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An intact intestinal barrier, representing the interface between inner and outer
environments, is an integral regulator of health. Among several factors, bacteria and
their products have been evidenced to contribute to gut barrier impairment and its
increased permeability. Alterations of tight junction integrity - caused by both external
factors and host metabolic state - are important for gut barrier, since they can lead to
increased influx of bacteria or bacterial components (endotoxin, bacterial DNA,
metabolites) into the host circulation. Increased systemic levels of bacterial endotoxins
and DNA have been associated with an impaired metabolic host status, manifested in
obesity, insulin resistance, and associated cardiovascular complications. Bacterial
components and cells are distributed to peripheral tissues via the blood stream,
possibly contributing to metabolic diseases by increasing chronic pro-inflammatory
signals at both tissue and systemic levels. This response is, along with other yet
unknown mechanisms, mediated by toll like receptor (TLR) transduction and increased
expression of pro-inflammatory cytokines, which in turn can further increase intestinal
permeability leading to a detrimental positive feedback loop. The modulation of gut barrier
function through nutritional and other interventions, including manipulation of gut
microbiota, may represent a potential prevention and treatment target for
metabolic diseases.
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INTRODUCTION

While the obesity and type 2 diabetes (T2D) pandemics are
increasing at a fast pace (1), new factors relevant to the lack of
adaptation toward the increasingly rapid changes in our
environment have been proposed as possible perpetrators. Among
those, the intestinal microbiota and its interactions with host
metabolism and the immune system have been acknowledged to
influence and contribute to several diseases including
gastrointestinal disorders such as inflammatory bowel diseases (2)
and more recently the plethora of metabolic and cardiovascular
diseases (3, 4). However, the underlying mechanisms are still
unknown (5–7). One poorly understood feature of metabolic
disease is the alteration and dysfunction of the intestinal barrier,
accompanied with an increase in intestinal permeability. The
healthy gut barrier constitutes a crucial boundary protecting the
host from external stimuli and pathogens by providing spatial
compartmentalization and various defense mechanisms, while
concurrently allowing the uptake of necessary nutrients (8). While
the influx of microbial products has been suggested to underlie
chronic inflammation observed in metabolic disease and more
specifically T2D (9), clinical features of metabolic diseases such as
hyperglycemia in T2D have been associated with increased influx of
microbial products in humans reflective of glucotoxicity (10). First
studies in the 1950s suggested that increased endotoxins, which are
lipopolysaccharides of gram-negative bacteria in the circulation
result from an increased intestinal permeability (11). Although
still under debate, independent studies in mice and humans could
confirm these results (12–16). In 1984, the term “leaky gut”was first
introduced when Bjarnason et al. reported that patients with
excessive alcohol consumption had increased intestinal
permeability (17), which is also referred to as hyperpermeability
(18). In the following years research on intestinal permeability
focused on autoimmune and inflammatory diseases such as celiac
disease (19, 20) or Crohn’s disease (21). Only recently, possible
associations between intestinal permeability and characteristics of a
metabolic disease like obesity or T2D have emerged as plausible and
attractive targets in the field of obesity research.

In this review, we aim to highlight underlying mechanisms of
an impaired intestinal barrier and its possible impact on
metabolic health. We specifically discuss recent findings on
how endotoxemia and translocation of bacteria, bacterial
genetic material and products may cause tissue and organ
dysfunction subsequently contributing to metabolic diseases.
THE INTESTINAL BARRIER

Components of Intestinal Barrier
The intestine represents an active interface, where external
environmental factors, such as diet, medication and the billions
of symbionts inhabiting our gut co-exist and interact – usually
peacefully – with host factors including the immune system
(Figure 1A). The intestinal barrier allows and facilitates the
uptake of nutrients and water from the intestinal lumen, whilst at
the same time providing effective mechanisms to combat
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harmful substances and pathogens and prevent their
translocation into the host circulation and peripheral tissues
(22) (Figure 1B). These checkpoints comprise an intricate
network of mechanical and immunological factors including
the mucus, the epithelium and the underlying lamina propria
(22) as well as humoral and immunological factors. The goblet
cells produced mucus layer constitutes of mucin and forms a
protective barrier, limiting the amount of bacteria reaching the
epithelial cells (23). Epithelial cells form microvilli, protrusions
in the range of 100 nm width, that help to increase the area for
absorptions of ions and nutrients using specified receptors (24).
This line of densely arranged microvilli is termed brush border,
which, on the one hand, physically prevents bacteria coming in
contact with the cell soma, but otherwise help to actively
combat pathogenic bacteria (25). For example, native luminal
vesicles containing intestinal alkaline phosphatase are released
from the tips of the microvilli, helping to dephosphorylate
lipopolysacchradies (LPS), hinder bacterial growth and prevent
adherence of enteropathogenic E. coli to the epithelial cell layer
(26). Epithelial cells are connected by tight junctions (TJ), which
hinder the entry of pathogens while regulating the paracellular
flow of water, small ions and nutrients (27). Tight junction
complexes mainly consist of occludin and members of the
claudin family. Expression of the latter is tissue-specific and
the claudin composition defines the kind and function of a
specific tight junction, e.g., claudin-7 reduces permeability to
anions and claudin-1 reduces permeability to cations (28, 29).
Claudins and occludin are connected to the cytoskeleton by
scaffolding proteins including zonula occludens (ZO) proteins
(30) (Figure 1C). Additionally, cells are connected by adherence
junctions (for cell-cell signaling) (31) and desmosomes (for cell
stability) (32). The mechanical gut barrier interacts constantly
with and is highly impacted by local immune components
consisting of soluble Immunoglobulin A (IgA), epithelial and
Paneth cell produced, and secreted antimicrobial peptides such
as alpha-defensins, lysozyme, and C-type lectin (33) providing
additional protection to the epithelial layer and the crypts of
Lieberkühn (34). Not less important are cells belonging to the
innate and adaptive immunity system such as macrophages,
dendritic cells (35), T-regulatory cells (36) and the highly
dense lymphoid tissues inhabiting the lining of the gut but also
highly active in adjunct lymph nodes (37). Disruptions in this
intricately balanced system through toxins, microorganisms,
nutrients, or food contaminants can lead to an alteration of the
intestinal permeability, by an increased and inadequately
controlled influx via the paracellular and transcellular pathway.

The regulation of this system can, under both physiological
and pathophysiological conditions, be altered by various
endogenous and exogenous factors as discussed in the
following paragraph.

Endogenous Regulation of the Intestinal
Permeability
A constant challenge for upholding the integrity of the intestinal
barrier is the continuous cell shedding on the tip of the villi, with
a turnaround time of about five days (38). Tight junctions are
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redistributed to block the gap under involvement of rho kinase
(39). Other signal cascades involved in tight junctions regulation
under physiological conditions include protein kinase C’s (PKC)
and mitogen-activated protein kinase (MAPK) pathways, which
regulate protein phosphorylation and expression allowing a
Frontiers in Endocrinology | www.frontiersin.org 3
selective transport of molecules (40). In disease, increased
proinflammatory cytokines such as interferon-g (INF g) and
tumor necrosis factor a (TNF-a) shift the homeostatic balance
(27) by downregulating the expression of claudin-1 (27) and
increasing occludin and claudins-1 and -4 internalization,
FIGURE 1 | Causes and consequences of increased intestinal permeability; (A) An interplay between environmental factors, nutrients, drugs and the microbiome
defines our intestinal lumen and can directly or indirectly alter permeability of the epithelial cell layer; (B) Increased cell shedding under pathophysiological conditions
or the reversible interaction with and opening of tight junctions under allow an influx of pathogens including bacteria or their nucleic acids, metabolites, and
lipopolysaccharides as well as further substances and toxins; (C) Paracellular transport via tight junctions is regulated by various kinases and inflammatory cytokines,
nutrients and bacteria can interfere with claudin and occludin expression; (D) First entry points of invading substances are capillaries and lymph vessels of the villi
and tissues in close proximity such as mesenteric adipose tissue; (E) Endotoxin is rapidly and constantly cleared in the liver; (F) Next to the gut lumen, pathogens
could also invade through the oral cavity, the skin and the lung; (G) Under constant interactions and clearance with the immune system the LPS and bacteria are
transported in the circulation, thereby LPS can be bound to various proteins and cells including erythrocytes and lipoproteins; (H) Effected distant organs include
adipose tissue, pancreas tissue and possibly muscle tissue; (I) Pathogens interact with many receptors, i.e., LPS is recruited to TLR-4 leading to increased
expression and secretion of inflammatory cytokines.
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leading to an increasingly compromised gut permeability, as
shown in T84 cells via immunofluorescence microscopy (41).
Further mechanisms of INF-g induced permeability in T84 cells
involve phosphatiodylinositol-3-kinase/protein kinase B (PI3-K/
Akt) activation and a delayed but prolonged NF-kB response
(42) (Figure 1C). This is of particular interest, as metabolic
diseases are usually attended by a chronic low grade
inflammation (43), possibly initiating a detrimental positive
feedback loop.

Mechanisms leading to whole bacterial translocation through
the mucosal barrier remain unclear. Several studies suggest
transcytosis via M-cells (44), which uptake large antigens and
particulate matter such as viruses, bacteria, and protozoa
through receptor mediated endocytosis (45). The transcellular
pathway can be triggered and upheld by low concentrations of
INF-g (that are insufficient to alter the paracellular pathway), as
shown by Clark et al. in Caco-2 cells (46). This uptake is also
dependent on extracellular signal-regulated kinase (ERK) 1/2
and ADP-ribosylation factor (ARF)-6 signaling (25, 47).

Exogenous Perturbation
Several external factors, including bacteria, alcohol consumption,
nutrition and medication have an impact on the intestinal
permeability (34). A high caloric “western” diet, in particular
due to high-fat/low-fiber content (48) and food additives (49), is
associated with adverse changes in the microbiome (50) and both
are independently important factors in the development of
metabolic diseases. Whereas pathogenic bacterial species such
as enteropathogenic E. coli (51–53), H. pylori (54), S.
Typhimurium (55), and V. cholera (56) increase intestinal
permeability, the totality of the gut microbiota contributes
equally to upholding the gut barrier health by shaping
tolerogenic mechanisms controlling the responses of resident
dendritic cells and macrophages (57). Pathogenic bacteria can
use their type III secretion system to alter the host cytoskeleton in
their favor to facilitate entry to epithelial cells (58), but also non-
invasive parasites like G. lamblia can introduce adverse changes,
in this case by causing microvilli shortening and TJ disruption
(25, 59). Moreover, beneficial effects were reported for gut
bacteria produced short chain fatty acids (60, 61), in particular
butyrate (61, 62), which has been shown to act as an energy
source for colonocytes (63), regulate hypoxia induced factor 1a
(HIF-1a) dependent expression of many pro-barrier genes in
intestinal epithelial cells (64), facilitate tight junctions assembly
(61) and induce colonic regulatory T-cells, leading to the
suppression of inflammatory and allergic responses (62).
Taxonomic groups-wise, A. muciniphila (65), Bifidobacterium
(66), and lactic acid producing bacteria like L. plantarum (67)
and L. reuteri (68) were, among others, also reported to improve
intestinal permeability (Figure 1A).

Experimental evidence for the effect of food components
mostly stems from rodent and cell culture experiments.
Glucose, well known for its many adverse effects in metabolic
disease (69), is partially transported paracellularly and enhances
small intestinal permeability (70), increases Caco-2 cell
permeability and leads to altered TJ arrangements (71).
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Recently, Thaiss et al. demonstrated a key role for
hyperglycemia in impairing the barrier function by increasing
retrograde uptake of glucose into epithelial cells via the glucose
transporter (GLUT)-2 transporter, leading to changes in
intracellular glucose metabolism and to transcriptional
reprogramming. The latter includes, among others, alterations
in the expression of genes involved in N-glycan biosynthesis and
pentose-glucuronate interconversion, two pathways linked to the
maintenance of epithelial barrier function (10). Further food
components increasing TJ permeability include salt (72) and
various fatty acids (73), all of which are known to contribute to
obesity development (74, 75). Another important nutritional
factor affecting the intestinal permeability is gliadin, a
component of gluten found in wheat. In mouse experiments,
Lammers et al. found that gliadin increased permeability by
binding to the chemokine receptor 3 (Cxcr3) (76) (Figure 1A).
Beneficial effects on intestinal permeability were reported for
casein (77) and other cheese peptides (78), vitamin D (79) as well
as polyphenols (80, 81), which is in line with findings that
polyphenol rich diets ameliorate metabolic disease (82).
Furthermore, addition of apple-derived pectin to a high fat diet
(HFD) counteracted some negative effects of HFD by preventing
microbial shifts and improving barrier function due to increased
expression of claudin-1 and abating metabolic endotoxemia (83).

Moreover, occludin and claudin expression are subject to
circadian control, associated with regulation of intestinal
permeability and susceptibility to colitis (84). This is further
substantiated by the increase in intestinal permeability after
circadian disruption in mice leading to promotion of alcohol
induced liver disease and inflammation (85). Similarly, gut
bacterial signatures related to diurnal oscillation also enable
the risk stratification and prediction of T2D within 5 years of
sampling (86) linking circadian control with gut microbiota
profiles and intestinal permeability regulation and downstream
metabolic sequalae.
INTESTINAL PERMEABILITY IN
METABOLIC DISEASE

Animal Studies
An increased intestinal permeability is the key factor for the
migration of toxins and bacterial components to the circulation.
First evidence for a link between obesity and increased
permeability was found in mouse studies. Brun et al. used
Ussing chambers – a physiological system to measure the
transport of ions, nutrients, and drugs across epithelial tissues
including the gut (87, 88) to analyze the barrier integrity in
leptin-deficient (ob/ob) and hyperleptinemic, but leptin-receptor
mutant (db/db) mice, a widely used animal models in obesity-
induced T2D (89). They observed a significantly increased
permeability, which was more prominent in db/db mice. This
was accompanied by an increase in portal endotoxemia and
systemic inflammation parameters (90). Later, changes in the
microbiome were found to be an important factor linking
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intestinal permeability to inflammation (91, 92). In a key study,
Cani et al. could further show that a HFD resulted in increased
levels of plasma endotoxin as well as a reduced expression of TJ
genes ZO-1 and occludin. This effect was reduced when mice on
HFD were treated with antibiotics and plasma endotoxin levels
were positively correlated with markers of inflammation
(Plasminogen-Aktivator-Inhibitor 1, PAI-1) and oxidative
stress (six transmembrane protein of prostate 2, STAMP2) (9).
It was further shown that the shift in the intestinal permeability
of mice on HFD could be attributed to claudin switching, which
leads to tight junction restructuring. In this case, the expression
of claudin-1,-3,-4,-7, and -15 decreased, whereas expression of
claudin-2 increased (93). However, as shown in db/db diabetic
mice with induced C. rodentium infection, physiological
countermeasures are in place to overcome initial intestinal
barrier impairment. In particular, exogenous IL-22 restored
mucosal host defense as indicated by histological evaluation (94).

Human Studies
Although some studies have linked intestinal permeability with
metabolic disease in humans, they should be seen with caution,
as they did not employ reproducible and robust methods to test
for gut permeability such as lactulose/mannitol (La/Ma) or
similar tests and Ussing chambers. In 2011 Gummesson et al.
reported an association between intestinal permeability and
increased visceral obesity in 67 otherwise healthy women (95)
and in 2012, Teixeira et al. corroborated these finding by
showing that increased permeability is associated with
increased BMI and insulin resistance in 40 patients with
obesity and T2D (96). Damms-Machado et al. similarly
reported a correlation between intestinal permeability and
Homeostasis Model Assessment for insulin resistance (HOMA-
IR) in 27 individuals with obesity of which 18 suffered from the
metabolic syndrome (97). Furthermore, Luther et al. reported in
a meta-analysis showing that nonalcoholic fatty liver disease
(NAFLD) was associated with increased intestinal permeability
(odds ratio increased intestinal permeability=5.1), which was
even more prominent in nonalcoholic steatohepatitis (NASH)
(odds ratio=7.2) (98). Challenging this hypothesis with
interventions has seldom been done: A low-caloric diet of 800
kcal/day was able to significantly reduce the intestinal
permeability, indicating the relevance of nutrition as a fast
acting player influencing intestinal permeability (99). Further
interventions leading to mechanistic insights in the link between
metabolism and intestinal permeability are highly warranted.
METABOLIC ENDOTOXEMIA AND THE
TRANSLOCATION OF BACTERIAL
GENETIC MATERIAL AND LIVE BACTERIA
IN HUMAN TISSUES: A COMPARTMENT
CENTERED APPROACH

The evidence related to translocation of bacterial components,
live bacteria, and bacterial metabolites into the circulation and
Frontiers in Endocrinology | www.frontiersin.org 5
beyond is highly dependent on the tissue studied leading to
diverging degrees of confidence in the relationship between gut
permeability, organ dysfunction and overall modulation of host
metabolism. On their way from the gut, bacteria are enriched
in mesenteric lymph nodes (MLN) (Figure 1D) both in
health and in disease as evidenced in translocation of enteric
microorganisms to MLN in patients with advanced cirrhosis
(prevalence 30.8%) and comparable prevalence of bacterial
translocation (~8%) in patients and healthy controls after
selective intestinal decontamination (100). Consequently, it is
postulated that immune cells interacting with bacteria are
activated in the MLN after which they are redistributed in the
blood (Figure 1H) (101). Similarly, bacterial products have also
been implicated as mediators between the gut microbiota and
peripheral organs: A major part of consumed dietary fibers are
fermented by bacteria in the colon, which results in various
metabolites, including short chain fatty acids (SCFA) (102).
SCFA are readily absorbed by the colonocytes and only a small
part is secreted (103). Production of SCFA increases with a fiber-
rich diet (102), and increased circulating levels of SCFA are
associated with improvements in insulin sensitivity and
decreased levels of lipolysis, triacylglycerols, and free fatty acids
in humans (104).

Beyond the blood, there seem to be unexpected and promising
niches of bacterial translocation and bacterial targeted action are
currently drawing increasingmultidisciplinary attention leading to
a paradigm shift in the study and definition ofmetabolic diseases as
“non-communicable” diseases.

Impact of Blood Borne Bacteria and
Bacterial Components on Metabolic
Disease
Lipopolysaccharides in Health and Disease
The measurement of bacterial components in the circulation
allows an indirect verification of increased intestinal
permeability. This link has emanated from the observation that
sepsis is associated with an acute but reversible state of insulin
resistance (105). To this end, most studies have focused on the
measurement of LPS, i.e., endotoxins, which are molecules on the
outer membrane of gram-negative bacteria. The condition of
increased exposure to bacterial LPS in the blood in obesity or
metabolic disease is referred to as “metabolic endotoxemia”. Fat
intake is associated with an increase in postprandial LPS levels
(106), which have been shown to be distributed from the gut into
the circulation via the mesenteric lymph nodes using freshly
formed chylomicrons (Figure 1D) (107). LPS is recognized and
bound by both LPS-binding protein (LBP) and soluble cluster of
differentiation (sCD14), which can also be used as marker
proteins, and recruited to the TLR 4 (108). The highest
proportion of LPS in the circulation is bound to lipoproteins,
whereby most of LPS is bound to high density lipoprotein (HDL)
(109). Smaller fractions of LPS are also bound to platelets (110,
111), monocytes (112) and erythrocytes (113, 114) or are present
as free LPS (115) (Figure 1G). However, these observations
mostly stem from models of sepsis. Endotoxin and other
bacterial components taken up from the gut due to increased
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intestinal permeability will presumably enter the portal vein and,
as a first step be transported to the liver, where they are rapidly
cleared. Clearance mostly takes place in the liver after uptake
via – among other routes – various lipoprotein receptors, e.g.,
LDL-R (115) and is mainly accomplished by hepatocytes and
Kupffer cells to be then excreted to the bile (Figure 1E). Moreover,
since binding of LPS with lipoproteins and chylomicrons has
been shown to prevent endotoxin induced monocytes activation
and secretion of proinflammatory cytokines (116, 117), the
redistribution and increased content of phospholipids among
the different lipoproteins has been suggested as a potential
mechanism for the attenuation of the immunostimulatory
effects of LPS.

LPS is detectable in low concentrations even in healthy
subjects, and a single meal with high fat content already
increases LPS levels (118, 119). In the last years, many studies
in large cohorts reported increased levels of LPS and LBP in
subjects with metabolic syndrome or T2D (120–123). Pussinen
et al. analyzed LPS levels of patients with prevalent (n=537) and
incident T2D (n=462) and compared them to a control group
(n=6,170), of which about 20% had the metabolic syndrome.
Endotoxin was significantly increased in individuals with T2D
and endotoxin activity was associated with an increased risk for
incident T2D, independently of other metabolic risk factors
(121). Furthermore, serum endotoxin was linearly associated
with the number of metabolic syndrome traits (121). Direct
administration of LPS induced insulin resistance and systemic
inflammation (124) and an 8-weeks long overfeeding
intervention was associated with increased endotoxemia,
linking overnutrition with endotoxemia and insulin resistance
(125). A more recent study by Cox et al. used LPS, LBP as well as
intestinal fatty acid binding protein (iFABP) to calculate a
permeability risk score, which was increased in individuals
with type 2 diabetes (123). In secondary complications, such as
NAFLD, even higher endotoxin levels are reported (126).
Mechanistic insights in the cascades underlying the effects of
LPS on gut permeability and subsequent metabolic impact stem
from mice studies, where subcutaneous LPS infusion has been
shown to lead to an obese phenotype, comparable to that of mice
on high-fat diet, including increased glucose and insulin levels as
well as whole body and adipose tissue weight gain (106).
Moreover, LPS application in vitro has been shown to result in
an increase in gut permeability through tight junction
dysfunction via a TLR4-dependent process (127), which is the
most specific LPS receptor (128, 129) (Figure 1I).

As for the impacts of metabolic intervention on LPS: Roux-
en-Y gastric bypass (RYGB) surgery has been shown to reduce
LPS levels by 20 ± 5% after a 180 days follow-up period in
patients with obesity and T2D (122), which could also be
confirmed for sleeve gastrectomy and duodenal switch
procedures (130, 131).

Most of the studies looking at LPS however neglect the fact,
that LPS from different bacteria has a high heterogeneity in its
chemical structure, mostly due to variation in the O-antigen
polysaccharide (132, 133), and consequently, biological function
(134). The latter was nicely demonstrated by Vatanen et al.,
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showing that LPS derived from B. dorei counteracts the
immunostimulatory activity of E. coli LPS (134). To our
knowledge, there are no studies looking at LPS variation in
metabolic disease published so far.

That being said, a reduction of intestinal permeability has
been evidenced both in rat and human models of bariatric
surgery (135). In rats undergoing duodenojejunal bypass
surgery (DJB), intestinal permeability as assessed by Ussing
chamber studies and dextran-FITC through mucosa-to-serosa
flux was reduced in the alimentary and common limb as well as
the colon, consistently supported by increased mucosal
expression of occludin in both the alimentary and common
limbs after DJB. LPS and LBP levels were not different between
DJB and sham operated rats, possibly due to increased bacterial
counts and compensatory increased intestinal surface in the
remaining intestine. This is in contrast to data from humans,
where mucosal surface was significantly reduced after surgery
and occludin as well as zonula occludens expression was reduced.
Congruently though, intestinal permeability as assessed by
Ussing chambers was decreased owing to an increased
expression of claudin-3-expression (136), further tying up
reduction of microbiota-derived inflammatory mediators and
rearrangement of gut barrier regulators after bariatric
surgery (135).

Bacteria and Bacterial Fragments
In addition to LPS measurement, other bacterial components
such as bacteria itself or bacterial DNA have been suggested as
possible contributors to metabolic disease. The amplification of
bacterial DNA allows quantification of bacterial load while
subsequent sequencing allows the assessment of microbial
composition and identification of specific bacterial
perpetrators. There is increasing evidence for the presence of
bacteria in blood, even in healthy subjects, as extensively
discussed by Castillo et al. (100). Briefly, there are multiple
studies reporting concurrent bacterial phyla in blood with
Proteobacteria and Firmicutes being the most dominant phyla
(100, 137). The first study to relate bacterial presence in the blood
with metabolic disease was published by Amar et al. in 2011 and
included subjects of the D.E.S.I.R. cohort within a longitudinal
study aimed at understanding the complex pathophysiology of
the metabolic syndrome (138, 139). 16S rRNA gene quantities
were measured in 3,280 subjects at baseline and after nine years.
Subjects who developed T2D during the duration of the study
had significantly higher amounts of bacterial DNA at baseline
(odds ratio=1.35, p=0.002). Moreover, bacterial DNA was
significantly elevated in subjects with abdominal obesity (odds
ratio=1.18, p=0.01). Additionally, pyrosequencing showed the
dominant phylum to be Proteobacteria (139), whose amount was
found to be an independent risk factor of cardiovascular disease
in a subsequent analysis in 3,936 participants of the same
cohort (140).

Similarly, blood bacterial DNA composition reminiscent of
that observed for the gut microbiome was found in a Japanese
cohort of 100 subjects including 50 with T2D. In addition, the
detection rate for bacterial DNA was significantly higher in
March 2021 | Volume 12 | Article 616506
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subjects with T2D compared with healthy subjects (28% vs. 4%,
p<0.01) (141). In line with above mentioned studies, patients
with obesity and liver fibrosis seem to have elevated
concentrations of bacterial DNA compared to patients with
obesity alone (142). Most recently, Qiu et al. showed that
subjects carrying Bacteroides had a reduced risk while patients
carrying Sediminibacterium an increased risk to develop T2D
(143). Lammers et al. analyzed the effect of bacterial DNA of
eight probiotic strains including Bifidobacterium and
Lactobacillus on peripheral blood mononuclear cells (PBMCs)
of healthy donors. All strains increased expression of IL-1, 6, and
10 at high concentrations of 70 µg/ml with largest changes
observed for B. infantis showing that bacterial DNA can
indeed induce strain specific immune alterations in the
host (144).

In a small cohort of 58 subjects with obesity, who had
undergone bariatric surgery, Ortiz et al. analyzed the
translocation of bacterial DNA before and up to 12 months
post-surgery. Bacterial DNA was detected in 32.8% of the
patients prior to surgery, but only in 13.8% and 5.2% of
patients after 3 and 12 months, respectively (145). More
importantly, inflammation, LPS levels and insulin resistance
persisted in subjects with a reduced clearance of bacterial DNA
in the blood even after significant weight loss following bariatric
surgery with multivariate analyses revealing bacterial DNA
presence as an independent predictor (145). In summary, there
is increasing evidence not only for the presence of bacterial DNA
and potentially intact bacteria even in healthy subjects but also
for the association between the amount of bacterial DNA and
bacterial composition with obesity and related metabolic traits.
However, current methods have considerable limitations (see
Limitations of the review) and further, more elaborative studies
are warranted to substantiate initial results.

Bacteria and Bacterial Products Regulate
Adipose Tissue Inflammation Locally
The human adipose tissue is a metabolically active organ with
large heterogeneity in cellular composition, function, and
expression signatures depending on its anatomic location (146).

LPS, Adipocytes, and Adipose Tissue Macrophages
Although there are only a few studies providing evidence for the
existence of bacterial components in adipose tissue, their
potential impact has been repeatedly demonstrated in cell
culture experiments. Toll-like receptors, especially TLR4, which
are needed for the recognition of LPS are expressed on adipose
tissue macrophages as well as adipocytes (147). Stimulation of
adipose tissue macrophages with LPS induces fibrosis via TLR4
and the induction of the profibrotic factor Transforming growth
factor beta 1 (TGFß1) (148). LPS can also act directly on
adipocytes, as demonstrated in numerous studies (149–153).
Creely et al. could show that IL-6 and TNF-a are secreted in
response to LPS in mature subcutaneous adipocytes from lean
individuals and subjects with obesity, whereas inhibition of NF-
kB reduced the levels of secreted IL-6 after LPS stimulation (149).
These results could be confirmed by Vitseva et al. using
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subcutaneous abdominal fat from subjects with obesity (150).
Further works suggest a role for LPS on modifying glycerol
permeability and metabolism of murine 3T3-L1 adipocytes (153)
and hint to a role of adiponectin in regulating local inflammation
by inhibiting LPS-induced NF-kB activation using primary pig
adipocytes (152).

Bacterial DNA and Live Bacteria
First evidence that bacteria are indeed able to translocate from
the gut to adipose tissue stems from mouse experiments. In a
pioneering work, Amar et al. used, among other methods, green
fluorescent protein (GFP)-labeled E. coli to demonstrate the
transmucosal passage in mice on high-fat diet (154). Although
some initial studies suggested the presence of bacterial DNA in
human adipose tissue as well (155), others could not confirm
these results (156). In their work, Zulian et al. isolated DNA from
whole adipose tissue and mature adipocytes of 14 subjects with
obesity. Bacterial PCR products were only observed in the
enzymatically isolated adipocytes, but sequencing revealed that
90% of this bacterial DNA belonged to C. histolyticum, from
which the collagenase enzyme used for adipocytes isolation is
derived. All subsequent experiments including culturing
experiments were negative (156). In 2017, Udayappan et al.
reported the presence of bacterial DNA, mainly stemming
from Actinobacter and Ralstonia, in mesenteric adipose tissue
of twelve patients with obesity. However, as they did not include
negative controls, contamination as a source of these observed
genera could not be excluded (157). Another noteworthy study
published by Nakatsuji et al., investigated the subepidermal
adipose tissue of six healthy subjects and suggested that the
skin microbiome extends to this specific skin-adjacent adipose
tissue depot (158). Furthermore, bacterial DNA belonging to
several bacteria was observed in the epicardial adipose tissue in
six patients with acute coronary syndrome (Streptophyta and
Rickettsiale) and stable angina (Pseudomonas andMoracellaceae)
as compared to subjects with isolated mitral insufficiency. The
authors related coronary heart disease with increased bacterial
colonization of epicardial adipose tissue and ensuing
inflammasone activation (159). More recently, Anhê et al.
reported data on contaminant-controlled presence of bacterial
DNA in mesenteric, subcutaneous and visceral adipose as well as
liver tissue in 40 patients with obesity. Hereby, highest
abundance was observed in visceral adipose tissue and liver
samples, and patients with T2D had a decreased bacterial
diversity. Diversity was especially high in patients with obesity
but without T2D in mesenteric adipose tissue (160). Data
recently presented by our group could extend and go beyond
the proof of bacterial DNA by showing the presence of living
bacteria in adipose tissue using catalyzed reporter deposition
(CARD) - fluorescence in situ hybridization (FISH) methods.
Furthermore 16S rRNA gene content of 75 patients with obesity
was quantified and sequenced, showing that both bacterial
quantity and taxonomy were associated with markers of
inflammation and insulin resistance (137). Moreover,
miniscule amounts of bacterial DNA (E. coli) were sufficient to
induce a proinflammatory response in human subcutaneous
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adipocytes, as observed by a dose-dependent increase of IL6 and
TNF expression. Unexpectedly, expression of neither TLR4 and
TLR9, nor the NLR family pyrin domain containing 3 (NLRP3)
inflammasome increased at any concentration (137). Similar
direct evidence for the translocation of viable gut bacteria to
adipose tissue, in this case mesenteric adipose tissue, was
presented by Ha et al. using human biopsies, gnobiotic mice as
well as primary cells (161). Bacterial translocation occurred in
both healthy subjects and patients with Crohn`s disease (CD),
but taxonomic profiles differed. Using gnobiotic mice treated
with C. innocuum, the bacterium most frequently isolated in CD,
Ha et al. evidenced translocation of these bacteria into adipose
tissue. This was accompanied by increases in adiponectin and
Peroxisome proliferator-activated receptor Gamma (PPARG)
expression and adipose tissue expansion. These results suggest
that, at least in the case of CD, specific bacteria including
C. innocuum can restructure mesenteric adipose tissue leading
to the expansion and fibrosis of creeping fat. This might be a
defense mechanism to prevent systemic translocation of bacteria
beyond this compartment (161).

Impact of Bacterial Metabolites on Adipose Tissue
Function
SCFA are recognized by multiple G-protein coupled receptors
(GPR), and receptors GPR41, 43 and 81 are known to be
expressed in adipose tissue (162). First evidence for an adipose
tissue specific effect of SCFA was observed by Kimura et al., who
showed that mice with a global GPR43 knockout were obese
compared to wild type controls whereas mice with a selective
overexpression of GPR43 in adipose tissue were leaner (163). The
authors further demonstrated that GPR43 stimulation with
acetate improved glucose and lipid metabolism in adipose
tissue, but not in muscle and liver (163), thereby confirming
prior results by Robertson et al., that showed reduced lipolysis in
adipose tissue after stimulation of GPR43 with acetate (164).
These results were recently strengthened by experimental
treatment of multipotent human adipose tissue-derived stem
cells with either mixtures of butyrate, propionate and acetate or
the individual SCFA in varying concentration between 1 µmol/l
and 1 mmol/l. Whereas mixtures high in butyrate had no effect
on glycerol release, mixture with high concentration of acetate
and propionate decreased basal glycerol release (165). Treatment
with only butyrate even increased glycerol release slightly but
significantly, whereas isolated treatment with acetate reduced
glycerol release (165). Next to their effects on lipolysis, acetate
and propionate also seem to influence adipogenesis via GPR43,
as shown by Hong et al. in 3T3-L1 cells (166). The authors found
no GPR43 expression in the stromal vascular fraction (SVF) or
preadipocytes, but expression levels increased gradually with
adipogenesis. Furthermore, siRNA mediated silencing of
GPR43 blocked adipocyte differentiation (166). A further study
analyzed the effect of SCFA-rich HFD compared to normal HFD
diet on adipose tissue biology: Supplementation of SCFA
increased expression of GPR43 in adipose tissue and reduced
its expression in the colon. Next to decreased leptin and
increased adiponectin expression in adipose tissue, the authors
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showed an increase in adipose tissue beigeing under SCFA
treatment (167).

Pancreas and Liver: Bacterial Actions on
Central Metabolic Organs
LPS Effects on Liver and Pancreas
The liver has been shown to participate in active LPS clearance.
Increased amounts of endotoxin are still not without
consequence for the liver: As a response to LPS uptake and
stimulation, hepatocytes express acute phase protein serum
amyloid A, which further promotes LPS clearance (168).
However, hepatocytes can also utilize the TLR4 cascade to take
up LPS (169, 170). That being said, it is assumed that altered
TLR4 signaling is a key factor in metabolic liver diseases
including NAFLD (171). TLR4 is expressed on various liver
cell types including hepatocytes, monocytes, Kupffer cells and
stellate cells (172). Using primary human liver biopsies and
human hepatocytes (HepaRG), it was shown that LPS increases
NF-kB translocation and activity by ~2.5 fold, although the
observed effect was only partially mediated by TLR4 as
demonstrated by siRNA knockdown and chemical blocking of
TLR4 (173). Kheder et al. stimulated macrophages (J774) and
HepG2 hepatocytes with LPS, which led to increased TNF-a
expression (Figure 1E). Co-treatment with increasing doses of
vitamin D3 and docosahexaenoic acid (DHA) reduced these
effects in a dose dependent manner (174). Lee et al. used mouse
hepatocytes deficient for TLR4, Myeloid differentiation primary
response 88 (MyD88) and TIR-domain-containing adapter-
inducing interferon-b (TRIF) to show that LPS induces
hepcidin expression, an antimicrobial and iron regulating
protein, via TLR4 in a MyD88 dependent manner (175).

On the other hand, endotoxins have been shown to exert
varying effects on various pancreatic cells: Endocrine cells of the
human pancreatic islets express CD14 and TLR4. CD14 was
synthesized and secreted by SV40-transformed islet cells (HP62)
after treatment with LPS. LPS was shown to regulate glucose-
dependent insulin secretion and induced an inflammatory
response (176). By analyzing isolated human and rodent islets,
Amyot et al. showed that LPS impairs insulin expression,
whereby human islets are more sensitive to this effect. LPS
further decreases the expression of pancreatic and duodenal
homeobox 1 (PDX-1) and Transcription factor Maf (MafA)
and this inhibition is prevented by blocking NF-kB but not
p38 MAPK signaling, linking bacterial induced inflammation
with pancreatic dysfunction (177).

Bacterial Translocation to the Liver
Bacterial DNA has also been evidenced in liver tissue under
contamination control (160). More recently, Sookoian et al. were
able to localize LPS derived from Gram-negative bacteria in the
portal tract and evidenced a diverse repertoire of bacterial DNA
in the liver, the composition of which was driven in part by
obesity. This metataxonomic signature was furthermore related
to histological findings in NAFLD, with expansion of
proteobacterial DNA being associated with lobular and portal
inflammation as well as liver cirrhosis in non-morbidly obese
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subjects. Morbid obesity on the other hand displayed wider
associations to several taxa thought to contribute to more
detrimental findings (178).

SCFA Impact on Liver Function and Pancreas
Most of the SCFA taken up from the colon are metabolized by the
liver and only small proportions enter the peripheral circulation
(about 20% for butyrate and propionate) (179–181). Treatment of
HepG2 cells with SCFA ranging from C3 to C6 increased
Apolipoprotein A (ApoA-I) expression in a dose-dependent
matter whereas secreted ApoA-I to medium was reduced.
Additionally, butyric acid increased carnitine palmitoyltransferase
I (CPT1) expression, a key protein of beta-oxidation, and increased
activity of PPARA (180). Butyrate was also shown to improve
insulin sensitivity and increase energy expenditure in mice, and
mice on HFD treated with butyrate exhibited higher protein levels
of cyclic 5’ AMP-activated protein kinase (cAMPK), P38 and PGC-
1a in the liver compared to HFD mice without treatment (182).
Sahuri-Arisoylu et al. analyzed the effect of acetate, showing that
acetate decreased lipid accumulation and improved hepatic
function. The authors observed decreased levels of circulating
aspartate transaminase and alkaline phosphatase, as well as
reduced expression of genes involved in lipogenesis, such as fatty
acid synthetase (183). Acetate also protects rodent models against
diet-induced weight increase by altering liver metabolism, as Kondo
et al. showed by increased expression levels of fatty acid oxidation
enzymes as well as PPARA in the liver (184).

As in adipose tissue, GPR43 is also expressed on pancreatic b-
cells, and expression is increased in mice fed with HFD. GPR43
knockout in mice leads to impaired insulin secretion and
treatment of murine and human islet cells with a GPR43
agonist leads to increased intracellular Ca2+ and inositol
triphosphate levels as well as increased insulin secretion (185).
In contrast, a study concurrently did not evidence any effects on
glucose homeostasis in GPR43-/- mice on normal chow or HFD
compared to wild type mice. In ex vivo studies, presence of
acetate potentiated insulin secretion (186). Similarly, it was
shown that propionate potentiated dynamic glucose-stimulated
insulin secretion in vitro and further protected human islets from
inflammatory cytokine and sodium palmitate induced
apoptosis (179).

Impact of Bacteria and Bacterial Products
on Skeletal Muscle Metabolism
Evidence on the role of endotoxin on muscle tissue insulin
sensitivity mainly stems from septic models. During
hyperinsulinemic euglycemic clamps, 4 ng LPS per kg body
weight were administered to healthy donors, resulting in an
increased peripheral glucose uptake as well as increased
circulating concentrations of norepinephrine and cytokines
(180). Concurrently Reyna et al. evidenced an elevated TLR4
expression in muscle tissue of subjects with obesity and T2D and
concentrations of TLR4 protein isolated from muscle tissue
correlated positively with insulin resistance (181). Furthermore,
patients exhibited lower IkBa content and increased expression
of IL6 and SOD2 and these results could be replicated in primary
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human myotubes by treatment with palmitate (181). More
functional approaches were, among other performed by Liang
et al., who similarly differentiated primary human muscle cells
into myotubes and treated them with LPS. Endotoxin induced
inflammation and reduced insulin signaling; effects which were
counteracted by a treatment with the TLR4-Inhibitor (182).
These results are supported by data published by Frisard et al.
on treatment of mice and human myotubes with high and low
concentrations of LPS, thereby reflecting septic or metabolic
endotoxemia conditions and showing an increased glucose
utilization and reduced fatty acid oxidation in skeletal muscle
(183). Low levels of endotoxin are sufficient to modulate
mitochondrial consumption and substrate oxidation preferences,
an effect which was absent in the presence of specific antioxidants,
thereby suggesting a role of reactive oxygen species in mediating
observed effects (184).

Houghton et al. tested the effect of various microbiome
catabolites, including phenolic compounds, bacterial
metabolites, and their phenolic conjugates. Several of these
compounds increased glucose uptake to differentiated human
skeletal myoblasts (LHCN-M2) as well as overall metabolism
rates (187). Most prominent effects were observed for isovanillic
acid 3-O-sulfate (IVAS) and dihydroferulic acid 4-O-sulfate.
IVAS furthermore promoted upregulation of GLUT1, GLUT4,
and phosphoinositid-3-kinase (Pi3K) p85a proteins (187).

The effect of SCFA on skeletal muscle metabolism and
function was recently reviewed in an excellent publication by
Frampton et al. (188). Studies examining direct effect on skeletal
muscle cells are mainly using rat-derived L6 myotubes or mouse-
derived C2C12 myotubes and no human studies were found.
Briefly, treatment with SCFA increased fatty acid oxidation
(about 30% for 0.5 mM butyrate (189)) and fatty acid uptake
(i.e., using 0.5 mM acetate) in L6 myotubes (190). Furthermore,
stimulation with acetate and propionate promotes enhanced
insulin-independent uptake of glucose to both mouse and rat
myotubes (190, 191). Maruta et al. also report an upregulation of
GLUT4 gene expression as well as protein levels upon treatment
with 0.5 mM acetate (190).
LIMITATIONS

It can be assumed that subjects not suffering from sepsis have lower
bacterial load and display lower endotoxemia making careful
handling of samples to avoid contamination, careful data
interpretation to avoid over-reporting of false positive results as
well as method standardization allowing comparability and
reproducibility, paramount aspects for planning studies
contributing to the subject as well as interpretation of the
available literature. Here, we highlight some concerns, which
should be considered in interpretation of relevant literature.

Measurement of Intestinal Permeability
There are various methods to measure the integrity of the
intestinal barrier with differing degrees of sensitivity and
specificity: Methods include Ussing chambers (87), histology
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and electron microscopy for biopsies and transepithelial/
transendothelial electrical resistance (TEER) for cell culture
experiments (192). The gold standard for in vivo studies is the
lactulose/mannitol (La/Ma) or similar dual sugar tests, which
assess the flow of indigestible sugars from gastrointestinal tract to
the circulation and the combination of different sugars allows a
location specific measurement (34, 193). In addition, biomarkers
such as calprotectin, alpha-1-trypsin, fatty acid binding protein,
and zonulin are used. There is extensive literature on benefits and
disadvantages of each method (34, 193–196). However, in our
opinion, studies employing biomarkers are generally lacking in
strength due to various reasons: a) correlations with dynamic
permeability tests such as dual sugar tests or Ussing chambers are
not present or very weak; b) most of these markers are also acute
phase proteins and are therefore increased in inflammation; c)
their actions are not limited to the gut paracellular pathway; d)
commercially available ELISAs are often not validated, as we and
others recently demonstrated that the preferred ELISA for the
most commonly used biomarker zonulin measures different
products (197, 198). Consequently, relevant literature should
be interpreted carefully in this regard (199).

Endotoxin
Measurement of endotoxin, in particular at low concentrations,
is very challenging and prone to errors, leading to considerable
discussion pertaining to the significance of the test and its
interpretation. One major aspect to be considered is that LPS
are not actively excreted by bacteria but that release of LPS only
takes place after gram negative bacterial cell death and lysis,
which in turn does not justify the wide use of LPS as a surrogate
marker for “live” bacterial translocation. However, there could
still be an intrinsic value for the increased exposition of the host
to bacteria in general. Measurement of LPS has routinely been
done using the Limulus Amoebocyte Lysate (LAL) assay.
Although the FDA has recognized the validity of approaches
using the LAL method, LAL reagents are not required to be
obtained from an FDA-licensed manufacturer when used in the
context of research, making standardization between methods
reported in the literature almost impossible. Beyond this,
conducting the LAL assay is highly challenging. This is related
to the magnitude of chemical and physical products and factors,
which are known to interfere with the test’s ability to detect LPS.
These factors include pre-analytical conditions such as sampling,
where plastic or siliconized ware can lead to endotoxin
absorption (200) and render LAL assay ineffective. Moreover
LPS quantification presumes sampling in pyrogen/LPS free ware,
which can be done via dry heat sterilization at high temperature,
a widely ignored factor possibly contributing to the immense
range of LPS from 0.01 to 60 EU/ml reported in healthy subjects
in the literature (120, 201). Furthermore, various factors within
the blood can interfere with LPS testing, including bile salts,
lipoproteins, EDTA and heparin (202), which makes
pretreatments of samples to measure LPS unavoidable.
Moreover, using different units impedes the interpretation of
findings from different studies (203): whereas some studies
report LPS levels in weight per water volume (pg/mL), others
report endotoxin units per unit volume (EU/mL), which reflects
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LPS activity. Additionally, when considering that host-derived
proteins binding of LPS largely modulates its activity and
clearance from the circulation (204–206), it becomes evident
that whatever is measured after pretreatment of the samples to
overcome “low LPS recovery”might not reflect in vivo conditions
at all. This is best exemplified by the fact that there is poor
concordance between endotoxemia and gram-negative
bacteremia and that endotoxemia is detected in less than 50%
of subjects with gram-negative sepsis (207). Independent from
units, most studies reported a 0.5 to 2-fold increase of LPS in
subjects with obesity compared to subjects with normal weight,
as clarified by Boutagy et al. (203). Consequently, they propose
using fold changes (in disease vs. controls) instead of absolute
values to describe the contribution of endotoxemia to the study
setting until unified and comparable methods are established.

In addition, LPS derived from different bacteria can show
large heterogeneity in the O-antigen polysaccharide with
consequence on the inflammatory potential and biological
function of endotoxin (133, 134). This point is normally
neglected in studies on endotoxin and should therefore be
considered more often in new studies.

Bacterial DNA
In studies analyzing bacterial DNA in samples with low bacterial
biomass, be it quantification or sequencing, contamination is a
major problem, which is well-highlighted by the recent debate
about a possible placenta microbiome (208–211). Contamination
can arise from multiple sources (air, skin, reagents) and during
all experimental steps. Furthermore, even sterile lab ware can
contain traces of bacterial DNA, as per definition a sterile
environment is only defined by the absence of living
microorganisms (212). The use of adequate negative controls
and the deployment of subsequent bioinformatic tools to address
them become eminent to avoid reporting false positive results
(213). Although these problems are increasingly addressed by the
research community, a set of consistent and widely accepted
approaches would help for the general comparability and
reproducibility of data.

Data Interpretation
In most works on metabolic endotoxemia it is assumed that LPS
is the consequence of impaired intestinal barrier. However, other
locations can contribute to a metabolic endotoxemia as well. For
instance, it was shown that oral interventions like extraction of
teeth or periodontal probing but also everyday actions such as
chewing and oral hygiene can lead to an influx of endotoxin and
bacteria into the circulation (214, 215). It was also observed that
subjects with obesity are more prone to suffer from gingivitis,
which is most likely due to increased insulin resistance (216,
217). It is therefore likely that LPS and bacteria from the oral
cavity contribute more to systemic ‘bacterial burden’ and
possibly inflammation than has been previously assumed.
Additionally, the skin microbiome extends to various
compartments, thus implicating a potential impact for this
compartment in translocation to subsequent tissues (158).
However further studies are desirable to support these findings.
Furthermore, since LPS is rapidly cleared from the circulation in
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the liver, which is also the first organ reached by LPS taken up
from the gastrointestinal tract, whatever measureable endotoxin
under various conditions points toward a chronic influx and the
additional contribution of other origins like oral cavity, lungs, or
the skin (Figure 1F).
SUMMARY/CONCLUSION

In this review, we focused on causes and possible consequences
of impaired intestinal permeability, thereby focusing on obesity
and components of metabolic diseases. Consequences include
translocation of endotoxin, bacterial DNA, or live bacteria as well
as bacterial metabolites to the circulation, a process often
associated with the term metabolic endotoxemia or bacteremia.
Starting with animal studies, there now is also compelling
evidence for an impairment of the human intestinal barrier in
diseases such as T2D and obesity. Consequently, increased
circulating bacterial load is now a well-established hallmark of
metabolic diseases and published data suggest that impairment
of the gut barrier can trigger and further aggravate metabolic
impairment. A less studied subject is the presence and effect of
bacteria in other host tissues, including liver, muscle, pancreas,
and adipose tissue.

However, as shown in this review, several studies suggest that
tissue bacteria or components and metabolites thereof either
reflect or directly contribute to the development and progression
of metabolic diseases. Underlying mechanisms such as TLR4
dependent activation of NF-kB have been introduced but a
holistic approach encompassing the complexity of host
immune factors is widely lacking. There has also been
compelling underreporting of shortcomings in the methods
used such as LPS measurement, making claims toward
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causality rather elusive. Furthermore, only a few studies were
published on quantification and sequencing of bacterial DNA in
host tissues, which have been similarly plagued with false positive
results partly due to contamination.

In conclusion, it seems unavoidable that our bacterial
inhabitants also contribute to the modulation of their metabolic
environment shaping the body’s responses to nutrients and
contributing ultimately to disease as has been shown for the gut
microbiota in recent years (218). Considering the current
relevance of microbiome research in understanding health and
nutrition and the promising avenues for therapy and prevention, it
will be inevitable to revisit many of the notions introduced here to
allow for robust and reliable mechanistic approaches.
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GLOSSARY

TLR toll-like receptor
T2D type 2 diabetes
TJ tight junctions
IgA immunoglobulin A
PKC protein kinase C
MAPK mitogen-activated protein kinase
INF-g interferon gamma
TNF-a tumor necrosis factor alpha
PI-3K/Akt Phosphoinositide 3-kinases/Protein kinase B pathway
NfkB nuclear factor kappa-light-chain-enhancer of activated B

cells
ERK extracellular signal-regulated kinase
ARF6 ADP-ribolysation factor-6
HIF-1a Hypoxia-inducible factor 1-alpha
GLUT1; 2; 4 glucose transporter
Cxcr CXC-Motiv-Chemokine receptor
HFD high fat diet
db/db leptin receptor deficient mouse model
ob/ob leptin gene overexpression mouse model
ZO zonula occludens
PAI-1 Plasminogen-Aktivator-Inhibitor 1
STAMP2 six transmembrane protein of prostate 2
IL-1, 6, 10 interleukin 1, 6, 10
La/Ma lactulose mannitol
HOMA-IR homeostatic model assessment for insulin resistance
NAFLD Non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
MLN mesenteric lymph nodes
SCFA short chain fatty acids
LPS lipopolysaccharide
sCD14 soluble cluster of differentiation 14
LDL low-density lipoprotein
HDL high-density lipoprotein
LDL-R LDL receptor
iFABP as intestinal fatty acid binding protein
LBP LPS binding protein
DJB duodenojejunal bypass surgery
FITC Fluorescein isothiocyanate
TGF-b1 Transforming growth factor beta 1
GFP green fluorescent protein
CARD-FISH catalyzed reporter deposition fluorescence in situ

hybridization
NLRP3 NLR family pyrin domain containing 3
PPARG Peroxisome proliferator-activated receptor gamma
CD Crohn’s disease
GPR G protein-coupled receptor
SVF stroma vascular fraction
DHA docosahexaenoic acid
MyD88 Myeloid differentiation primary response 88
TRIF TIR-domain-containing adapter-inducing interferon-b
PDX-1 pancreatic and duodenal homeobox 1
MafA Transcription factor Maf
cAMPK cyclic 5’ AMP-activated protein kinase
C3 complement component C3
ApoA1 Apolipoprotein A1
SOD2 Superoxide dismutase 2
mitochondrial,
IVAS

isovanillic acid 3-O-sulfate

ELISA enzyme-linked immunosorbent assay
LAL Limulus Amoebocyte Lysate
EU/ml endotoxin units per ml
FDA United States Food and Drug Administration
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