.

If a non-experimental area was dry open forest, we assigned it a

‘low’ level of ground vegetation cover, since Australian dry open

forest typically contains a greater density of trees than woodland,

which is associated with a lower level of ground vegetation cover

[44,45,46].

Finally, we installed 216 species-specific nest boxes in half (12) of

the experimental polygons (six in high and six in medium ground

vegetation cover) distributed uniformly across the nature reserves.

We clustered nest boxes (40 cm deep, 10610 cm base, 5 cm

hollow opening) on trunks of large trees (four or five per tree) to

make them more apparent to the brown treecreeper, and placed

them between four to eight metres above ground, which was

within the normal range of nest heights. We designed the nest

boxes using knowledge of the behaviour and natural nesting

hollow dimensions of the brown treecreeper, as collected by Noske

[26], while also aiming to reduce competition with other cavity-

using species like the common starling (Sturnus vulgaris).

Study Species
The brown treecreeper is a woodland dependent bird that nests

and roosts in naturally-occurring tree cavities in a variety of

eucalypt species [26]. The species is almost entirely insectivorous,

spending between 51% and 65% of foraging time on the ground

[32,33,47]. The species is a facultative cooperative breeder, living

predominantly in gregarious social groups comprised of a breeding

pair and a number of offspring that have delayed dispersal [48,49].

Social groups of the brown treecreeper occupy territories

averaging 3–6 ha in size in higher quality habitat [49,50].

The brown treecreeper persisted in our study area until 2005

(Jenny Bounds, Canberra Ornithologists Group, personal com-

munication), suggesting that many of the requirements for survival

may still be present, particularly in comparison to the require-

ments for species that disappeared from the reserves many years

ago. The nature reserves currently sustain other ground-foraging

insectivorous species including the yellow-rumped thornbill

(Acanthiza chrysorrhoa) and the scarlet robin (Petroica boodang).

Behaviour and Micro-habitat Use
We released each of seven brown treecreeper social groups (of

between four and eight individuals) in a unique polygon

representing a combination of the ground vegetation and nest

box experimental treatments. At release, we fitted eighteen adult

brown treecreeper individuals (average weight 30.39 g, ranging

from 27.50 g to 37.00 g) with radio-transmitters (Holohil Systems

Model BD-2). The weight of the transmitter (0.90 g) represented

2.8% of the average bird weight. Radio-transmitters of this kind

have been used extensively in brown treecreeper studies in the past

[49,51,52].

We radio-tracked individuals daily after release from Novem-

ber-December 2009 until February 2010. Upon location and

identification of a radio-tracked individual, we observed it for 30

seconds prior to recording an instantaneous observation of

behaviour, microhabitat use and global position. We recorded

observations from at least 30 metres away from individuals. If

birds reacted to our presence (such as by fleeing or alarm calling)

we moved away and waited 10 minutes before recording further

observations. We assigned behaviour to the following categories:

(1) foraging; (2) resting; (3) preening; (4) calling; (5) vigilance; or (6)

Behaviour of a Reintroduced Passerine
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other (see Information S1 for category descriptions). We defined

microhabitat use as the substrate on which an individual bird was

observed using the following categories: (1) bare ground; (2) leaf

litter; (3) grass; (4) trunk; (5) branch; (6) log; or (7) other. We also

recorded whether an individual was located within two metres of a

log. We recorded the global position (UTM coordinates) for each

location to determine the polygon in which an individual was

located, and hence the level of ground vegetation cover, whether

or not a nest box was located within the polygon, and whether or

not the individual was within a 1 ha CWD site within the polygon.

We located and recorded observations for each radio-tracked

individual at least twice per day.

Statistical Analyses
We conducted preliminary analyses to examine whether brown

treecreeper behaviour or substrate use was influenced by the

reintroduction process. We performed a two-sample binomial test

for each behaviour and substrate individually. This test compared

the number of observations of the target behaviour or substrate

before and after the establishment of a home range, in relation to

the total number of observations recorded in the respective time

period. Movement prior to the establishment of a home range was

taken as an ‘‘adjustment period’’ during which individuals may

exhibit altered behaviour due to being unfamiliar with their

environment or as a reaction to the reintroduction process [53,54].

We determined the point at which a social group settled and

established a home range using the methods described in Bennett

et al. [43]. Data was included only for those individuals for whom

we had obtained data both pre- and post-settlement. The results of

these analyses indicated that there was little difference in the

observations recorded pre- and post-settlement (Table 1). There-

fore, for all subsequent analyses, we examined the combined

dataset (pre- and post-settlement).

Our analyses examined the effects on reintroduced brown

treecreepers of restoration efforts, specifically the addition of

coarse woody debris and nest boxes, and ground layer manage-

ment. We initially examined whether there was a broad-ranging

effect of the experimental treatments on behaviour (i.e. irrespective

of the substrate the behaviour was associated with). We then

conducted further analyses by separately examining differences in

substrate use for particular behaviours.

To test our predictions that specific behaviours should be

exhibited more frequently in the various experimental treatments,

we constructed Binomial Generalized Linear Models (GLM) and

Binomial Generalized Linear Mixed Models (GLMM) [55,56].

We treated three target behaviours as response variables: (1)

foraging; (2) vulnerable behaviour (in the form of resting and

preening); and (3) anti-predator behaviour (in the form of

vigilance). For each model, we characterised the target behaviour

as 1 and all other behaviours as 0. Due to the low number of

observations for some substrate categories, we combined some

categories to give five categories: (1) ground (comprised of bare

ground, leaf litter and grass); (2) trunk; (3) branch; (4) log; and (5)

other. We considered four explanatory variables: (1) substrate; (2)

ground vegetation cover; (3) experimental CWD site; and (4) nest

boxes. We also included social group and individual bird nested

within social group as random effects. We included individual bird

since we recorded numerous observations of each individual and

social group because the Brown Treecreeper is gregarious and the

behaviour of one individual may influence the behaviour of other

group members. We then applied binomial GLMMs to investigate

the relationship between target behaviours and the explanatory

variables. Our statistical approach to contrast one category (in this

case a category of behaviour) versus the rest of the categories (one-

vs.-rest) is a legitimate approach to examine the effect of the

experimental treatments on categories of the dependent variable

according to our hypotheses. An alternative method would be to

utilise a multinomial model that performs logistic regressions

between categories of variables (e.g. category A vs. B, A vs. C, and

A vs. D, when A is the baseline-category). However, our

hypotheses examine how a particular behaviour, for example, is

affected by the explanatory variables (substrate, ground vegetation

cover, nest box treatment, coarse woody debris addition), rather

than examining the difference between one behaviour versus a

baseline behaviour. The multinomial model would also exaggerate

the impact of variables due to the comparison with only the

baseline-category instead of all the categories. Therefore, the

current approach of repeated logit models is the most appropriate

to examine our hypotheses.

We examined the significance of random factors for all analyses

using a likelihood ratio test, which compared the deviances (2

times the log likelihood) of models with and without the random

factor included [57,58]. If removing the random factor caused a

large enough drop in the log-likelihood, when compared to a chi-

squared distribution with degrees of freedom equal to the number

of additional models in the more complex model, then the factor

was statistically significant. If the difference was not significant, we

eliminated the random factor and GLMs were constructed.

To test our predictions that specific substrates should be used

more frequently in the various experimental treatments for each of

the individual behaviours, we constructed GLMMs and GLMs

using a binomial distribution. Therefore, we analysed data from

each behaviour type separately. For each model, we characterised

the target substrate as 1 and all other substrates as 0. We

conducted the analyses using the same random variables as in the

Table 1. The effect of translocation on behaviour and substrate use.

Target characteristic % pre-settlement % post-settlement P value 95% CI

Foraging 50.46 55.12 0.112 20.104, 0.011

Resting & preening 11.15 13.98 0.147 20.066, 0.010

Vigilance 30.53 27.15 0.204 20.018, 0.086

Branch 20.29 14.47 0.009 0.015, 0.102

Ground 11.88 8.94 0.100 20.006, 0.065

Log 19.74 19.67 0.976 20.045, 0.047

Trunk 45.34 55.61 ,0.001 20.160, 20.045

Results of preliminary analyses comparing the behaviour and substrate use of reintroduced brown treecreeper individuals pre- and post-settlement after reintroduction.
doi:10.1371/journal.pone.0054539.t001
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previous analyses and using the fixed independent variables of (1)

ground vegetation cover; (2) experimental CWD site; and (3) nest

box.

For the logistic regression modelling, all possible models (full

model vs. possible nested models) were considered using a

backward elimination process to remove the least significant

variables from the model using the Wald statistics. This was

continued until all variables in the final model were statistically

significant (P,0.05). We used this method since it is a standard

statistical test for comparing nested models particularly when

assessing fixed effects [58,59], the experimental treatments were

guided by the clear development of hypotheses, and the number of

variables was small enough to consider all possible models (full

model vs. possible nested models). Further, we were specifically

interested in identifying only those individual variables that had

significant effects, not on developing a best predictive model, so we

deemed that variable selection (rather than model selection) was

most suited to our needs. We conducted all statistical analyses

using GenStat 13th Edition.

Results

We recorded a total of 1270 observations of behaviour and

substrate use for 18 brown treecreeper individuals. We recorded

observations for between two to 72 days for each bird, with an

average of 43 (66.01 s.e.) days. We recorded an average of 72.94

(611.25 s.e.) observations per bird, with a range from three to

132. Large variations in the number of observations can be

attributed to either an individual losing a transmitter early or the

death of an individual. We observed brown treecreepers moving

extensively through the reserves and across multiple polygons of

varying treatment types [43]. Although some radio-tracked

individuals did undertake separate dispersal movements, individ-

uals were recorded within 10 m of other group members the

majority of the time.

Effect of Translocation
Our preliminary analyses found little difference in the behaviour

and substrate use of brown treecreeper individuals when

comparing observations taken pre- and post-settlement (Table 1).

In particular, it could be expected that the level of observations on

the ground would increase post-settlement due to newly released

individuals displaying increased caution or avoiding substrates

where they would be most vulnerable to predation [60]; however,

there was no significant difference in the use of the ground pre-

and post-settlement (P = 0.100). Although, there was a significantly

increased use of trunks and decreased use of branches by the

Brown Treecreeper post-settlement in comparison to pre-settle-

ment (Table 1).

Relationships between Behaviour and Substrate
Of 1270 observations on behaviour, 663 (52%) were of foraging,

374 (29%) were of vigilance and 155 (12%) were of resting and

preening, with the remainder being calling (73, 6%) and other (5,

0.4%). We observed that vigilant and vulnerable behaviours

occurred most frequently on trunks and logs. The majority of

foraging behaviours occurred on trunks (58%), followed by ground

substrates (19%). When individuals were within the 1 ha coarse

woody debris sites, the proportion of foraging time on the ground

increased to 30%, although this was lower than observed in

previous studies on the brown treecreeper (Figure 1 ) [32,33,47].

For observations on the ground (10.6% of all observations), 70%

occurred on leaf litter, followed by 19% on grass and 11% on bare

ground.

General Effects on Behaviour
The probability of a bird displaying a particular behaviour

(foraging, vigilance or resting and preening) was not significantly

influenced by ground vegetation cover, the addition of coarse

woody debris, or the installation of nest boxes within the

experimental polygon (Table 2). Neither did it vary between

individuals or social groups. However, behaviour was significantly

Figure 1. Brown treecreeper ground foraging observations in various studies. The proportion of foraging observations in which the bird
was located on the ground, comparing results from this study, n = 1270; from this study within 1 ha experimental coarse woody debris (CWD) sites,
n = 118; from Antos and Bennett [32], n = 644; from Maron & Lill [47], n = 126; and from Walters, Ford & Cooper [33], n = 1750.
doi:10.1371/journal.pone.0054539.g001
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influenced by the substrate on which the individual was located

(Table 2). Analysis of behavioural probabilities showed that the

odds of a bird foraging when on the ground were greater than

when on any other substrate, being 21.16 times the odds of a bird

foraging on branches (Table 2). Further, the odds of a bird

displaying vigilant and vulnerable behaviour were greatest when

an individual was on the ‘other’ substrate category (e.g. stumps)

followed by logs.

Effects of Treatments on Behaviour on Particular
Substrates

When an individual was within a 1 ha coarse woody debris site

there was an increased probability of foraging on a log or on the

ground (Figure 2), and a decreased probability of foraging on a

trunk (Table 3), compared with when an individual was outside the

coarse woody debris sites. When examining data from individuals

on ground-level substrates (on ground or on logs), there was a

higher number of observations within two metres of a log (total of

81%; n = 313) than away from a log (19%; n = 72). Further, 61%

of observations on the ground (n = 131) were within two metres of

a log (either an experimental or a natural log). This suggests a

preference by brown treecreepers to stay close to these structures

since logs were sparse even within 1 ha coarse woody debris sites.

The level of ground vegetation cover did not significantly

influence the use of the ground for any of the target behaviours

(Table 3). We found that the presence of nest boxes significantly

decreased the probability of foraging on branchs (x2 = 3.94,

d.f. = 1, P = 0.047), but did not significantly influence any other

combinations of behaviour and substrate use. Similarly, there was

no significant variation in substrate use from individual bird or

social group.

Discussion

We examined the effects of (or success of) experimental

restoration treatments, specifically the addition of coarse woody

debris, variations in ground vegetation cover, and installation of

nest boxes, by quantifying the response of reintroduced brown

treecreepers. To do this, we analysed the effect of these restoration

treatments on the behaviour and substrate use of radio-tracked

individuals. The key findings of our analyses were: (1) evidence of

the benefits of the addition of coarse woody debris for foraging by

the brown treecreeper; (2) little evidence of effects on behaviour

and substrate use of variations in ground vegetation cover; and (3)

limited use of ground substrates by individuals, with implications

for restoration effectiveness.

Addition of Coarse Woody Debris
Our data showed that individuals exhibited an increased

probability of foraging when they were on a log or on the ground

within the 1 ha coarse woody debris (CWD) sites. The proportion

of ground foraging by the brown treecreeper when within these 1

ha sites, rather than when outside the 1 ha sites, is closer to the

levels of ground foraging observed in previous studies (Figure 1)

[32,33,47] and hence may improve the foraging efficiency of

ground substrates. Further, when on the ground, individuals were

often observed close to logs. Our results provide strong empirical

confirmation of the benefit of coarse woody debris addition in our

study area, and the success of this restoration treatment. This

result was predicted at the outset of this investigation because the

brown treecreeper is known to utilise coarse woody debris as a

foraging substrate [32,61].

We found a high level of use of logs, as well as trunks, for

vigilant and vulnerable behaviours. However, there was no

Table 2. Effects on brown treecreeper behaviour.

Behaviour Factor
Estimate
(± s.e.)

Odds
ratio x2 d.f. P

Foraging Fixed Effects

N Substrate 166.00 4 ,0.001

Ground 3.05 (±0.39) 21.16

Log 20.93 (±0.20) 0.39

Other 21.87 (±0.63) 0.15

Trunk 0.69 (±0.16) 1.99

N Vegetation 0.77 2 0.682

N CWD site 0.18 1 0.667

N Nest box 0.63 1 0.426

N Constant 20.20 (±0.19)

Random effects

N Group + s2 = 0.03

Group/
Bird ID

s2 = 0.00 0.423

Vigilance Fixed effects

N Substrate 77.90 4 ,0.001

Ground 23.06 (±0.57)

Log 0.63 (±0.19)

Other 1.10 (±0.40)

Trunk 20.34 (±0.17)

N Vegetation 0.17 2 0.918

N CWD site 1.29 1 0.256

N Nest box 0.06 1 0.810

N Constant 20.70 (±0.22)

Random effects

N Group + s2 = 0.07 0.119

Group/
Bird ID

s2 = 0.00

Resting and Fixed effects

Preening N Substrate 50.78 4 ,0.001

Ground 23.27 (±0.93) 0.04

Log 0.44 (±0.24) 1.55

Other 0.47 (±0.47) 1.60

Trunk 20.81 (±0.23) 0.45

N Vegetation 2.54 2 0.281

N CWD site 2.05 1 0.153

N Nest box 0.41 1 0.522

N Constant 21.75 (±0.25)

Random effects

N Group + s2 = 0.00 0.975

Group/
Bird ID

s2 = 0.00

Results of the generalized linear mixed models (GLMMs) and generalized linear
models using binomial distribution (logit-link structure) which examined the
influence of substrate and the three experimental treatments: (1) ground vegetation
cover; (2) addition of coarse woody debris (CWD) in 1 ha sites; and (3) the installation
of nest boxes; on the probability of an individual displaying three particular
behaviours: (1) foraging; (2) vigilance; and (3) resting and preening. Group and
individual bird nested within group were included as random effects in GLMMs (s2 =
the variance of the random factor). Significant effects are shown in bold. Output
shows the estimate and odds ratio for the significant substrate parameter in
reference to the ‘branch’ category. Estimate for the constant is given from the full
GLMMs. The total number of observations was 1270.
doi:10.1371/journal.pone.0054539.t002
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difference in the probability of these behaviours within versus

outside CWD sites. The lack of an effect of CWD sites on bird

behaviour did not support our predictions of CWD sites increasing

the probability of vulnerable behaviours and decreasing vigilance.

However, the high use of logs and trunks may have occurred

because these substrates provide elevated locations from which

individuals can gain a relatively unobstructed view to survey the

surrounding environment for predators. Furthermore, an individ-

ual’s distance from a safe refuge is likely to influence their

perceived predation risk [28,29,30], and these areas are likely to be

close to important refuges in hollows in logs [25]. However, the

coarse woody debris recently added to the reserves was generally

not sufficiently decomposed to provide many hollows.

The benefits of coarse woody debris for the brown treecreeper

may be improved through increasing timber loads in the reserves.

Experimental redistribution of coarse woody debris has led to

sustained increases in brown treecreeper numbers at loads of $40

tonnes/ha [62,63], which is greater than the amount added to

most coarse woody debris sites within Mulligans Flat and

Goorooyarroo Nature Reserves [19].

Installation of Nest Boxes
The installation of species-specific nest boxes did not signifi-

cantly influence brown treecreeper behaviour. We did not have an

appropriate opportunity to test the use of these structures

specifically and did not observe any individuals utilising the nest

boxes. However, there are many existing observations of the

species using artificial hollows with a wide variety of characteristics

[27]. It may be that the density of nest boxes was too low for

individuals to reliably locate them, or for behaviour to be

influenced by them. Alternatively, natural hollows may be

abundant in the reserves, however we know that this is not the

case based on comparisons of hollows in these reserves to other

areas supporting the brown treecreeper [64]. Nest boxes were

installed primarily to support breeding and roosting. Therefore,

these structures may still be beneficial as our analyses examined

only their secondary function of providing refuge from predators.

Variation in Ground Cover
An unexpected finding from of our study was that ground

vegetation cover did not significantly influence the behaviour and

substrate use of reintroduced individuals. In particular, there was

no significant effect of this treatment when individuals were on

ground substrates. At the outset of this project, we predicted a

higher use of the ground, particularly during foraging, in polygons

with lower levels of ground vegetation cover, where invertebrates

may be abundant and accessible [34,35] and detection of and

escape from predators easier [37]. The absence of a significant

effect of ground vegetation cover on the use of ground substrates

may have occurred because of the overall limited use of these

substrates. Alternatively, calculation of ground vegetation cover at

the polygon-level may be at a scale too large to detect any

influence on behaviour and substrate use.

Recovery of the Ground Layer
Brown treecreeper individuals spent 19% of their overall

foraging time on the ground within the reintroduction site. This

result contrasts with previous studies indicating that the species

spends between 51–65% of its foraging time on the ground

(Figure 1) [32,33,47]. Although the reintroduction process may

alter a species’ ecology and hence influence the use of ground

substrates [53,65,66], our preliminary analyses indicated that the

use of the ground did not significantly differ between pre- and

post-settlement. Therefore, it is unlikely that the reintroduction

process greatly influenced the use of the ground.

Alternatively, an individual’s selection of foraging habitat may

be affected by food abundance and accessibility [34,35]. Mulligans

Flat and Goorooyarroo Natures Reserves have been subject to a

variety of degrading processes that may influence invertebrate

abundance and consequently alter brown treecreeper foraging

Figure 2. The effect of coarse woody debris site on substrate use by the brown treecreeper. The predicted probability (6 s.e.) of a brown
treecreeper using three target substrates whilst foraging. The use of these substrates was significantly influenced by whether an individual was within
or outside an experimental coarse woody debris site (Ground: P = 0.053; Log: P = 0.010; Trunk: P,0.001). The use of trunks was also significantly
influenced by the level of ground vegetation cover (high, medium, or low). Data presented were obtained by logit-link back-transformation.
doi:10.1371/journal.pone.0054539.g002

Behaviour of a Reintroduced Passerine

PLOS ONE | www.plosone.org 7 January 2013 | Volume 8 | Issue 1 | e54539



Table 3. Effects on brown treecreeper behaviour on particular substrates.

Target substrate Behaviour Parameter Estimate (±s.e.) Odds ratio x2 d.f. P

Branch Foraging Fixed effects

N Vegetation 19.72 2 ,0.001

Medium 0.61 (60.27) 1.84

Low 20.68 (60.28) 0.51

N Nest box 3.94 1 0.047

With boxes 20.73 (60.37) 0.48

N CWD site 0.82 1 0.365

N Constant 21.70 (±0.27)

Random effects

N Group + s2 = 0.14 0.080

Group/BirdID s2 = 0.00

Branch Vigilance Fixed effects

N Vegetation 11.67 2 0.003

Medium 0.42 (60.34) 1.52

Low 20.71 (60.33) 0.49

N CWD site 4.32 1 0.038

In site 21.17 (60.56) 0.31

N Nest box 2.20 1 0.138

N Constant 20.97 (60.28)

Random effects

N Group + s2 = 0.01 0.985

Group/BirdID s2 = 0.00

Branch Resting and Fixed effects

Preening N Vegetation 6.20 2 0.045

Medium 0.85 (60.51) 2.34

Low 20.30 (60.47) 0.74

N CWD site 0.43 1 0.513

N Nest box 0.35 1 0.553

N Constant 21.22 (60.46)

Random effects

N Group + s2 = 0.00 0.985

Group/BirdID s2 = 0.09

Ground Foraging Fixed effects 1.11 2 0.574

N Vegetation

N CWD site 3.75 1 0.053

N Nest box 0.11 1 0.746

N Constant 21.60 (60.23)

Random effect

N Group + s2 = 0.01 0.533

Group/BirdID s2 = 0.07

Ground Vigilance Fixed effects

N Vegetation 0.13 2 0.938

N CWD site 0.02 1 0.883

N Nest box 0.10 1 0.756

N Constant 24.06 (61.01)

Random effects

N Group + s2 = 0.00 1.00

Group/BirdID s2 = 0.00

Ground Resting and Fixed effects
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Table 3. Cont.

Target substrate Behaviour Parameter Estimate (±s.e.) Odds ratio x2 d.f. P

Preening N Vegetation 0.05 2 0.975

N CWD site 0.00 1 1.000

N Nest box 0.00 1 1.000

N Constant 214.6 (6163)

Random effects

N Group + s2 = 0.00 1.000

Group/BirdID s2 = 0.00

Log Foraging Fixed effects

N CWD site 6.56 1 0.010

In site 0.98 (60.38) 2.65

N Vegetation 0.42 2 0.813

N Nest box 0.17 1 0.678

N Constant 22.63 (60.31)

Random effects

N Group + s2 = 0.03 0.842

Group/BirdID s2 = 0.00

Log Vigilance Fixed effects

N Vegetation 0.15 2 0.930

N CWD site 1.52 1 0.218

N Nest box 0.07 1 0.799

N Constant 20.84 (60.29)

Random effects

N Group + s2 = 0.00 0.434

Group/BirdID s2 = 0.11

Log Resting and Fixed effects

Preening N Vegetation 3.53 2 0.171

N CWD site 0.65 1 0.421

N Nest box 0.50 1 0.481

N Constant 20.38 (60.45)

Random effects

N Group + s2 = 0.23 0.260

N Group/BirdID s2 = 0.00

Trunk Foraging Fixed effects

N Vegetation 7.99 2 0.018

Medium 20.56 (60.23) 0.57

Low 20.01 (60.19) 0.99

N CWD site 11.68 1 ,0.001

In site 21.07 (60.31) 0.34

N Nest box 2.85 1 0.091

N Constant 0.40 (60.19)

Random effects

N Group + s2 = 0.00 0.083

Group/BirdID s2 = 0.10

Trunk Vigilance Fixed effects

N Vegetation 8.96 2 0.011

Medium 20.43 (60.30) 0.65

Low 0.39 (61.48) 1.48

N CWD site 0.87 1 0.351

N Nest box 2.83 1 0.092
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behaviour. These processes include livestock grazing [67,68], and

firewood harvesting which removes logs that provide habitat for

invertebrates [69,70]. This result highlights the importance of the

management of the ground layer, particularly by promoting (1) the

development of a cryptogamic crust [47,71]; (2) an increased leaf

litter layer, which is an important foraging substrate [32]; (3)

reduced weed cover [47]; and (4) controlled levels of grazing

pressure by exotic and native herbivores [23,37]. It is possible that

the existing restoration treatments, such as the addition of coarse

woody debris and grazing management, may ultimately improve

the ground layer, but there is a delay in realising their benefits.

Similarly, these treatments may still be important and effective for

the brown treecreeper even if their influence is not yet clear.

Broader Implications
The results from this study highlight the unique information

derived from the monitoring of behaviour and substrate use within

an experimental framework. This study has three broad implica-

tions for ecological studies. First, through using the brown

treecreeper as a bio-indicator, we were able to examine restoration

success and identified the benefits that restoration manipulations

can provide for fauna, specifically the addition of coarse woody

debris. This demonstrates the value of examining the behaviour

and substrate use of a focal species to understand the success and

influence of restoration activities. Second, it is understood that

successful reintroductions require comprehensive behavioural

studies from existing populations. However, the limited use of

ground substrates by reintroduced brown treecreeper individuals

was unexpected given our existing knowledge on the behaviour of

the species. This study indicates that behaviour and habitat use

information from prior studies within a source population may not

approximate that observed within a reintroduced population.

Hence, there are potential difficulties in using existing research in

other locations to inform habitat restoration and reintroductions.

Last, our major findings emphasise the value of conducting species

reintroductions within an experimental framework. They also

highlight the value of linking restoration ecology with habitat

ecology and behavioural ecology. This may be particularly the

case for species reintroductions, which often produce highly

unexpected outcomes.
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