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Abstract Cell cycle duration changes dramatically during development, starting out fast to

generate cells quickly and slowing down over time as the organism matures. The cell cycle can also

act as a transcriptional filter to control the expression of long gene transcripts, which are partially

transcribed in short cycles. Using mathematical simulations of cell proliferation, we identify an

emergent property that this filter can act as a tuning knob to control gene transcript expression,

cell diversity, and the number and proportion of different cell types in a tissue. Our predictions are

supported by comparison to single-cell RNA-seq data captured over embryonic development.

Additionally, evolutionary genome analysis shows that fast-developing organisms have a narrow

genomic distribution of gene lengths while slower developers have an expanded number of long

genes. Our results support the idea that cell cycle dynamics may be important across multicellular

animals for controlling gene transcript expression and cell fate.

Introduction
A fundamental question in biology is how a single eukaryotic cell (e.g., zygote, stem cell) produces

the complexity required to develop into an organism. A single cell will divide and generate many

progeny, diversifying in a controlled and timely manner (Mueller et al., 2015) to generate cells with

very different functions than the parent, all with the same genome (Wilmut et al., 1997). Many regu-

latory mechanisms coordinate this process, but much remains to be discovered about how it works

(Zoller et al., 2018). Here, we explore how cell cycle regulation can control gene transcript expres-

sion timing and cell fate during tissue development.

The canonical view of the cell cycle is a timely stepwise process. Typically, the complete cell cycle

is divided into four phases: first gap phase (G1), synthesis phase (S), second gap phase (G2), and

mitotic phase (M). The length of each phase determines how much time a cell allocates for processes

associated with growth and division. However, the amount of time that is spent in each phase fre-

quently differs from one cell type to another within the same organism. For example, some cells

experience fast cell cycles, especially in early embryogenesis. Organisms such as the fruit fly (Dro-

sophila melanogaster) and the worm (Caenorhabditis elegans) exhibit cell cycle durations as short as

8–10 min (Edgar et al., 1994; Foe, 1989). Cell cycle duration also changes over development (Fig-

ure 1 and Supplementary file 1). For example, it increases in mouse (Mus musculus) brain develop-

ment from an average of 8 hr at embryonic day 11 (E11) to an average of 18 hr by E17

(Furutachi et al., 2015; Takahashi et al., 1995a).

Interestingly, cell cycle duration can act as a transcriptional filter that constrains transcription

(Rothe et al., 1992; Shermoen and O’Farrell, 1991). In particular, if the cell cycle progresses rela-

tively fast, transcription of long genes will be interrupted. In typical cells, the gene transcription rate

is between 1.4 and 3.6 kb per minute (Ardehali and Lis, 2009). Thus, an 8 min cell cycle would only

allow transcription of the shortest genes, on the order of 10 kb measured by genomic length,
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including introns and exons, whereas a 10 hr cell cycle would allow transcription of genes as long as

a megabase on the genome.

Cell cycle-dependent transcriptional filtering has been proposed to be important in cell fate con-

trol (Bryant and Gardiner, 2016; Swinburne and Silver, 2008). Most multicellular eukaryotic ani-

mals start embryogenesis with short cell cycle durations and a limited transcription state

(O’Farrell et al., 2004) with typically short zygotic transcripts (Heyn et al., 2014). These cells allo-

cate the majority of their cycle time to S-phase (synthesis), where transcription is inhibited

(Newport and Kirschner, 1982a), and M-phase (division), with little to no time for transcription in

the gap phases. However, as the cell cycle slows down, time available for transcription increases

(Edgar et al., 1986; Newport and Kirschner, 1982a; Newport and Kirschner, 1982b), enabling

longer genes to be transcribed (Djabrayan et al., 2019; Shermoen and O’Farrell, 1991;

Yuan et al., 2016).

We asked what effects cell cycle-dependent transcriptional filtering may have over early multicel-

lular organism development. Through extensive mathematical simulations of developmental cell line-

ages, we identify the novel and unexpected finding that a cell cycle-dependent transcriptional filter

can directly influence the generation of cell diversity and can provide fine-grained control of cell

numbers and cell-type ratios in a developing tissue. Our computational model operates at single-cell

resolution, enabling comparison to single-cell RNA-seq (scRNA-seq) data captured over develop-

ment, supporting our model by showing similar trends. Our model also predicts genomic gene

length distribution and gene transcript expression patterns that are consistent with a range of inde-

pendent data. Our work provides new insight into how cell cycle parameters may be important regu-

lators of cell-type diversity over development.
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Figure 1. Cell cycle duration changes during mouse development. The data was curated from several publications (PubMed identifiers: 5859018,

14105210, 5760443, 5542640, 4041905, 7666188, 12151540, 18164540), shown in the legend as authors and (year). For other species and tissues, see

Supplementary file 1.
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Results

Computational model of multicellular development
We model multicellular development starting from a single totipotent cell that gives rise to many

progeny, each with its own transcriptome (Figure 2). We developed a single-cell resolution agent-

based computational model to simulate this process (see Materials and methods). Each cell behaves

according to a set of rules, and cells are influenced solely by intrinsic factors (e.g., number of genes

in the genome, gene length, transcript levels, and transcription rate). We intentionally start with a

simple set of rules, adding more rules as needed to test specific mechanisms. Our analysis is limited
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Figure 2. A novel mathematical model of cell lineage generation. (A) A single cell is defined by a given number of genes in its genome as well as their

gene lengths (e.g., three genes, gene1 < gene2 < gene3). Cell cycle duration defines the time a cell has available to transcribe a gene. (B) For example,

a cell with cell cycle duration = 1 hr will only enable transcription of gene1; cell cycle duration = 2 hr will enable transcription of gene1 and gene2; cell

cycle duration = 3 hr enables transcription of all three genes. (C) Our model assumes that transcripts passed from parental cell to its progeny will be

randomly distributed during division (M-phase). (D) Each cell is characterized by its transcriptome, represented as a vector.
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to pre-mRNA transcript expression, and we do not consider other gene expression-related factors,

such as splicing, translation, or gene-gene interactions. We also omit external cues (e.g., intercellular

signaling or environmental gradients) to focus on the effects of intrinsic factors.

In our model, each cell is characterized by a fixed genome containing a set of G genes

(gene1; gene2; . . . :geneG) shown in (Figure 2A). Each genei is defined by a length, Li (in kb), and in all

our simulations each gene is assigned a different length (L1 < L2 <. . . LG). Since each genei has a

unique length, Li, we label genes by their length (geneLi

i =gene
Li ; e.g., gene3 is a gene of length 3 kb).

We assume transcription time for genei is directly proportional to its length, Li. In the model, each

cellj is initialized with a cell cycle duration (Gcell), which represents the total time available for gene

transcription (see Materials and methods). For example, we can initialize cell1 with a three-gene

genome gene1; gene2; gene3ð Þ;where L ¼ 1kb; 2kb; 3kbð Þ and a cell cycle duration G1 of 1 hr. We fix

transcription rate, l, to 1 kb/hr for all genes (though this assumption can be relaxed without chang-

ing our results; Figure 3 and Figure 3—figure supplement 1). As transcription progresses for all

genes, cell1 will only express gene1. Increasing cell cycle duration, Gcell, will allocate more time for

transcription, allowing longer genes to be transcribed. For example, if we initialize cell2 with a cell

cycle duration G2 = 3 hr, cell2 will express all three genes, with time to make three copies of gene1

(Figure 2B). We assume that RNA polymerase II re-initiation occurs along the gene, a distance

W apart (Figure 3—figure supplement 1).

Once transcription is complete, the cell enters M-phase, during which it divides, and expressed

transcripts are randomly distributed to the two progeny cells (Figure 2C). This is the main stochastic

component in our model. We assume that transcription begins anew at the start of the cell cycle (i.

e., all transcripts from a gene that cannot be finished in one cycle are eliminated), modeling the

known degradation of incomplete nascent transcripts in M-phase (Shermoen and O’Farrell, 1991).

Relaxing our assumption to include parental transcript inheritance and decay (Sharova et al., 2009),

where a proportion of inherited parental transcripts remain after each cell division, does not change

our overall results (Figure 3—figure supplement 2). All individual cells and their transcriptomes are

tracked over the course of the simulation, enabling single-cell resolution analysis. Transcriptomes are

stored as vectors containing the total number of transcripts per gene. For instance, cell2 may have a

transcriptome of (3,1,1), indicating that three genes are expressed, with gene1 expressed at three

transcripts per cell and the other two genes expressed at one transcript per cell (Figure 2D).

Model prediction: cell cycle duration influences transcript count – short
genes generate more transcripts than longer genes
We begin by examining how a transcriptional filter impacts transcript counts, as controlled by cell

cycle duration. Shorter cell cycles will interrupt long gene transcription, resulting in relatively high

expression of short gene transcripts and low expression of long gene transcripts. Our computational

simulations generate this expected pattern (Figure 3A). Each simulated cell transcriptome is divided

into three bins containing short, medium, and long genes, and then each bin is summarized with an

average transcript count. In simulations, bins with short genes exhibit the highest average transcript

count levels. As cell cycle duration increases, more cells show an increase in transcript count of lon-

ger genes; the trend is consistent for various genome sizes and gene length distributions (Figure 3A

and Figure 3—figure supplement 3).

scRNA-seq has recently been used to profile mRNA expression of thousands of cells for one cell

type (microglia) across multiple species (Geirsdottir et al., 2019) or for multiple embryonic develop-

mental time points in one species, such as Xenopus tropicalis (Briggs et al., 2018) and Danio rerio

(Kimmel et al., 1995; Wagner et al., 2018), or tissue, such as mouse neural cortex (Yuzwa et al.,

2017). We analyzed these data in the same manner as our model (Figure 3B and Figure 3—figure

supplement 4) and found that, in general, short genes have a higher mRNA expression level than

longer genes within a cell. Thus, gene mRNA expression patterns from a range of scRNA-seq data

sets, including developmental time courses, are compatible with our model prediction.

Model prediction: cell cycle duration can control cell diversity
We next asked how three major model parameters (cell cycle duration, maximum gene length, and

number of genes in the genome) can influence the generation and control of cell diversity observed

during normal multicellular development. We conducted simulations for a single-cell division step for
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Figure 3. Short genes produce more transcripts than longer genes at multiple cell cycle duration lengths. The

transcriptome for each cell is subdivided into short, medium, and long gene bins, and transcript counts are

averaged per bin per cell. (A) Simulations predict that short gene transcripts will be more highly expressed than

long gene transcripts, irrespective of the genome size. Simulation results are shown for cell cycle durations of 1, 5,

Figure 3 continued on next page
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simplicity, but these were repeated thousands of times to model cell population effects. We com-

pute cell diversity in two ways; first, as the number of distinct transcriptomes in the cell population

(transcriptome diversity); and second, as the number of distinct transcriptomic clusters, as defined

using standard single-cell transcriptomic analysis techniques (Satija et al., 2015) (see

Materials and methods). Both measures model real cell types and states that are distinguished by

their transcriptomes, with transcriptome diversity as an upper bound on cell-type number, and clus-

ter number approximating a lower bound. We first ran simulations with an active transcriptional filter

by varying only the cell cycle duration, G, for a genome with 10 genes, with genes ranging in size

from 1 to 10 kb, such that it satisfies L1 ¼ 1 � :::G::: � LG ¼ 10. Short cell cycle duration parameter

values generated a homogenous population of cells because only short transcripts can be tran-

scribed. As cell cycle duration was increased, transcriptome diversity also increased. Longer cell

cycle duration values generated heterogeneous populations because a range of transcripts can be

expressed (Figure 4A, brown line). Interestingly, cell cluster diversity peaks at intermediate cell cycle

duration parameter values (Figure 4B, brown line; Figure 4C) because new genes are introduced

with increasing cell cycle lengths, but eventually long cell cycles provide sufficient time for cells to

make all transcripts, which leads to reduced variance between the progeny. We next repeat this

experiment by turning off the transcriptional filter by reducing the maximum gene length such

that LG<G (Figure 4A, B, blue line). In this case, cell diversity can be generated, but it quickly satu-

rates (Figure 4B, blue line), as all transcripts are expressed, given a cycle duration allowing the

expression of the longest transcript. Thus, while cellular diversity can be generated with an active or

inactive transcriptional filter, diversity is more easily controlled by cell cycle duration when the tran-

scriptional filter is active.

In general, transcriptome diversity increases as a function of cell cycle duration (G), transcription

rate (l), and number of genes in the genome (G). In particular, transcriptome diversity =

n
QG

i¼1
T=Li þ 1ð Þ; where n is the genome ploidy level, T =

PLi
W
�1

a¼0
f að Þ; 8f að Þ � 0; f að Þ ¼ G�l� aW

l
(i.e.,

the maximum transcribed gene length, T, is restricted by the product of cell cycle duration, G, tran-

scription rate, l, and RNA polymerase II re-initiation, W), and Li is the length of genei. This analytical

solution of cell transcriptome diversity was validated by comparing it to simulations

(Supplementary file 2). While the number of genes and their length distribution can change over

the course of evolution, these numbers are constant for a given species, and transcription rate is

likely highly constrained (Ardehali and Lis, 2009), leaving only cell cycle duration as a controllable

parameter of cell diversity during development, according to our model.

Figure 3 continued

and 10 hr and gene lengths (geneL1
-L
10); see Figure 3—figure supplement 3 for additional simulations (other

parameters ploidy = 1, one cell division, iterations = 5,000,000, genome G = 10, geneL1
-L
10, transcription rate, l = 1

kb/hr, RNA polymerase II re-initiation, W ¼ 0:25kb). Bins are defined such that genes are evenly distributed across

them. (B) Single-cell microglia data obtained from GSE134707 (Geirsdottir et al., 2019) displaying expected

patterns where short genes (lengths <10 kb) have a higher transcript expression than both medium genes (lengths

> 10 kb) and longer genes (lengths >25 kb) – Kolmogorov–Smirnov test p < 10�16, the upper bound p-value for all

short-medium and short-long comparisons – across nine different species (age): Macaca fascicularis (3 years),

Callithrix jacchus (7 years), Mus musculus (8–16 weeks), Rattus norvegicus (11–14 weeks), Mesocricetus auratus (8–

16 weeks), Nannospalax galili (2-4 years), Ovis aries (18–20 months), Gallus gallus (24 weeks), and Danio rerio (4–5

months). The top part of the plot shows the total number of genes possible in each bin, given the gene length

distribution of each genome. Bins are defined such that they are both consistent across all species and also

approximately evenly filled with genes.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Simulations exploring the effects of cell cycle duration and RNA polymerase II (rnaPol II) for

different re-initiation distances, W, and transcription rates, l.

Figure supplement 2. Effects of maternal transcript inheritance.

Figure supplement 3. Simulations exploring the effects of cell cycle duration on transcript count per cell.

Figure supplement 4. Single-cell data exploring the effects of cell cycle duration on transcript count per cell.
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Model prediction: varying cell cycle duration over developmental time
controls tissue cell proportions and number
During multicellular organism development, it is essential to generate the correct numbers of cells

and cell types. Cell cycle duration changes dramatically during development, generally starting out

fast to generate cells quickly and slowing down over time as the organism matures
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Figure 4. Cell cycle duration can control cell diversity. Simulations explore the effects of cell cycle duration, G, gene number, G, and gene length

distribution. (A) Simulations show that cell diversity (transcriptome diversity) increases as a function of cell cycle duration. Short cell cycle durations can

constrain the effects of gene number as long as a transcriptional filter is active (gene length distributions are broad, L1< . . . G�lð Þ . . .<LG).

When LG< G�lð Þ, cell cycle duration does not control cell diversity. Cell cycle duration effects are relative to the gene length distribution in the genome.

(B) We use Seurat to cluster the simulated single-cell transcriptomes (10,000 cells) using default parameters and report the number of cell clusters over

the simulations. This shows that cell diversity increases with gene number, but the number of clusters identified decreases when all the gene transcripts

can be expressed similarly among all cells. (C) Representative examples (10,000 cells) of t-SNE visualizations (RunTSNE using Seurat version 3.1.2) are

shown for simulations with cell cycle durations 2, 6, and 10 hr (genome G = 10, geneL1
-L
10, ploidy n = 1, and transcription rate, l = 1 kb/hr, RNA

polymerase II re-initiation, W ¼ 0:25kb).
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(Supplementary file 1 and Figure 1; Farrell and O’Farrell, 2014; O’Farrell et al., 2004). Clearly,

cells with short cell cycles generate more progeny compared to those with longer cell cycles. How-

ever, we propose that a tradeoff exists, balancing the generation of diversity (longer cell cycle dura-

tions) with the fast generation of cells (shorter cell cycle durations; Figure 4B). To study this

tradeoff, we simulated cell propagation under a ‘mixed lineage’ scenario where, after the first divi-

sion, one child cell and its progeny maintains a constant cell cycle duration (G1 = 1 hr) and the sec-

ond child cell and its progeny maintains an equal or longer constant cell cycle duration over a

lineage with 20 cell division events (Figure 5, gray and blue lineages, respectively). We initialize the

starting cell with no prior transcripts (naı̈ve theoretical state) and a genome containing five genes

ranging from length 1 to 2 kb (gene1, gene1.25, gene1.5, gene1.75, gene2), setting cell cycle duration

in the second lineage to range between 1 and 2, controlling the transcriptional filter threshold in this
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Figure 5. Cell cycle duration can control the generation of cell proportions and cell types within a population. Simulations start with two cells and run

for 18 divisions (generating 219 cells when cell cycles are the same). Cell1 is initialized with cell cycle duration G1 = 1 hr, Cell2 has cell cycle duration, G2,

ranging from 1 to 2 hr. All progeny are tracked based on their cell cycle duration (lineage G1 = 1 cell cycle duration, gray, or lineage G2 cell cycle

duration, blue). Tree plot depicting lineages when the cell cycle duration (A) is the same, G1 = G2 (scenario 1), or (B, C) differs, G1 < G2 (scenarios 2 and

3). Scenario 2 captures a situation when the cell cycle is determined by the parental lineage, while scenario 3 captures a situation when a cell splits

asymmetrically into a fast and slow cell, resulting with the fast lineage having just one cell. (D–F) Müller visualizations show that when the cell cycle

duration is the same, both cells contribute the same number of progeny and cell proportions (%) are 50:50 (bottom left panel). The visualization is

stacked, down-scaling the blue lineage slightly to reduce occlusion of the gray lineage. Cells with longer cell cycle duration (blue lineage) generate

fewer progeny with respect to the cells with a short cell cycle duration of 1 hr (gray lineage). However, the slower cells contribute more to the diversity

observed in the population, shown as the blue and gray transcriptome diversity bars. Thus, increasing cell cycle duration increases cell diversity, but

also limits the number of progeny generated. The system can overcome the limit on cell number by using scenario 3, where more slow cells can be

generated (other parameters G = 5, gene lengths (geneL1
-L
2), genome = {1,1.25,1.5,1.75,2} and ploidy = 1, RNA polymerase II re-initiation, W ¼ 0:25kb).
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lineage only. We considered three scenarios: (1) both cell lineages cycle at the same rate (Fast-Fast,

Figure 5A); (2) the first (blue) lineage is slower than the second (gray) (Slow-Fast, Figure 5B); and (3)

both slow and fast lineages divide asymmetrically, producing one slow and one fast cell (Slow-Fast,

Figure 5C).

In the simulation where both cell lineages cycle at the same rate (Figure 5A), both lineages gen-

erate the same number of progeny with the same level of diversity (Figure 5D). When cell cycle

duration for the second (blue) lineage is increased across simulations (Figure 5E), the transcriptional

filter acts to generate more diverse progeny, but with fewer cell numbers and progressively smaller

population proportions due to the slower cell cycle (Figure 5E, blue bars). Meanwhile, the short cell

cycle lineage maintains a steady, low level of diversity generation (Figure 5E, gray bars). When a

fast cell can divide asymmetrically, generating one slow and one fast cell at each division, the num-

ber of slow cells in the population can increase; however, this comes with a reduction of the number

of fast cells in the population (Figure 5F). Thus, our simulations show how the cell cycle duration

parameter can impose a tradeoff between cell proportion and diversity generation, and mixing line-

ages with different cell cycle durations can generate mixed cell populations each with their own

diversity levels.

To more faithfully simulate multicellular animal development where cell cycle duration increases

over time, we next allowed progeny cells to differ in their cell cycle duration from their parents in

each generation (Figure 6A). Increasing the cell cycle duration over time reveals that cell cycle

dynamics can alter the number and proportions of cells as a function of time (cell generations;

Figure 6B and Figure 6—figure supplement 1). To compare with a real system, we explore single-

cell transcriptomics data measured over four time points of mouse cortex development

(Yuzwa et al., 2017). Average cell cycle duration over mouse neural cortex development is known

to increase from 8 hr at embryonic day 11 (E11) to an average of 18 hr by E17 (Furutachi et al.,

2015; Takahashi et al., 1995a). Within this range, progenitor cells are, in general, expected to be

characterized by fast cycles with short G1 duration and neurons by slower cell cycles with long G1

duration (Calegari et al., 2005). In our analysis of the mouse cortex scRNA-seq data, we find

that genes with increasing transcript expression across the time course (E11.5 < E13.5 < E15.5 <

E17.5) are associated with neural developmental (maturing cell) pathways, whereas the genes with

decreasing transcript expression across time (E11.5 > E13.5 > E15.5 > E17.5) are associated with

transcription and proliferation (stem and progenitor cell) pathways (Figure 6—figure supplement

2). Furthermore, we observe an overall pattern of an increasing number of cells with long cell cycle

duration and a decrease in fast cycling cells (Figure 6C) following the same general trend as

observed in our simulations (Figure 6A), supporting the idea that cell cycle duration dynamics could

play a role in controlling cell proportions and cell diversity in a developing tissue.

Hypothesis: a cell cycle-dependent transcriptional filter may help
control cell proportion and diversity in tissue development
Our theoretical model and agreement with general trends in scRNA-seq data supports the hypothe-

sis that a cell cycle-dependent transcriptional filter has the potential to control cell proportion and

diversity in tissue development. In this section, we use the model to generate specific questions that

can be checked in real data, further supporting our model.

Organismal level
Our model suggests that organisms with long genes will need to maintain long cell cycle durations

during development. Cell cycle duration measurements are not widely available, which makes

directly testing this hypothesis difficult. Instead, we explored related questions. We started by asking

if organisms with longer genes would also take longer to develop. We analyze gene length distribu-

tions for 12 genomes spanning budding yeast to human with a diverse range of developmental dura-

tions, as shown in Figure 7 and Supplementary file 3 (Gilbert and Barresi, 2016; Jukam et al.,

2017). Non-mammalian species that we analyze are relatively fast developing, ranging from approxi-

mately 2 hr (e.g., Saccharomyces cerevisiae) to a few days (e.g., X. tropicalis and D. rerio), while

mammals (M. musculus, Sus scrofa, Macaca mulatta, and Home sapiens) are relatively slow develop-

ing (20, 114, 168, and 280 days, respectively, Supplementary file 3). These species also have differ-

ent gene length distributions; to illustrate this quantitatively, using a typical transcription rate of 1.5
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Figure 6. Varying cell cycle duration across time affects cell-type proportions. (A) Cell cycle duration increases after each cell division, with amount of

increase defined using a Gaussian distribution. (B) Simulation of gradually increasing cell cycle duration over time, such that G = Gaussian (mean Gparent

± 6, standard deviation s = 0.06), affects the relative proportion of cells with different cell cycle durations (pie charts). All cell progeny are labeled based

on their cell cycle duration (inherited from parent). See Figure 6—figure supplement 1 for results using other increment rates. Parameters:

genome = 10, gene lengths (geneL1
-L
10), l = 1 kb/hr, 18 cell divisions, iterations = 500, ploidy n = 1, RNA polymerase II re-initiation, W ¼ 0:25kb. (C)

Single-cell transcriptomics data from GSE107122 (Yuzwa et al., 2017) for embryonic mouse cortex development, known to exhibit increasing cell cycle

duration over time. This data includes identified cell types, is a time series, and we know the average cell cycle duration at each time point; at E11.5,

the average cell cycle duration is 8 hr and by E17.5 it is 18 hr (Furutachi et al., 2015; Takahashi et al., 1995a). Cells were defined as relatively fast

cycling cells (apical progenitors), relatively medium cycling (intermediate progenitors), and relatively slow cycling (neurons), with cell-type annotation

based on cell clustering analyses conducted in (Yuzwa et al., 2017). We show how cell proportions (pie charts) change across time, with apical

progenitors (relatively fast cycling cells) decreasing in frequency as the average cell cycle duration increases.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Varying cell cycle duration across time affects cell-type proportions.

Figure supplement 2. Genes with increasing transcript expression are associated with neuronal and synaptic pathways.
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Figure 7. Gene length distribution and developmental time are correlated. (A) Model organisms exhibit a large diversity in gene length distributions

over their genomes. Species that have narrower gene length distributions tend to develop faster, while slow developers (mammals) exhibit broad and

right-shifted gene length distributions. Demarcating a 1 hr cell cycle duration using an average transcription rate of 1.5 kb/min illustrates the proportion

of genes that would be interrupted before transcript completion for each organism. Saccharomyces cerevisiae (budding yeast), Caenorhabditis elegans

(worm), Drosophila melanogaster (fruit fly), Oikopleura dioica (tunicate), Danio rerio (zebrafish), Takifugu rubripes (fugu), Xenopus tropicalis (frog), Gallus

gallus (chicken), Mus musculus (mouse), Sus scrofa (pig), Macaca mulatta (monkey), and Homo sapiens (human). (B) There is a clear positive correlation

Figure 7 continued on next page
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kb/min (Ardehali and Lis, 2009), a cell cycle duration of 1 hr can exclude up to 20% total genes

found in relatively slow developers and not exclude any genes in fast developers (Figure 7A). In

agreement with our hypothesis, the gene length distribution is narrower and left shifted (shorter

genes) for fast developers and broader and right shifted (longer genes) for slower developing spe-

cies. Interestingly, one seeming exception to the overall gene length distribution trend in multicellu-

lar animals is the tunicate Oikopleura dioica, which has relatively short genes, but also has a rapid

gestation period of 4 hr to hatched tadpole (approximately twice as fast as C. elegans and six times

faster than D. melanogaster), supporting our analysis. Broadening this analysis to 101 species, we

again find an association (r = 0.74) between estimated developmental time and median gene length

(Figure 7B and Figure 7—figure supplement 1).

Our model suggests that short genes will be enriched in pathways that can function indepen-

dently from long genes, and that long genes may be enriched in pathways related to mature, differ-

entiated cell types with slower cell cycles (Figure 8B). We examined the functions of short and long

genes by conducting a pathway enrichment analysis on all genes in a genome ranked by their length.

In the human genome, the longest genes are enriched in processes such as neural development,

muscle control, cytoskeleton, cell polarity, and extracellular matrix, and the shortest genes are

enriched in processes that presumably need to be quickly activated transcriptionally (e.g., immune,

translation, and environment sensing; Figure 8—figure supplement 1). We performed a similar

pathway analysis for human (Figure 8 and Figure 8—figure supplements 2 and 3) and 12 other spe-

cies (Figure 9) and found general agreement with these patterns, finding the longest genes (gene

length in the 95% quantile) enriched for genes involved in mature cell-related processes (e.g., brain

and muscle development), whereas the shortest genes (gene length in the 5% quantile) are enriched

for genes involved in core processes (e.g., immune, RNA processing, and olfactory receptors).

Spatial level
Within an organism, cell cycle duration and transcript expression vary across many factors, including

spatially. We hypothesize that spatial transcript expression patterns can be initially organized by

gene length. To explore this, we study the developing fruit fly embryo (D. melanogaster) where the

average cell cycle rates differ spatially (Foe, 1989). At the onset of cell cycle 14, cells in different

embryo regions start to divide at different rates, caused by an increase in their gap phase length,

varying from 30 min to 170 min (Foe, 1989; Foe and Alberts, 1983). Cell cycle duration lengthening

is spatially organized, with anterior regions dividing faster than posterior regions, with the mid-ven-

tral region being the slowest (Figure 10). The embryo also exhibits spatial segregation patterns due

to Hoxd gene family transcript expression (Mallo and Alonso, 2013). Overlaying the spatial patterns

of hox gene family transcript expression and cell cycle duration obtained from independent studies,

we observe that fast cycling regions express the shortest hox genes (Dfd 10.6 kb, lab 17.2 kb) and

slow cycling regions express the longest hox genes (Ubx 77.8 kb and Antp 103.0 kb) (Foe, 1989;

Lemons and McGinnis, 2006) in agreement with our model.

Discussion
How cellular processes support the carefully orchestrated timing of tissue development that results

in a viable multicellular organism is still unclear. While a combination of many potential cell autono-

mous and non-autonomous mechanisms, such as cytoplasmic molecules and gradients, cell-cell

Figure 7 continued

between developmental time and median gene length (101 species, Figure 7—figure supplement 1). Estimated developmental time was curated from

the Encyclopedia of Life or articles found in PubMed (Supplementary file 3). We used gestation time for mammals and hatching time for species who

lay eggs (since it is difficult to accurately define a comparative stage for all species). We analyzed the data using a Pearson correlation test, shown as r.

For each species, we calculated median gene length: all protein coding genes were downloaded from Ensembl version 95 (Yates et al., 2016) using

the R Biomart package (Durinck et al., 2009; Durinck et al., 2005). The length of each gene was calculated using start_position and end_position for

each gene as extracted from Ensembl data.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Illustration of the association between developmental time and median gene length across 101 species, grouped by taxonomy
class (Supplementary file 3).
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communication, microenvironment signals, and effective cell size (Edgar et al., 1986;

Mukherjee et al., 2020; Tabansky et al., 2013; Yoon et al., 2017), are likely important, one

hypothesis is that gene length can be used as a mechanism to control transcription time in this pro-

cess (Artieri and Fraser, 2014; Gubb, 1986; Keane and Seoighe, 2016; Swinburne et al., 2008).

Bryant and Gardiner further hypothesize that cell cycle duration may play a role in filtering genes

that influence pattern formation and regeneration (Bryant and Gardiner, 2018; Ohsugi et al.,

1997) as cell cycle lengthens over development (Figure 1 and Supplementary file 1; Foe, 1989;

Foe and Alberts, 1983; Newport and Kirschner, 1982b; Takahashi et al., 1995b). Early experi-

ments using embryos suggested that cell cycle duration has a role in transcription initiation; how-

ever, these experiments lacked the temporal resolution necessary to dissociate the effects of cell

cycle duration and transcriptional control from other mechanisms (Edgar et al., 1986; Edgar et al.,
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Figure 8. Short genes and long genes participate in different pathways. The plot shows the H. sapiens gene length distribution. We selected the

shortest 5% quantile as a list of short genes and the 95% quantile as a list of long genes. Short genes < 1.6 kb (n=1124) are involved in immune

defense, environment-sensing, and olfactory, and long genes >243 kb (n = 1125) are represented in processes involving muscle and brain development,

as well as morphogenesis. For each gene group, we identified all corresponding Gene Ontology (Ashburner et al., 2000) biological process terms

downloaded from the Ensembl genome database version 100 (Yates et al., 2016), grouped the terms into themes (Supplementary files 5 and 6), and

visualized the resulting term frequencies as word clouds using Mathematica. Refer to Figure 8—figure supplements 2 and 3 for a more detailed

analysis of the themes across all gene groups.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Enriched pathways in short (A) and long (B) genes in human.

Figure supplement 2. Genes participate in different pathways.

Figure supplement 3. Moving average across gene length.

Figure supplement 4. Pathway themes are associated with gene length.
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Figure 9. Short genes exhibit different pathways than long genes, and this trend is consistent across a wide species range. We selected the shortest 5%

quantile as a list of short genes (top panels in blue) and genes above the 95% quantile to define a list of long genes (bottom panels in gray).

Saccharomyces cerevisiae (short < 0.24 kb, long > 3.5 kb), Ashbya gossypii (short < 0.36 kb, long > 3.5 kb), Komagataella pastoris (short < 0.37 kb,

long > 3.3kb), Yarrowia lipolytica (short < 0.39 kb, long > 3.5 kb), Caenorhabditis elegans (short < 0.47 kb, long > 9.6 kb), Drosophila melanogaster

Figure 9 continued on next page
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1994; Kimelman et al., 1987; Newport and Kirschner, 1982b; Newport and Kirschner, 1982a). It

is also well known that cell cycle length changes can control cell fate and development

(Coronado et al., 2013; Mummery et al., 1987; Pauklin and Vallier, 2013; Singh et al., 2013);

however, this has remained observational and not linked to a mechanism. To help address these limi-

tations, we developed an in silico cell growth model to directly study the relationship between cell

cycle duration and gene transcription in a developmental context. The new discovery we make is

that a transcriptional filter can be controlled by cell cycle duration and used to simultaneously con-

trol the generation of cell diversity, the overall cell growth rate, and cellular proportions during

development (defining an emergent property of our computational model – see Appendix 1). Geno-

mic information (gene number and gene length distribution) and cell cycle duration are critical

parameters in this model. Across evolutionary time scales, cell diversity can be achieved by altering

gene length (Keane and Seoighe, 2016); however, in terms of developmental time scales, we pro-

pose that cell cycle duration is an important factor that may control cell diversity and proportions

within a tissue.

We predict that increasing the gene length distribution across a genome over evolution can pro-

vide more cell cycle-dependent transcriptional control in a developing system, leading to increased

Figure 9 continued

(short < 0.56 kb, long > 29 kb), Danio rerio (short < 1.3 kb, long > 127 kb), Takifugu rubripes (short < 0.72 kb, long > 27 kb), Xenopus tropicalis

(short < 0.93 kb, long > 83 kb), Gallus gallus (short < 0.67 kb, long > 104 kb), Mus musculus (short < 1.2 kb, long > 183 kb), and Sus scrofa

(short < 0.57 kb, long > 197 kb). For each gene group, we identified all corresponding Gene Ontology biological process terms from the Ensembl

genome database (100) and visualized the resulting term frequencies as word clouds using Mathematica.

Figure 10. Hox gene length is correlated with spatial expression and cell cycle duration in the D. melanogaster embryo. Drosophila Hoxd family genes

are each represented by a colored rectangle, containing the length of the gene in base pairs. Spatial expression of a gene transcript is marked by its

corresponding color on the Drosophila embryo map. Hoxd gene length is correlated with the cell cycle duration of the embryo location where the gene

transcript is expressed, with short Hox gene transcripts expressed in regions with short mitotic cycles and long Hox gene transcripts expressed in

regions of long mitotic cycles. Spatial map of cell cycle duration from Foe, 1989; Foe and Alberts, 1983 and gene transcript expression from

Mallo and Alonso, 2013.
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cellular diversity. Examining a range of genomes and associated data provides support for this novel

idea. We observe that fast-developing organisms have shorter median gene lengths relative to the

broad distributions, including many long genes, exhibited by slow developers (mammals). This

aspect of genome structure may help explain the observed rates of cell diversity and organism com-

plexity, as measured by number of different cell types, over a wide range of species (Figure 7—fig-

ure supplement 1; Valentine et al., 1994; Vogel and Chothia, 2006).

While we hypothesize that a cell cycle-dependent transcriptional filter is a fundamental regulatory

mechanism operating during development (because gene length is fixed in the genome and tran-

scription rate is expected to lie in a narrow range), multiple other regulatory mechanisms could mod-

ulate its effects. Furthermore, exploring these mechanisms may even result in similar conclusions as

it can be evolutionary advantageous to have multiple paths to the same outcome; these include, but

are not limited to, silencing or deactivating genes, gene regulatory networks, blocking gene clusters,

for example, Hoxd (Rodrı́guez-Carballo et al., 2019) changing the transcription or re-initiation rate

of RNA polymerase II (Figure 3—figure supplement 1), or inheriting long transcripts maternally at

the zygote stage (Figure 3—figure supplement 2). Our current model only explores the effects of

transcription and re-initiation rates of RNA polymerase II, mRNA transcript degradation rates, and

maternally introduced transcripts. For the latter mechanism, we expect longer transcripts to be

major contributors during the early maternal phase (Jukam et al., 2017), which agrees with zebrafish

(D. rerio) experiments showing that maternal transcripts are longer and have evolutionary conserved

functions (Heyn et al., 2014). Indeed, if we add maternal transcript inheritance to our model, we see

the same pattern of a small number of long transcripts present early, as expected (Figure 3—figure

supplement 2). Future work would entail curating experimental data about more regulatory mecha-

nisms in cell systems and testing their association with cell cycle duration.

Our analysis raises interesting directions for future work. We focus on development, but transcrip-

tional filtering may be important in any process involving cell cycle dynamics, such as regeneration

(Bryant and Gardiner, 2018), wound repair, immune activation, and cancer. We must also more

carefully consider cell cycle phase as transcription mainly occurs in the gap phases (Bertoli et al.,

2013; Newport and Kirschner, 1982b). Experiments indicate that a cell will have different fates

depending on its phase (Dalton, 2013; Pauklin and Vallier, 2013; Vallier, 2015). This agrees with

our model as a cell at the start of its cell cycle will have a different transcriptome in comparison to

the end of the cell cycle. Induced pluripotent cell state is also associated with cell cycle phases (Dal-

ton, 2015), and efficient reprogramming is only seen in cell subsets with fast cell cycles (Guo et al.,

2014). Our model could explain these observations as slower cycling cells could express long genes

that push a cell to differentiate rather than reprogram. However, our model is limited to total tran-

scription duration for interphase (G1, S, and G2), thus a future direction would be to explore differ-

ent durations for each cell cycle phase. Collecting more experimental data about cell phase in

developing systems will help explore these effects. Further, it will be important to explore how cell

cycle duration is controlled. Molecular mechanisms of cell cycle and cell size (Liu et al., 2018) control

could be added to our model to provide a more biochemically realistic perspective on this topic.

Ultimately, a better appreciation of the effects of cell cycle dynamics will help improve our under-

standing of a cell’s decision-making process during differentiation and may prove useful for the

advancement of tools to control development, regeneration, and cancer. Finally, it is important to

note that we have not provided experimental model support, only analyses that do not disagree

with model predictions. We have also not proven the generality of the results across species. How-

ever, we hope that the hypotheses we explore here motivate new experimental studies to directly

test the validity and generality of our model.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software, algorithm Wolfram, 2017 Mathematica (Wolfram
Research Inc, Mathematica
Versions 11.0–12, Champlain,
IL, 2017) http://www.wolfram.
com/mathematica/

Software, algorithm This paper Cell developmental model
https://github.com/
BaderLab/Cell_Cycle_Theory

Software, algorithm PMID:25867923
Satija et al., 2015

Seurat (3.1.2) https://
satijalab.org/seurat/

Software, algorithm PMID:26687719
Yates et al., 2016

Ensembl (95) and (100)
https://useast.ensembl.
org/index.html

Software, algorithm PMID:10802651
Ashburner et al., 2000

Gene Ontology
http://geneontology.org/

Software, algorithm PMID:16082012
Durinck et al., 2005

BioMart (3.10)
http://useast.ensembl.
org/biomart/martview/

Software, algorithm PMID:21085593
Merico et al., 2010

Enrichment Map software
(3.3.0) https://www.
baderlab.org/Software/
EnrichmentMap

Software, algorithm PMID:14597658
Kucera et al., 2016

AutoAnnotate App
https://baderlab.
org/Software/AutoAnnotate

Software, algorithm PMID:14597658
Shannon et al., 2003

Cytoscape (3.8.0)
https://cytoscape.org/

Software, algorithm PMID:30664679
Reimand et al., 2019

Baderlab pathway
resource (updated
June 1, 2020)
http://download.
baderlab.org/EM_Genesets/

Mathematical model
Our mathematical model is agent and rule-based. A single cell behaves and interacts according to a

fixed set of rules. Our major rule involves a gene length mechanism, where each cell is defined by a

genome and a cell cycle duration. The cell cycle duration determines which gene transcripts are

expressed within the cell, based on the transcription rate. All decisions are based on a cell’s autono-

mous information, and we omit external factors. We deliberately choose to consider this simple

baseline setup to clarify the contribution of cell cycle duration to overall cell population growth.

Each cell is defined by a genome G (containing a set of genes), cell cycle duration in hours, and

the transcripts inherited or recently transcribed. In the genome, each gene is defined by a length,

geneLength. For example, in a genome with three genes, (gene1, gene2, gene3) represents genes of

length 1, 2, and 3 kb, respectively.

Each cell can divide and make two progeny cells. This process can continue many times to simu-

late the growth of a cell population, and we keep track of the entire simulated cell lineage. For each

cell division (one time step in the simulation): each Celli will transcribe its genes based on the time

available, defined by the cell cycle duration. We assume that the time it takes to transcribe a gene

depends on its length and a fixed transcription rate; although a simplification, there are examples

where this occurs, for instance, the human dystrophin gene is 2,241,765 bp long and takes about 16

hr to transcribe (Tennyson et al., 1995). Once a cell cycle is finished, the cell divides. When cells are

synchronized, the first cell division T = Gi. When the cells are asynchronized, then the algorithm iden-

tifies the time allocated as the shortest cell cycle duration in the population as the time step and

each cell division will have a different duration. In this case, we keep track of the exact duration such
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that cells with short cell cycles, for example, G = 1 hr, will register 10 divisions in 10 hr while cells

with long cell cycles, for example, G = 10 hr, will register one division in over the same time. We lim-

ited the model to two modes of division, symmetric (where the cell gives rise to identical cells, e.g.,

Figure 5A) and asymmetric (where the cell gives rise to a fast and slow cell, e.g., Figure 5C). We do

not consider mechanisms that reduce cell numbers (cell death). For certain experiments (e.g., Fig-

ure 6), the cell cycle duration for each progeny is allowed to diverge from the parental duration

using a monotonic function (increasing or decreasing) and a stochastic variable based on a Gaussian

distribution with a mean equal to Gi (parental cell cycle duration). This models a more realistic noisy

distribution of cell cycle durations in the simulated cell population. The cell cycle and division rules

are repeated for all cells in the population until a set number of cell divisions have been reached.

During a cycle, each cell contains a certain number of transcripts. The number of transcripts for

each gene is calculated by a function of cell cycle duration, G, transcription rate, l, re-initiation dis-

tance, W, and gene length, L:
PgeneLi

W
�1

a¼0
G�l� aW

l
. If the cell does not divide, then the number of tran-

scripts reflects the current cell cycle phase, which is computed and stored. If the cell can divide

within the time T = G�lð Þ, then it will randomly, according to a uniform distribution, assign its tran-

scripts between its two progeny cells. Typically, simulations were conducted with l=1, simplifying

the analysis to G� aWð Þ=geneLi ; however, we also explored the effects of transcript re-initiation and

transcription rate on the system as shown in Figure 3—figure supplement 1.

Our model tracks single cells, with each cell identified by a transcriptome and cell cycle duration.

The transcriptome data resemble a scRNA-seq matrix to aid comparison between simulation and

experimental data. We allow cells without any transcripts, for example, (0,0,0) to exist – due to the

low numbers of genes considered in our simplified model and results, and that parental transcripts

are distributed between progeny, there is a probability of 2/(the total number of transcripts) that all

the transcripts will end up in only one of the new cells, leaving the other one empty (Zhou et al.,

2011). Theoretically we have no reason to omit these cells, and they may represent the most naı̈ve

theoretical state of a cell without any prior information. Early embryos, such as in Xenopus stages

that lack zygotic transcription, may be similar real systems to such a state (Newport and Kirschner,

1982b).

Parameters tracked for each celli = (number of divisions, current cell cycle phase, current time in

cell cycle, length until next division, relative time passed, total cell cycle duration, transcriptome list,

cell name, and lineage history). All cells are set with the same genome, ploidy level, and RNA poly-

merase II transcription rate and RNA polymerase II re-initiation distance.

Our model was developed and simulated using Mathematica (Wolfram, 2017).

Quantification and statistical analysis
Gene length analysis
All protein coding genes were downloaded from Ensembl genome database version 95 or 100

(Yates et al., 2016) using the R (3.6.1) Biomart package version 3.10 (Durinck et al., 2005). The

length of each gene was calculated using start_position and end_position for each gene, as

extracted from the Ensembl database (Yates et al., 2016).

Single-cell analysis pipeline
Simulated data sets were preprocessed and clustered in R using the standard workflow implemented

in the Seurat package version 3.1.2 (Satija et al., 2015). We used default parameters unless other-

wise stated. Data were log-normalized and scaled before principal component analysis (PCA) was

used to reduce the dimensionality of each data set. Due to the small number of simulated genes in

our experiments, the maximum number of PCs (one fewer than the number of genes dims = 1:3)

was calculated and used in clustering. FindVariableFeatures was used with loess.span set to 0.3

unless the number of genes was less than 5, then (0.4, 0.7, and 1 were used for simulations with 4, 3,

and 2 genes, respectively). Cells were clustered using a shared nearest neighbor (SNN)-based ‘Lou-

vain’ algorithm implemented in Seurat with reduction set as ‘pca.’ The clustering resolution was set

to 1 for all experiments, and all calculated PCs were used in the downstream clustering process

using the Louvain algorithm accessed via Seurat. Data was visualized with t-SNE after clustering.
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Developmental time curation
Estimated developmental time was curated from the Encyclopedia of Life or PubMed accessible

articles (Supplementary file 3). We used gestation time for mammals and hatching time for species

who lay eggs (since it is difficult to accurately define a comparative stage for all species). Species

were grouped based on their taxonomic class and their developmental time was estimated by calcu-

lating the average number of days from zygote to birth or hatching.

Pathway enrichment analysis
We used Gene Set Enrichment Algorithm (GSEA version 4.0.2), in pre-ranked analysis mode, to iden-

tify pathways enriched among all genes in a genome ranked by gene length (Subramanian et al.,

2005). Gene ranks started at (number of genes)/2 to its negative equivalent and were normalized

such that we generated a ranked list from 1 to �1, with 1 specifying the shortest gene and �1 the

longest. The ranked gene length list was analyzed for pathway enrichment GSEA with parameters

set to 1000 gene set permutations and gene set size between 15 and 200. Pathways used for the

analysis were from Gene Ontology biological process (Ashburner et al., 2000), MSigDB c2

(Ashburner et al., 2000), WikiPathways (Slenter et al., 2017), Panther (Mi, 2004), Reactome

(Croft et al., 2011), NetPath (Kandasamy et al., 2010), and Pathway Interaction database

(Schaefer et al., 2009) downloaded from the Bader lab pathway resource (http://baderlab.org/Gen-

eSets). An enrichment map, created using the EnrichmentMap Cytoscape app version 3.3.0

(Merico et al., 2010), was generated using Cytoscape (version 3.8.0) using only enriched pathways

with p-value of 0.05 and FDR threshold of 0.01 (Reimand et al., 2019). Cross-talk (shared genes)

between pathways was filtered by Jaccard similarity greater than 0.25. Pathways were automatically

summarized using the AutoAnnotate App to assign pathways to themes (Kucera et al., 2016).

Themes were further summarized by grouping pathways into more general themes with a mixture of

automatic classification using key words and manual identification.

Pathway word cloud analysis
All Gene Ontology pathways (GO biological processes) were downloaded from the Ensembl

genome database, version 100 (Yates et al., 2016), using the R Biomart package version 3.5

(Durinck et al., 2005). We restricted analysis to pathways with at least three genes. We grouped

genes based on their gene length (see Gene length analysis for details) and identified the pathways

associated with each gene. The description of each pathway was collected and the frequency of

each word within the pathway name was calculated. We defined themes (Supplementary files 5 and

6) for all H. sapiens available pathways (using only GO biological processes). Common, generic, and

uniformly distributed themes (such as cellular response, metabolic biosynthesis, protein processes,

signaling, and transcription) were manually removed from the list. The frequencies were visualized as

word clouds using Mathematica (Wolfram, 2017).

Data and code availability
Our simulation code is available at https://github.com/BaderLab/Cell_Cycle_Theory

(Chakra, 2021 copy archived at swh:1:rev:7eb38b679e917ba8522b17edae5498990a221ffc).
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Appendix 1

Why is cell cycle duration changing?
While defining a general mathematical representation of cell cycle kinetics for a developing system,

we assembled available cell cycle length measurements from published studies for various species

and tissues. Figure 1 shows measurements obtained from M. musculus. For other data, see

Supplementary file 1. The data motivated us to ask ‘why is cell cycle duration changing over devel-

opment?’ and propose that changes in cell cycle duration can be used to guide the progression of

cell development.

Theoretically we devised a simple model that can test this idea by assuming

. Cell cycle duration can change across developmental time

. Gene length distribution is constant among all cells in the same organism, such that we can
denote the length by L

. The difference in cell cycle can affect the time a cell spends transcribing genes

. All active genes are transcribed and transcription rate is constant in a cell

The novel aspect of our work is the proposal that a cell cycle-dependent transcriptional filter can

control cellular diversity within a tissue over development. However, some of the concepts that we

build on are known and are recognized in the community to varying degrees. We bring these

together for the first time to support the model and generate predictions. In particular, we list these

concepts below and clarify our novel contribution.

Prior contributions:

. Cell cycle lengthens over development.

� ’The Xenopus embryo undergoes 12 rapid synchronous cleavages followed by a period of
slower asynchronous divisions more typical of somatic cells after which the cell cycle dura-
tion continues to increase.’ (Newport and Kirschner, 1982a); https://pubmed.ncbi.nlm.
nih.gov/6183003

� ’In D. melanogaster early development, the first 10 cell divisions are fast and synchronous,
then progressively increase in cell cycle duration.’ (Foe, 1989; Foe and Alberts, 1983);
https://pubmed.ncbi.nlm.nih.gov/6411748; https://pubmed.ncbi.nlm.nih.gov/2516798

� The cell cycle lengthens during M. musculus brain development. ’The length of the cell
cycle increases from 8.1 to 18.4 hr, which corresponds to a sequence of 11 integer cell
cycles over the course of neuronal cytogenesis in mice. The increase in the length of the
cell cycle is due essentially to a fourfold increase in the length of G1 phase which is the
only phase of the cell cycle which varies systematically.’ (Takahashi et al., 1995a); https://
pubmed.ncbi.nlm.nih.gov/7666188

� We also compiled cell cycle duration from 25 papers, which clearly support this statement
(see Figure 1 and Supplementary file 1).

. Gene length controls transcription timing. Short cell cycles limit transcription and long cell
cycles allow transcription of longer genes.
� Cell cycle duration can limit transcripts based on their size

. Short cell cycles can constrain transcription in D. melanogaster. ’The length of mitotic
cycles provides a physiological barrier to transcript size, and is therefore a significant
factor in controlling developmental gene activity during short "phenocritical" peri-
ods.’ (Rothe et al., 1992); https://pubmed.ncbi.nlm.nih.gov/1522901

� Zygotic transcripts are encoded by short genes and start being expressed when cell cycle
lengthens.
. ’We propose that early development in Drosophila operates according to a hierarchy

of events. The first 13 division cycles are driven by a maternal mechanism which
responds to the increasing nuclear density by extending the interphase periods of
successive cycles. This lengthening of interphases allows transcriptional activation,
and the expression of new zygotic gene products triggers events such as cellulariza-
tion of the blastoderm, gastrulation, and further rounds of mitosis.’ (Edgar et al.,
1986); https://pubmed.ncbi.nlm.nih.gov/3080248

. D. rerio zygotic transcript lengths are shorter than maternally provided ones; the earli-
est zygotic genes are without introns. (Heyn et al., 2014; Kwasnieski et al., 2019;
Shermoen and O’Farrell, 1991); https://pubmed.ncbi.nlm.nih.gov/1680567; https://
pubmed.ncbi.nlm.nih.gov/24440719; https://pubmed.ncbi.nlm.nih.gov/31235656
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� Longer genes, with larger introns, take longer to transcribe (‘intron delay’).
. Intron delay and transcriptional timing can affect development. (Artieri and Fraser,

2014; Gubb, 1986; Swinburne and Silver, 2008); DOI:10.1002/dvg.1020070302;
https://pubmed.ncbi.nlm.nih.gov/18331713; https://pubmed.ncbi.nlm.nih.gov/
2506953

. Cell cycle-dependent transcriptional filter is a mechanism for gene transcript expression
regulation.
� Hypothesized in Bryant and Gardiner, 2016, but no analysis or experimental data to sup-

port this statement is provided in this publication.
. Cell cycle length changes can control cell fate and development.

� In cell lines
. Differentiation can be induced in G1-phase isolated pluripotent embryonal carcinoma

cells by treating with retinoic acid (RA) while other cell cycle phases are not RA stimu-
lated. (Mummery et al., 1987); https://pubmed.ncbi.nlm.nih.gov/2883052

. ’A short G1 phase is an intrinsic determinant of naı̈ve embryonic stem cell pluripo-
tency.’ (Coronado et al., 2013); https://pubmed.ncbi.nlm.nih.gov/23178806

. ’The cell cycle state of stem cells determines cell fate propensity.’ (Pauklin and Val-
lier, 2013); https://pubmed.ncbi.nlm.nih.gov/24074866

. Embryonic stem cells are more responsive to differentiation signals in G1 than in
other phases of the cell cycle. (Singh et al., 2013); https://pubmed.ncbi.nlm.nih.gov/
24371808

� In an organism
. Alteration of cell cycle length can cause changes in Gallus gallus limb pattern. Gene

transcripts normally expressed in mesenchyme cells are sensitive to cell cycle length.
(Ohsugi et al., 1997) ; https://pubmed.ncbi.nlm.nih.gov/9281333

. Transcription rate and duration

� Transcription elongation rate is about 1.4 kb/min
. Transcript elongation rates tend to be uniform within a cell type. (Ardehali and Lis,

2009) ; https://pubmed.ncbi.nlm.nih.gov/19888309
. Transcription of human dystrophin gene requires 16 hr. (Tennyson et al., 1995);

https://pubmed.ncbi.nlm.nih.gov/7719
� Transcription is repressed in S phase.

. Early evidence that transcription is repressed in synthetic phase (S). (Newport and
Kirschner, 1982b) ; https://pubmed.ncbi.nlm.nih.gov/7139712

. ’Upon G1–S transcriptional activation, cells progress to S phase, initiate DNA replica-
tion, and subsequently inactivate transcription.’ (Bertoli et al., 2013); https://
pubmed.ncbi.nlm.nih.gov/23877564

Our novel contributions

. Our main novel claim: we are the first to link cell cycle duration to control of cell diversity and
proportions of cells in tissues.

. We are the first to support the idea that a cell cycle-dependent transcriptional filter is a mecha-
nism for gene transcript expression regulation that affects development using quantitative
modeling.

. We are the first to link gene length distribution in genomes of multiple species to length of
organism development.

. We are the first to show major functional differences between short and long genes in animal
genomes.

. Our single-cell transcriptomic mathematical model is novel and shared as a community
resource.
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