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Abstract

Subsyndromal symptomatic depression (SSD) is a subtype of subthreshold depressive and also lead to significant
psychosocial functional impairment as same as major depressive disorder (MDD). Several studies have suggested that SSD is
a transitory phenomena in the depression spectrum and is thus considered a subtype of depression. However, the
pathophysioloy of depression remain largely obscure and studies on SSD are limited. The present study compared the
expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-
free first-episode subjects with SSD, MDD, and matched controls (8 subjects in each group). Support vector machines (SVMs)
were utilized for training and testing on candidate signature expression profiles from signature selection step. Firstly, we
identified 63 differentially expressed SSD signatures in contrast to control (P, = 5.0E-4) and 30 differentially expressed MDD
signatures in contrast to control, respectively. Then, 123 gene signatures were identified with significantly differential
expression level between SSD and MDD. Secondly, in order to conduct priority selection for biomarkers for SSD and MDD
together, we selected top gene signatures from each group of pair-wise comparison results, and merged the signatures
together to generate better profiles used for clearly classify SSD and MDD sets in the same time. In details, we tried different
combination of signatures from the three pair-wise compartmental results and finally determined 48 gene expression
signatures with 100% accuracy. Our finding suggested that SSD and MDD did not exhibit the same expressed genome
signature with peripheral blood leukocyte, and blood cell–derived RNA of these 48 gene models may have significant value
for performing diagnostic functions and classifying SSD, MDD, and healthy controls.
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Introduction

Depression affects about 10% of the population at some point in

their life and is the leading cause of disability across the world [1].

Lacking specific objective findings, depression is often missed or

undiagnosed [2] and studies have focused on subthreshold

depressive [3–5]. At present, some types of subthreshold

depressive, including dysthymia, minor depression (MinD) and

recurrent brief depression (RBD), are described in the Diagnostic

and Statistical Manual of Mental Disorders, 4th edition (DSM-IV)

[6]. However, approximately two-thirds to three-fourths of all

subthreshold depressive patients with psychosocial functional

impairment did not meet any criteria of DSM-IV [7]. Conse-

quently, the concept of subsyndromal symptomatic depression

(SSD) was introduced by Judd in 1994, which is characterized by

two or more depressive symptoms, but without depressed mood or

anhedonia, lasting for at least 2 weeks accompanied with social

dysfunction, and does not meet the criteria for MDD, dysthymia,

MinD or RBD [7–8]. Convergent evidence has identified that

SSD is a common depressive status that affects different ethnic

populations [7,9–11] and to which we must pay more attention.

However, litter research has been conducted on the biological

basis of SSD.

Although the pathophysioloy of depression spectrum remain

largely obscure, it has been reported that patients with SSD and

MDD have similar family history, and their first-degree relatives

have a high risk of comorbidity of depression and alcohol

dependence, which implies that these two disorders could share

genetic bases12. Furthermore, several follow-up studies have

suggested that SSD is a transitory phenomena in the depression

spectrum and is thus considered a subtype of depression [10,13–

14]. In addition, previous twin data supported that unipolar
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depression had a modest heritability [15]. SSD and MDD, which

have different depressive symptoms, may be different subtypes of

depression and have different phenotype at gene expression levels.

With the sequence of the human genome being publicly

available since February 2001, an array of novel research tools,

such as gene expression microarray, have become available that

may yield unbiased, hypothesis-free insight into the pathophysi-

ologic underpinnings of this disorder [16]. The application of

high-throughput gene expression profiling to MDD in humans has

mostly been restricted to postmortem brain tissue, typically

sampled many decades after the critical time frame during which

the initial molecular processes underlying the onset and develop-

ment of disease have occurred, with methodological challenges

including decades of cumulative drug exposure and postmortem

artifacts [17–21]. Convincing evidences indicated that depression

affects the entire organ systems, including endocrinological,

immunological and autonomic nervous systems, through the

interaction between the brain and the body [22]. Circulating

blood comprises a highly complex system that communicates with

every tissue and organ in the body. Peripheral blood cells share

more than 80% of the transcriptome with nine tissues: brain,

colon, heart, kidney, liver, lung, prostate, spleen, and stomach, and

the expression levels of many classes of biological processes have

been shown to be comparable between whole blood and prefrontal

cortex [23–24]. Indeed there is considerable communication

between the immune system and the central nervous system

(CNS). Many cytokine receptors have been located within the

CNS, and interleukin-2 mRNA and T-cell receptors have been

specifically detected in neurons [25]. Lymphocytes also express

several neurotransmitter and hormone receptors, including

dopamine, cholinergic, and serotonergic receptors and glucocor-

ticoid and mineralocorticoid receptors and their chaperones [26].

Lymphocytes are directly influenced by glucocorticoids and

catecholamines, and these two systems are perturbed in MDD

[27]. The circulating blood may act as a ‘‘sentinel tissue’’ that can

reflect states of health or disease within the body. Some studies

successfully discriminated between control subjects and physical

disease patients via detection of the expression of ‘‘tissue-specific’’

genes in circulating blood [28–30]. Blood based gene expression

diagnostics could be applied to the study of psychiatric disorders

for which human brain tissue biopsy samples are unavailable.

Disease development is a systematic and dynamic processes

influenced by environment factors and genetic factors, together.

Computational and systems biology have greatly facilitate the

disease studies from transcriptomes by using microarray technol-

ogy [31]. Based on gene expression profiles, thousands of genes

can be featured simultaneously in different conditions or clinical

phenotypes [32]. Scientists have utilized high-throughput technol-

ogy and computational approach to built disease models and

classify disease state.

With gene features made on microarray accumulated by

technology developing, many psychiatric disorder studies are also

applied by the high-throughput technology with bioinformatics

analysis. Tsuang et.,al have assessed the validity of blood-based

gene expression profiles for the classification of schizophrenia and

bipolar disorder [33]. Segman et.,al found gene expression

signatures that could differentiate between women prone to

postpartum depression [34]. Le-Niculuscu et.,al demonstrated that

peripheral blood gene expression profiles could offer an unex-

pectedly informative insight into brain function and disease state

[35]. Most recently, Spijker et.,al also found that gene expression

profiles could be used as a blood marker of MDD, and careful

independent validation has been carried out to prove their results

[36].

Thus, in order to develop the potential peripheral blood

lymphocytes gene expression signature models which can classify

MDD, SSD, and healthy controls, whole-genome cRNA micro-

array analysis of lymphocytes were performed in this study.

Results

Pathway analysis and GO analysis results for SSD gene
expression signatures

For SSD gene expression signatures, we detected 1,456

differential expressed genes between SSD and healthy controls,

in which 753 genes are up regulated and 703 genes are down

regulated (adjusted p,0.01), which enriched in 47 pathways

(P,0.01). Most of genes involved in several functional related to

signaling pathways, including neuroactive ligand receptor inter-

action, JAK and STAT signaling pathway, G protein signaling,

calcium signaling pathway, insulin signaling pathway, GNRH

signaling pathway, Wnt signaling pathway and MAPK signaling

pathway etc. Cellular communication and cell structure organi-

zation were also important in SSD process, such as apoptosis, cell

adhesion molecules, tight junction, focal adhesion. The DEG also

act in several biosynthesis and metabolism pathways, like oxidative

phsphorylation, metabolism of xenobiotic by cytochrome P450,

purine metabolism, glycerlipid metabolism, glycan structures

biosynthesis, glycerolipid metabolism, starch and sucrose metab-

olism. We also found that SSD signatures participate in immunity

process, antigen processing, leukocyte transendothelial migration,

natural killer cell mediated cytototoxicity and cytokine-cytokine

receptor interaction (Figure 1A). GO analysis indicate that SSD

gene signatures correlate with cerebellar cortex morphogenesis,

cerebellar granular layer development, hydrolase activity, GTPase

and ATPase activity, S phase and M phase of mitotic cell cycle and

tissue regeneration, etc. (Figure 1B).

Pathway analysis and GO analysis results for MDD gene
expression signatures

Based on pre-processed microarray profile, we identified 149

differential genes between MDD patients and controls with 95

upregulated and 54 down-regulated (adjusted P,0.01), 20 of

which were identified between SSD and control. These differential

genes enriched in 53 pathways, 2 of which also were identified in

SSD. Signaling pathways active in MDD include activation of

ATR in response to replication stress, NRIF signals cell death from

the nucleus, fas signaling pathway, p53-Independent G1/S DNA

damage checkpoint and Nicotinamide salvaging, and EGF

signaling pathway etc. We noticed that many MDD signatures

involves several immunity process, such as T cell receptor signaling

pathway and JNK signaling in the CD4+ TCR pathway, IL2-

mediated signaling events, IL1 signaling and IL6-mediated

signaling events and Calcium signaling in the CD4+ TCR

pathway and TCR signaling in CD4+ T cells. In MDD subjects,

more biosynthesis and metabolism pathway are identified,

involveing Vitamin B5 (pantothenate) metabolism, coenzyme A

biosynthesis and metabolism of water-soluble vitamins and

cofactors. Comparing with former results of SSD signatures, we

found that several pathways were shared in MDD and SSD

process, including cell cycle controls and Cell Cycle Checkpoints,

like G2/M Checkpoints and Wnt signaling. We noticed that

MDD-specific functions or pathways compared with SSD were

activation of ATR pathway in response to replication stress, NRIF

signals cell death from the nucleus, fas signaling pathway,

immunity pathway about IL2 signaling events mediated by

PI3K and IL1 singaling events. Meanwhile, SSD-specific pathways

contain cytokine-cytokine receptor interaction, GPCRDB class A

Gene Expression Models for Classifying SSD and MDD
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rhodopsin like, MAPK signaling pathway, neuroactive ligand

receptor interaction, calcium signaling pathway, breast cancer

estrogen signaling pathway, purine metabolism, insulin signaling

pathway, cell adhesion molecules and Toll like receptor signaling

pathway(Figure 1C). Alternatively, GO analysis for MDD signatures,

29 of which also were identified in SSD, convinced us that most

significant functions (P,0.01) are active in immunity reactions

involving pro-B cell differentiation, negative regulation of antigen

processing, positive regulation of leukocyte migration and plasmin-

ogen activation. Other functions of these genes involve engulfment of

apoptotic cell, fibrinogen binding, lymphoid progenitor cell differen-

tiation and immunoglobulin V(D)J recombination and mitotic cell

cycle controls (S phase), DNA ligation involved in DNA repair and

somatic cell DNA recombination, etc. al. (Figure 1D).

Gene expression profiles for classification of
subsyndromal symptomatic depression and major
depressive disorder

In order to filter out most of false positives and select most

potential biomarkers, we applied strict threshold on the same pair-

wise comparisons among SSD, MDD and controls, and identified

63 differentially expressed SSD signatures in contrast to controls

(adjusted P, = 1.0E-4) and 30 differentially expressed MDD

signatures in contrast to controls (adjusted P, = 5.0E-4), respec-

tively. Then, 123 gene signatures were identified with significantly

differential expression level between SSD and MDD (adjusted

P, = 1.0E-4). Unsupervised hierarchal clustering analysis by using

Euclidean distance and complete linkage clustering method was

conducted on three more potential groups of DEGs. The results

showed clearly that genes differentially expressed in the peripheral

blood lymphocytes were capable of differentiating MDD group,

SSD group and healthy controls, separately (Fig. 2 A, B, C).

To evaluate the predictive performances of SSD and MDD

signatures respectively, we utilized SVM with Linear Kernel to

build disorder models. For 63 SSD signatures (adjusted P, = 1.0E-

4), total instances (8 SSD and 8 control instances, respectively) were

correctly classified. Similarly, for 30 MDD signatures (adjusted

P, = 5.0E-4), and 123 DEGs signatures (adjusted P, = 1.0E-4) can

also clearly classified 8 MDD and 8 SSD instances.

For SSD gene signatures, we detected 1,456 differential

expressed genes between SSD and control; For MDD gene

signatures, we identified 149 differential genes between MDD

patients and controls d. Among these genes, there are only 20

different genes between SSD and MDD.

Furthermore, in order to conduct priority selection for biomark-

ers for SSD and MDD together, we selected top gene signatures

from each group of pair-wise comparison results, and merged the

signatures together to generate better profiles used for clearly classify

SSD and MDD states in the same time. In details, we tried different

combination of signatures from top ranked signatures in the three

pair-wise compartmental results and finally determined 48 gene

expression signatures (Table 1). To maintain the robustness of SSD-

MDD disorder model, the predictive power was evaluated using

cross validation, which randomly took 9/10 samples used for

training and remaining 1/10 as internal testing validation.

When 54 probesets (48 genes) were chosen as biomarkers, we

obtained the best predictive performances with 100% accuracy

and 100% TPR (leave-one-off validation). Leave-one-off valida-

tion refers to that we used n-1 sample to train model and used

another sample to test the model. Total 24 MDD, SSD and

control samples were separated into train and test profiles in 24

Figure 1. Functional annotation of the DEGs in SSD and MDD. (A) and (C) Pathway analysis of SSD-associated and MDD-associated genes
respectively. The y-axis shows the KEGG Pathway terms, and the x-axis shows the enrichment significance P-values for the top 10 enriched Pathway
terms. (B) and (D) GO analysis of SSD-associated and MDD-associated genes respectively. The y-axis shows the GO terms, and the x-axis shows the
enrichment significance P-values for the top 10 enriched GO terms. Term GO:0004719 remarks the function of protein-L-isoaspartate (D-aspartate) O-
methyltransferase activity. MDD: Major depression disorder; SSD: Subsyndromal symptomatic depression.
doi:10.1371/journal.pone.0031283.g001
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times and train/test the data using leave-one-off method. Finally,

we collected the predictions for each sample, and obtained 100%

predictive performance (Table 2).

Then, we interrogated the pathways and biological functions

about these mostly potential biomarkers for MDD and SSD,

together. Pathway analysis demonstrates that the potential 48 gene

biomarkers involved in insulin signaling pathway, signaling by

NGF, ErbB signaling pathway, neurotrophin signaling pathway,

cell surface interactions at the vascular wall, NRAGE signals death

through JNK, Rho GTPase cycle, and G alpha signaling pathway

(P value,0.05) (Table 3). Also, GO analysis shows consistency

with pathway analysis results. Besides, PURA and TERF2 both

function about telomeric DNA binding and single strand DNA

binding, and DNA replication. SLC16A3 and CTNS act in the

directed movement of carboxylic acids into, out of, within or

between cells. FGD3 and KALRN participate in Stimulates the

exchange of guanyl nucleotides by a GTPase. Under normal

cellular physiological conditions, the concentration of GTP is

higher than that of GDP, favoring the replacement of GDP by

GTP in association with the GTPase. Also, FGD3, KALRN and

RHOQ involve in Rho GTPase cycle. Other signatures also

correlated with Cell death signalling via NRAGE, NRIF and

NADE, Jak-STAT signaling pathway, B cell receptor signaling

pathway, and p75 NTR receptor-mediated signaling (Table 4).

De novo cis-Regulatory element analysis results for
candidate biomarkers of MDD and SSD

In order to investigate how the signatures for classifying three

groups are regulated, we analyzed the cis-regulaotry elements co-

occurring on the promoters of these genes. In details, STAT1 and

STAT2 factor’ binding motifs were detected on five MDD

signatures’ promoters (e.g. BDNF, MYB, THBS1, SORBS1, and

SH3BGRL). In addition, we identified SRF binding motif on three

gene promoters (e.g. THBS1, EGR1 and PODN). For SSD

signatures, we identified transcriptional factor SREBP1 was

correlated with eleven SSD signature genes (GNAS, MLL5,

TOM1L1, DLGAP4, PTMA, NF1, ATP2B2, UNC13D, PDP2,

CORO1A, and INPP4A). Most of these transcriptional factors are

related with depression disorders as discussed below.

Discussion

To our knowledge, this is the first study to compare the

expression profile and make the classification with the leukocytes

by using whole-genome cRNA microarrays among patients with

SSD, major depressive disorder (MDD) and controls. We found

that SSD and MDD had different blood-based gene expression

signature, and the differential expressed genes of SSD were about

10 times of MDD, but there are only 20 overlapping differential

expressed genes between SSD and MDD. Pathway analysis for

SSD gene signatures showed that differential expressed genes

enriched in 47 pathways, and most pathways were involved in

regulation of DNA replication, IL2 signaling events mediated by

STAT5, and Wnt signaling pathway, etc. For MDD gene

signatures, the results of pathway analysis suggested that

differential expressed genes enriched in 53 pathways, 2 of which

also were identified in SSD, including MAPK signaling pathway

and Wnt signaling pathway. Although the relationship between

SSD and MDD is unclear, previous follow-up studies have showed

Figure 2. Biomarkers differentiation efficiency among MDD group, SDD group and HC. (A) Complete linkage clustering analysis with 16
samples using 30 biomarkers under the criteria of adjusted.P, = 5E-4 between MDD and HC. (B) Complete linkage clustering analysis with 16 samples
using 63 biomarkers under the criteria of adjusted.P, = 1E-4 between SSD and HC. (C) Complete linkage clustering analysis with 16 samples using
123 biomarkers under the criteria of adjusted.P, = 1E-4 between SSD and MDD. MDD: Major depression disorder; SSD: Subsyndromal symptomatic
depression; HC: Healthy controls.
doi:10.1371/journal.pone.0031283.g002
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Table 1. Mostly potential signatures of gene expression profiles models for classification of MDD and SSD.

Probe Gene Symbol SSD vs. HC MDD vs. HC MDD vs. SSD

FC (adjusted p,0.0001) FC (adjusted p,0.0005) FC (adjusted p,0.0001)

202123_s_at ABL1 0.741304049 1.071540957 1.445481053

203142_s_at AP3B1 0.785262839 1.163049415 1.481095700

212645_x_at BRE 0.622357591 0.989984919 1.590701125

213986_s_at C19orf6 0.479842399 1.004084118 2.092528964

200723_s_at CAPRIN1 0.716725182 1.016565288 1.418347389

200952_s_at CCND2 0.432720956 0.982303164 2.270061461

211188_at CD84 0.521512199 0.928367596 1.780145501

1554339_a_at COG3 0.357536796 0.991125007 2.772092322

204925_at CTNS 0.650193383 0.962500784 1.480330023

201275_at FDPS 1.312775229 0.929569711 0.708095103

1555407_s_at FGD3 0.459952028 1.051968262 2.287126038

204867_at GCHFR 1.417582619 1.159141932 0.817689154

1554356_at GINS4 0.943637323 0.557990569 0.591318885

204553_x_at INPP4A 0.727800115 0.966193858 1.327553869

206078_at KALRN 2.421891723 0.831693595 0.343406597

225642_at KTI12 1.032925752 1.217211291 1.178411218

1565406_a_at LHX9 3.616566285 4.484406509 1.239962483

212535_at MEF2A 0.739248358 0.967245398 1.308417379

1557172_x_at NEK8 1.496780327 0.827608072 0.552925541

200875_s_at NOP56 1.361209547 0.941029044 0.691318281

202647_s_at NRAS 0.706715422 1.122941274 1.588958217

216422_at PA2G4 2.674676802 2.203654734 0.823895707

1557777_at PDE6B 0.318473762 0.978799188 3.073406053

1554508_at PIK3AP1 0.651835063 1.287048315 1.974499972

1567214_a_at PNN 1.276179391 0.992966418 0.778077462

204842_x_at PRKAR2A 1.453510563 0.905753493 0.623148891

209685_s_at PRKCB 1.459071747 1.094764429 0.750315693

204021_s_at PURA 2.021380345 1.105199279 0.546754737

212120_at RHOQ 0.618194385 0.928620496 1.502149676

200089_s_at RPL4 1.238633645 0.961953034 0.776624337

226923_at SCFD2 0.794178375 0.719803168 0.906349494

1552812_a_at SENP1 0.675377839 1.137970532 1.684939105

204019_s_at SH3YL1 0.757933305 0.658471379 0.868772193

202855_s_at SLC16A3 0.504525282 1.003367055 1.988734935

1552792_at SOCS4 0.424980413 0.877342521 2.064430488

205026_at STAT5B 0.497586762 0.987611266 1.984802134

205520_at STRN 0.476780581 1.116717124 2.342203456

203611_at TERF2 0.799885457 1.051562728 1.314641639

200804_at TMBIM6 1.362494303 1.173043411 0.860952892

212282_at TMEM97 0.633075615 0.722453817 1.141180927

201796_s_at VARS 0.539085621 1.680791788 3.117856841

1552737_s_at WWP2 0.324152671 0.963600812 2.972675826

225072_at ZCCHC3 1.512482696 3.071112709 2.030510971

1554769_at ZNF785 1.899359591 0.781703552 0.411561641

1553704_x_at ZNF791 1.393734556 0.892755221 0.640548961

202848_s_at GRK6 0.543637323 0.357990569 0.658509918

206382_s_at BDNF 0.407145759 0.358749192 0.881132014

202343_x_at COX5B 0.557536796 0.391125007 0.701523217

MDD: Major depression disorder; SSD: Subsyndromal symptomatic depression; HC: Healthy controls.
doi:10.1371/journal.pone.0031283.t001
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that SSD was a subtype of depression and a transitory

phenomenon in depression spectrum with a high likelihood of

transition to MDD [10,12–13]. It indicates that the genes

involving in these two pathways maybe point to pathogenetically

relevant underlying molecular processes of depression.

Genetic manipulation of the MAPK pathway, one of the

neurotrophin signaling pathways, has received much attention,

which postulated that the dysfunction of this pathway played a key

role in the pathophysiology of mood disorders [37], especially in

depression-like behavior [38]. Previous data also have shown that

acute systemic blockade of MAPK signaling contributes to a

depressive-like phenotype and blocks actions of antidepressants in

animal models of depression [39].

Wnt signaling pathways have been implicated in various

physiological functions, such as cell fate determination, cell and

tissue polarity, synaptogenesis, dendritic morphogenesis, and axon

remodeling. Moreover, abnormal Wnt signaling has been

implicated in mood disorder. The relationship between Wnt

signaling pathway genes and mood disorders has been reported in

several genetic association studies. A study showed that alteration

of hippocampal microRNA levels following chronic treatment

with mood stabilizers is caused by effectors in the canonical Wnt

signaling pathway. Gene expression-profiling of hippocampal

subfields has also revealed altered expression of several genes

related to Wnt signaling in bipolar disorder patients. Another

study supports that the canonical Wnt signaling pathway and

related substrates play a role in MDD. Wnt signaling pathway also

has been considered relevant to the antidepressant effects, and

Wnt2 expression and signaling is a common target of antidepres-

sants and that increased Wnt2 is sufficient to produce antidepres-

sant effects.

Moreover, patients with MDD have depressed mood or

anhedonia but SSD have not, so differential expression of genes

involving in other 51 pathways in MDD may be correlate with the

underlying pathological mechanism of the symptom of depressed

mood or anhedonia. Our unsupervised hierarchal clustering

analysis showed obviously that each disease state exhibited a

unique expressed genome signature except the genes involving in

MAPK and Wnt pathways, which suggesting that these two

diseases may be two different phenotypes in depression spectrum

by respective gene signatures. Furthermore, genes differential

expression among SSD group, MDD group, and healthy controls

allowed us to discriminate among these three groups. It suggested

that blood-derived RNA may potentially be used as a diagnostic

tool for SSD and/or MDD, as long as the correct subsets of genes

are employed. Blood profiling may also allow identification of

differentially expressed genes that are involved in the pathophys-

iology of these disorders. To select the most potential biomarkers

for differentiating these three groups, we combined top differential

expressed genes from each set of gene expression signatures, then

trained and tested the multiple combinatorial gene signatures from

pair-wise comparison groups by using support vector machine

classifier. Finally 48 gene expression signatures were determined.

Samples can be grouped together according to the similarity of the

expression levels of these 48 genes which suggested that different

levels of gene expression may reflect different disease states.

Among differential genes, BDNF, COX5B, GRK6 are the most

significantly differential genes.

We comprehensively analyzed gene functions and pathway for

the candidate biomarkers of SSD and MDD and found that

potential biomarkers act in some pathways which have been found

associated with function of CNS and implicated in depression,

including insulin signaling pathway, signaling by NGF, ErbB

signaling pathway and neurotrophin signaling pathway. We also

found most of them were not reported the relationship with

depression, such as cell surface interactions at the vascular wall,

NRAGE signals death through JNK, Rho GTPase cycle, and G

alpha signaling pathway, etc. al.

Some studies showed that there was a positive association between

depressive disorder and insulin resistance due to dysregulation of

insulin secretion or insulin receptor signaling. Otherwise, various

functions for insulin receptor signaling in the brain have been

suggested in normal neurophysiology, such as insulin receptor

signaling maybe play a important role in synaptic plasticity and

cognitive function,and several lines of work in both laboratory

animals and humans suggest that when neurons in cognitive brain

regions such as the hippocampus and cerebral cortex do not make

enough insulin or cannot respond to insulin properly, everything

from very mild memory loss to severe neorodegenerative diseases

can result. Dysregulation of insulin secretion or insulin receptor

signaling has also been reported in serious mental illnesses, such as

Alzheimer’s disease. Patients with depression also have some

cognitive function problems and maybe have differential expression

of genes involving in insulin signaling pathway.

It has been suggested that neuronal atrophy or destruction in

the hippocampus and cortex is involved in the pathogenesis of

depression. The neurotrophin systems modulate neuronal plastic-

ity, inhibit cell death cascades and increase cell survival proteins

that are responsible for proliferation and maintenance of central

nervous system neurons. Thus the dysregulation of the neurotro-

Table 2. Predictive performances of disorder model.

Biomarker
Number Class label TPR FPR Accuracy ROC area

30(10*3) HC 1 0.063 0.889 0.969

SSD 0.875 0.063 0.875 0.883

MDD 0.875 0 1 0.969

Weighted 0.917 0.042 0.921 0.94

45(15*3) HC 1 0.063 0.889 0.969

SSD 0.875 0 1 0.965

MDD 1 0 1 1

Weighted 0.958 0.021 0.963 0.978

54(18*3) HC 1 0 1 1

SSD 1 0 1 1

MDD 1 0 1 1

Weighted 0.958 0.021 0.963 0.978

60(20*3) HC 1 0.063 0.889 0.969

SSD 0.875 0 1 0.965

MDD 1 0 1 1

Weighted 0.958 0.021 0.963 0.978

75(25*3) HC 1 0.063 0.889 0.969

SSD 0.875 0 1 0.969

MDD 1 0 1 1

Weighted 0.958 0.021 0.963 0.979

90(30*3) HC 1 0.063 0.889 0.969

SSD 0.875 0 1 0.973

MDD 1 0 1 1

Weighted 0.958 0.021 0.963 0.98

MDD: Major depression disorder; SSD: Subsyndromal symptomatic depression;
HC: Healthy controls.
doi:10.1371/journal.pone.0031283.t002
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phin systems, such as differential expression of genes involving in

signaling by NGF (nerve growth factorA) and neurotrophin

signaling pathway, may be involved in the pathophysiology of

depression.

Transgenic mouse experiments have confirmed that the block of

erbB signaling pathway will result in the change of OL number

and morphology, reducing the thickness of myelin and the

transmission rate of CNS axons [40]. The abnormal expression

of ERBB (epidermal growth factor receptor, EGFR, epidermal

growth factor receptor) signaling pathway can lead to oligoden-

drocytes (OL) abnormalities, which results in dopaminergic

dysfunction, and it may be associated with depression [41–42].

The results of analysis of the cis-regulaotry elements co-

occurring on the promoters of these genes showed that STAT1

and STAT2 factors were detected on five MDD signatures’

promoters (e.g. BDNF, MYB, THBS1, SORBS1, and

SH3BGRL). Especially, STAT1 mediates the autoimmune and

inflammatory functions, and STAT2 mediates the virus protection

function. From previous investigation about the immune cell

specificity of activation programs induced by a major component

of cell-mediated immunity, the transcriptional activators STAT1

were significantly induced in CD4+ and CD8+ T cells, B cells and

monocytes [43]. Depression phenotypes are also correlated with

immunity reactions reflected from blood transcriptomes [44]. In

addition, we identified SRF binding motif on three gene promoters

(e.g. THBS1, EGR1 and PODN). Up to now, there was no study

about the relationship between SRF binding motif and depression.

For SSD signatures, we identified transcriptional factor SREBF1

was correlated with eleven SSD signature genes (GNAS, MLL5,

TOM1L1, DLGAP4, PTMA, NF1, ATP2B2, UNC13D, PDP2,

CORO1A, and INPP4A). Several studies have reported the

importance of SREBF1 and SREBF2 factors in the lipid

biosynthesis and their possible involvement in antipsychotic drug

effects and the genetic variants of SREBF1 and/or SREBF2 could

affect schizophrenia susceptibility [44–45]. HapMap-based associ-

ation study in a large German sample identified association between

schizophrenia and five markers in SREBF1 and five markers in

SREBF266. Additionally, scientists have demonstrated in glial cell

lines that antipsychotic drugs induce the expression of genes

involved in cholesterol and fatty acids biosynthesis through

activation of the sterol regulatory element binding protein (SREBP)

transcription factors, encoded by the sterol regulatory element

binding transcription factor 1 (SREBF1) and sterol regulatory

element binding transcription factor 2 (SREBF2) genes [45].

The results presented were limited by a modest sample size and

required more samples to replicate. Quantitative reverse tran-

scription-polymerase chain reaction were required to exam the

expression levels of 48 genes, which were found differentially

expressed in our pilot study, in a larger sample of SSD and MDD.

Additional studies were required to further explore the roles of

these 48 genes in pathophysiology of SSD and MDD.

In conclusion, our study demonstrated that SSD and MDD

exhibited a unique expressed genome signature with peripheral

blood leukocyte, and blood cell–derived RNA may have significant

Table 3. Mostly potential pathways of disorder model biomarker.

Gene Set Name
Genes in Gene
Set (K) Description

Genes in
Overlap (k) k/K p value

KEGG insulin signaling pathway 137 Insulin signaling pathway 4 0.0292 1.15E-02

KEGG chronic myeloid leukemia 73 Chronic myeloid leukemia 3 0.0411 1.15E-02

Reactome signaling by NGF 215 Genes involved in Signalling by NGF 5 0.0233 1.20E-02

Reactome myogenessis 29 Genes involved in MyoGenessis 2 0.069 1.49E-02

KEGG ERBB signaling pathway 87 ErbB signaling pathway 3 0.0345 1.83E-02

Reactome down stream signal transduction 35 Genes involved in Down-stream signal transduction 2 0.0571 2.12E-02

Reactome cell surface interactions at the
vascular wall

94 Genes involved in Cell surface interactions at the
vascular wall

3 0.0319 2.25E-02

Reactome NRAGE signals death through
JNK

47 Genes involved in NRAGE signals death through JNK 2 0.0426 3.68E-02

Reactome RHO GTPase_cycle 124 Genes involved in Rho GTPase cycle 3 0.0242 4.55E-02

Reactome G Alpha 12_13 signalling events 54 Genes involved in G alpha (12/13) signalling events 2 0.037 4.73E-02

KEGG neurotrophin signaling pathway 126 Neurotrophin signaling pathway 3 0.0238 4.74E-02

Biocarta PPARA pathway 58 Mechanism of Gene Regulation by Peroxisome
Proliferators via PPARa(alpha)

2 0.0345 5.38E-02

KEGG acute myeloid leukemia 60 Acute myeloid leukemia 2 0.0333 5.71E-02

Reactome cell death signaling via NRAGE
NRIF and NADE

61 Genes involved in Cell death signalling via NRAGE,
NRIF and NADE

2 0.0328 5.88E-02

Reactome signaling by PDGF 64 Genes involved in Signaling by PDGF 2 0.0312 6.40E-02

KEGG JAK_STAT signaling pathway 155 Jak-STAT signaling pathway 3 0.0194 7.80E-02

KEGG B_cell receptor signaling pathway 75 B cell receptor signaling pathway 2 0.0267 8.43E-02

Reactome P75_NTR receptor mediated
signalling

82 Genes involved in p75 NTR receptor-mediated
signalling

2 0.0244 9.81E-02

KEGG chemokine signaling pathway 190 Chemokine signaling pathway 3 0.0158 1.24E-01

Reactome TRKA signaling from the plasma
membrane

103 Genes involved in TRKA signalling from the plasma
membrane

2 0.0194 1.43E-01

doi:10.1371/journal.pone.0031283.t003
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value for performing diagnostic functions and identifying disease

biomarkers in SSD and MDD.

Materials and Methods

The study was conducted at the Division of Mood Disorders,

Shanghai Mental Health Center, Shanghai Jiao Tong University

School of Medicine between Jan 2007 and Dec 2009. Outpatients

were recruited from the clinic and ward of Shanghai Mental

Health Center. All procedures were reviewed and approved by

Institutional Review Boards of Shanghai Mental Health Center.

Written informed consent was obtained from each subject before

any study-related procedures were performed.

Subjects
Inclusion criteria for SSD group were: two or more depressive

symptoms for at least 2 weeks with social dysfunction but without

depressed mood or anhedonia, and having a total score of 17-item

Hamilton Rating Scale for Depression (HRSD-17) from 8 to 16.

Patients were included into MDD group who met DSM-IV criteria

for MDD and had the total score of HRSD-17 $17. Patients were

excluded if they had substance dependence, severe medical illness,

organic brain disease, pregnancy. Healthy control subjects have a

score 7 or lower on the HRSD-17, and did not have any major Axis

I disorders (including substance dependence, psychotic disorders,

mood disorders and anxiety disorders), family history of mental

disorder or severe physical diseases (hypertension, diabetes, cancer).

For the gene expression microarray analysis, this study enrolled

eight drug-free Chinese Han patients with their first episode of

subsyndromal symptomatic depression, eight previously untreated

patients presenting with their first episode of major depression

disorder, and eight healthy controls. All groups were matched with

sex and age (shown in Table 5).

All subjects were screened by the Structured Clinical Interview

for DSM-IV (SCID) and assessed through HRSD-17 score by two

experienced psychiatrists (inner coherence, Kappa = 0.87).

Peripheral blood lymphocytes collection and RNA
processing

Total 20 ml venous peripheral blood from fasting patients and

healthy controls were collected during 7am to 9am. Peripheral

blood lymphocytes were separated by Ficoll gradient centrifuga-

tion using Ficoll-PlaqueTM Plus (GE, Sweden) [46].Total RNA

was extracted from lymphocytes using Trizol reagent (Invitrogen)

according to the manufacturer’s protocol. RNA quality was

determined by Nanodrop ND-1000 (Nanodrop Technologies,

Wilmington, DE) and degradation of mRNA was assessed by

denaturing agarose gel electrophoresis and evaluated the sharpness

of 28 S and 18 S rRNA bands.

Microarray data pre-processing
24 samples were profiled on affymetrix U133 Plus2.0 GeneChip

oligonucleotide arrays (Affymetrix, Santa Clara, CA), which is

Table 4. Mostly potential GO functions of disorder model biomarker.

Gene Set Name
Genes in Gene
Set (K) Description

Genes in
Overlap (k) k/K p value

Telomeric DNA binding 10 Genes annotated by the GO term GO:0042162. Interacting
selectively with telomere-associated DNA, usually
characterized by highly repetitive sequences.

2 0.2000 1.58E-03

Single stranded DNA binding 34 Genes annotated by the GO term GO:0003697. Interacting
selectively with single-stranded DNA.

2 0.0588 1.80E-02

DNA replication 101 Genes annotated by the GO term GO:0006260. The process
whereby new strands of DNA are synthesized. The template
for replication can either be an existing DNA molecule or RNA.

3 0.0297 2.32E-02

Carboxylic acid transport 41 Genes annotated by the GO term GO:0046942. The directed
movement of carboxylic acids into, out of, within or between
cells. Carboxylic acids are organic acids containing one or
more carboxyl (COOH) groups or anions (COO-).

2 0.0488 2.56E-02

Guanyl nucleotide exchange
factor activity

42 Genes annotated by the GO term GO:0005085. Stimulates the
exchange of guanyl nucleotides by a GTPase. Under normal
cellular physiological conditions, the concentration of GTP is
higher than that of GDP, favoring the replacement of GDP by
GTP in association with the GTPase.

2 0.0476 2.67E-02

Organic acid transport 42 Genes annotated by the GO term GO:0015849. The directed
movement of organic acids, any acidic compound containing
carbon in covalent linkage, into, out of, within or between
cells.

2 0.0476 2.67E-02

DNA_dependent DNA replication 55 Genes annotated by the GO term GO:0006261. The process
whereby new strands of DNA are synthesized, using parental
DNA as a template for the DNA-dependent DNA polymerases
that synthesize the new strands.

2 0.0364 4.39E-02

Structure specific DNA binding 55 Genes annotated by the GO term GO:0043566. Interacting
selectively with DNA of a specific structure or configuration
e.g. triplex DNA binding or bent DNA binding.

2 0.0364 4.39E-02

Sequence specific DNA binding 57 Genes annotated by the GO term GO:0043565. Interacting
selectively with DNA of a specific nucleotide composition,
e.g. GC-rich DNA binding, or with a specific sequence motif
or type of DNA e.g. promotor binding or rDNA binding.

2 0.0351 4.68E-02

doi:10.1371/journal.pone.0031283.t004
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comprised of more than 22,000 probe sets and can analyze the

expression level of 18,400 transcripts and variants (approximately

11,000 genes). The preparation of cRNA hybridization, signal

scanning, data acquisition, and preliminary analysis were

performed at the National Engineering Center for Biochip at

Shanghai according to the standard protocols recommended by

Affymetrix (Affymetrix, Santa Clara, CA, USA). Raw data

generated from affymetrix Human U133Plus2.0 were processed

and normalized by RMA method with Gene Spring Software 11.0

(Agilent technologies, Santa Clara, CA, US), then the values were

log2 transformed. Differential gene analysis was preliminarily

performed using Welch t test and then P value adjustment under

multiple hypothesis testing was implemented with multtest

package in Bioconductor under the adjustment method of

Bonferroni. We used Welch t test and boost strap resampling

approach (B = 100,000) to compute t statistics and p values. The

threshold for differential expressed genes (DEGs) was chosen as

0.01.

All data is MIAME compliant and that the raw data has been

deposited in a MIAME compliant database (E.g. ArrayExpress,

GEO), as detailed on the MGED Society website http://www.

mged.org/Workgroups/MIAME/miame.html. The accession

numbers is GSE32280.

Disease model and classification
To select the smallest size of biomarkers with robust predictive

power and fewer potential false positives, more stringent thresholds

were used to identify genes with even greater reliability. Firstly, the

thresholds for differentially expressed SSD and MDD signatures

compared to control and differentially expressed signatures

between SSD and MDD were set as 1.0E-4, 5.0E-4 and 1.0E-4

respectively. Alternatively, P values in combination with fold-

change values were used to identify potential biomarker genes to

limit the likelihood of false positive results. Secondly, these

signatures from 3 pair-wise comparisons were ranked according

to their adjusted P values and the top N signatures were merged

directly (to obtain a small size of biomarkers comparatively and a

better classification performance, the top 10, 15, 18, 20, 25 and 30

signatures from each group were merged respectively). Then, we

applied SVM (Support vector machines) on each of candidate

expression profiles to search better combination of biomarkers

with robust prediction performances (accuracy, sensitivity or

specificity). Finally, leave-one-off method was used to validate

the biomarkers. Leave-one-off validation involves using a single

observation from the original sample as the validation data, and

the remaining observations as the training data. This was repeated

such that each observation in the sample was used once as the

validation data.

Gene Ontology Analysis
Standard methods for testing over-representation of a GO

category assume that, under the null hypothesis, each gene has

equal probability of being detected as DEG (differential expressed

gene) [47]. Under this assumption, the number of genes associated

with a category that overlap with the set of DEG follows a

hypergeometric distribution. Hence the GO test can be conducted

using Fisher’s exact test, which uses the hypergeometric distribu-

tion, or Pearson’s chi-square test, which is a computationally

convenient approximation.

Network and Pathway Analysis
Pathway was analysis using human pathways from KEGG,

biocarta, and metabolism pathway databases [48]. Scoring the

prioritation of network/pathways according to the relevance to

input data. In cases of SSD and MDD experiments result, we

analysis how different pathways and networks modules can be

prioritized based on their statistical significance with respect to

such experimental datasets. Significance is evaluated based on the

size of the intersection between differential expressed gene

signatures and set of genes/proteins corresponding to a network

module/pathway curated in pathway database. This problem can

be cast as selection without replacement and the probability to

randomly obtain intersection of certain size between differential

expressed gene signatures and a network/pathway follows

hypergeometric distribution When considering a set of DEG

signatures (I), invariable number r of DE signatures among the N

nodes of the pathway/network module. The probability of a subset

of size n to include r DE genes provided that n and R are

unrelated (null-hypothesis) follows the hypergeometric distribu-

tion.

Multiclass SVM implementation
In order to classify SSD and MDD from healthy control

simultaneously, support vector machines (SVMs) was utilized for

training and testing on candidate signature expression profiles

from signature selection step. SVMs which represents an extension

to nonlinear models of the generalized portrait algorithm

Table 5. Demographic data for patients and healthy controls.

Group Age (years) Gender Course of disease(months)

SSD

1 25 M 3.0

2 27 M 5.0

3 27 M 2.5

4 36 M 3.0

5 29 F 3.25

6 30 F 1.75

7 35 F 3.5

8 41 F 2.0

MDD

1 24 M 3.3

2 26 M 5.3

3 27 M 2.5

4 38 M 3.0

5 28 F 3.5

6 31 F 1.5

7 35 F 3.0

8 41 F 2.25

HC

1 24 M -

2 29 M -

3 27 M -

4 37 M -

5 28 F -

6 30 F -

7 35 F -

8 41 F -

MDD: Major depression disorder; SSD: Subsyndromal symptomatic depression;
HC: Healthy controls.
doi:10.1371/journal.pone.0031283.t005
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developed by Vladimir Vapnik is a group of supervised learning

methods that can be applied to classification or regression [49].

The SVM takes a set of input data, and predicts, for each given

input, which of two possible classes the input is a member of,

which makes the SVM a non-probabilistic binary linear classifier.

Since an SVM is a classifier, then given a set of training examples,

each marked as belonging to one of two categories, an SVM

training algorithm builds a model that predicts whether a new

example falls into one category or the other.

The original SSD, MDD and control problem may be stated in

a finite dimensional space, but it often happens that in that space

the sets to be discriminated are not linearly separable. For this

reason it was proposed that the original finite dimensional space be

mapped into a much higher dimensional space presumably

making the separation easier in that space. In order to clearly

classify SSD and MDD from controls, multiclass SVM were also

used in aims to assign labels to instances by using support vector

machines. The multiclass approach for conducting this is to reduce

the single multiclass problem into multiple binary classification

problems. Each of the problems yields a binary classifier, which is

assumed to produce an output function that gives relatively large

values. In end, polynomial kernel was applied with the best

predictive performances for combinatorial gene signatures from

the three groups.

De novo cis-Regulatory element analysis
Cis-regulatory motifs are essential elements for gene transcrip-

tion [50]. We also interrogated the over-representative motifs on

promoter sequences collected from UCSC (www.genome.ucsc.

edu/). Two thousand bps sequences around TSS for SSD and

MDD signatures and biomarkers for classifying three groups

(MDD, SSD and controls, together) were all considered for in

promoter-based de novo motif analysis.
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