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Ezrin, coding protein EZRwhich cross-links actin filaments, overexpresses and involves invasion,metastasis, and poor prognosis in
various cancers including esophageal squamous cell carcinoma (ESCC). In our previous study, Ezrin was knock down and analyzed
by mRNA expression profile which has not been fully mined. In this study, we applied protein-protein interactions (PPI) network
knowledge andmethods to explore our understanding of these differentially expressed genes (DEGs). PPI subnetworks showed that
hundreds ofDEGs interactwith thousands of other proteins. Subcellular localization analyses found that theDEGs and their directly
or indirectly interacting proteins distribute in multiple layers, which was applied to analyze the shortest paths between EZR and
other DEGs. Gene ontology annotation generated a functional annotation map and found hundreds of significant terms, especially
those associated with cytoskeleton organization of Ezrin protein, such as “cytoskeleton organization,” “regulation of actin filament-
based process,” and “regulation of actin cytoskeleton organization.” The algorithm of Random Walk with Restart was applied to
prioritize the DEGs and identified several cancer related DEGs ranked closest to EZR. These analyses based on PPI network have
greatly expanded our comprehension of the mRNA expression profile of Ezrin knockdown for future examination of the roles and
mechanisms of Ezrin.

1. Introduction

Ezrin (also named VIL2), which codes the protein EZR, is a
member of the Ezrin-radixin-moesin (ERM) protein family
that concentrates in actin rich cell-surface structures, cross-
linking actin filaments with the plasma membrane [1]. It
has been confirmed that Ezrin is overexpressed and involved
various aspects of cancer cell biological behaviors, such
as invasion and metastasis in breast cancer, osteosarcoma,
and rhabdomyosarcoma. Moreover, the overexpression of
Ezrin often correlates with poor prognosis of patients in
cervical cancer, osteosarcoma, colorectal adenocarcinoma,
and gastrointestinal cancers [2, 3].

The important biological role of Ezrin in human esophag-
eal squamous cell carcinoma (ESCC) has been revealed in
our previous studies. First, the overexpression of Ezrin is
associated with the invasive phenotype of malignantly trans-
formed esophageal epithelial cells [4]. We also found Ezrin

protein EZR has a tendency to translocate from the plasma
membrane to the cytoplasm in ESCC cells [5]. Subsequently,
Ezrin was knock down by shRNA in ESCC cell line, which
led to decrease of the growth, adhesion, and invasiveness of
cancer cells in vitro and tumorigenesis in vivo. The mRNA
expression profile of Ezrin knockdown was analyzed by
Affymetrix GeneChip Human genome U133 plus 2.0 [6].

Various types of molecular interactions, such as protein-
DNA, DNA-RNA, protein-RNA, RNA-RNA, and protein-
protein interactions (PPI) play crucial roles in mediating
numerous biological processes and endow themultifunction-
ality of a single protein.Most of proteins virtually formmulti-
protein complexes to achieve specific functions in the biolog-
ical contexts [7, 8]. In recent years, an increasing emphasis
has been put on integrated analysis of gene expression data
in the context of PPI, which are widely applied in protein
function prediction, functional modules identification, and
interaction prediction [9, 10].
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Nevertheless, the biological meaning of mRNA expres-
sion profile of Ezrin knockdown in ESCC has not been
fully mined in our previous reports [6]. In this study, we
reanalyzed themRNA expression profile of Ezrin knockdown
by integrating public PPI network to provide a deep view
from a system level, which would be more comprehensive
than merely listing the name of genes in the traditional way.

2. Materials and Methods

2.1. The Differentially Expressed Genes. GSE6233, the mRNA
expression profile following Ezrin knockdown in the EC109
ESCC cell line, is available from GEO database (http://www
.ncbi.nlm.nih.gov/geo/). The detailed microarray manipu-
lation was described in our previous study [6]. Briefly,
EC109 cells were transfected with pSUPER-siRNA spe-
cific for Ezrin, with pSUPER.neo vector of nonspecific
siRNA used as a negative control. Stably transfected cell
clones were selected by culture medium containing G418
(400 𝜇g/mL, Calbiochem, Germany). Total RNA of stable
transfected clones was isolated by TRIzol (Invitrogen, USA)
and was quantified spectrophotometrically. Double-stranded
cDNA preparation, synthesis of biotin-labeled cRNA target,
hybridization, washing and staining, subsequent scanning of
the hybridized array, and data processing were performed
according to theManual of AffymetrixGeneChip Expression
Analysis Technical. The expression data was treated by
normalization and log transform.The differentially expressed
genes (DEGs) were obtained by the threshold of 2-fold
change.

2.2. PPI Network Generation. The latest experimentally con-
firmed human PPI data is available from human protein-pro-
tein interactions database (HPRD) (http://www.hprd.org/),
which has been widely applied in human PPI network
research for various disease investigations [11]. The current
HPRD PPI dataset contains 9617 unique proteins and 39140
edges (interactions).TheHPRDdata is loaded intoCytoscape
software as a parent PPI network for subsequent new network
construction [12].

First, three PPI subnetworks were generated by mapping
the downregulatedDEGs, upregulatedDEGs, and total DEGs
and extracting from the HPRD parent PPI network, respec-
tively. To increase the reliability, the network reconstruction
was limited to the first interacting protein neighbors of these
DEGs. Second, to detect the axis of EZR-neighbors proteins-
DEGs-neighbors proteins, EZR was used as query node to
construct EZR-central PPI network.Third, a subnetwork was
created by selecting nodeswith all edges byCytoscape after all
DEGs were mapped to the HPRD PPI network to detect the
internal interactions between DEGs. Single nodes and self-
interactions of proteins in these subnetworks were removed.

2.3. Network Topological Parameters. There are several net-
work topological parameters that enable the comparison
and characterization of complex networks. The network
topological parameterswere analyzed byNetworkAnalyzer in
this study [13]. Power law distribution of node degree, one

of most important network topological characteristics, was
analyzed as we performed previously [14].

2.4. PPI Network Subcellular Layer. The subcellular local-
ization of each protein in the total DEGs PPI subnetwork
was retrieved from theUniprot protein database (http://www
.hprd.org/) by a custom R program and was imported
into Cytoscape as a node attribute. Cerebral (http://www
.pathogenomics.ca/cerebral/) was applied for the protein lay-
ers according to their subcellular localization [15]. The total
DEGs PPI subnetwork was divided into 8 layers according to
their subcellular locations in this study as follows: Secreted,
Secreted/Membrane, Membrane, Cytoskeleton/Cytoplasm,
Cytoplasm, Cytoplasm/Nucleus, Nucleus, and Downstream
genes. The proteins with unknown subcellular location were
classified into Downstream genes. The igraph R program
was applied to find the shortest path between EZR and
ATF3 (activating transcription factor 3) in the total DEG PPI
subnetwork. The protein members within these paths were
also displayed according to their subcellular localization.

2.5. Construction of Functional Annotation Maps. To under-
stand which aspects of biological function were involved
for the proteins in the total DEG PPI subnetwork, ClueGO
pluginwas applied to identify the overrepresented “Biological
Process” terms of gene ontology (GO) for protein members
in the network. ClueGO integrates GO terms into PPI
network and creates a functional annotation map indicating
interrelations of terms [16]. A kappa score was calculated
which reflects the relationships between the terms based
on the similarity of their associated genes and we set the
threshold as 0.3 in this study.

2.6. Random Walk with Restart to Prioritize DEGs. The
algorithm of Random Walk with Restart (RWR) simulates
a random walker on the network to compute the proximity
between two nodes by exploiting the global structure of the
network [17]. The algorithm calculates a priority score for
each node based on the steady state probabilities. RWR is
defined as the following equation:

𝑝
𝑡+1
= (1 − 𝑟)𝑊𝑝

𝑡
+ 𝑟𝑝
0
, (1)

where 𝑟 is the restart probability, 𝑊 is the column-
normalized adjacencymatrix of the network graph, and𝑝𝑡 is a
vector of size equal to the number of nodes in the graphwhere
the 𝑖th element holds the probability of being at node 𝑖 at
time step 𝑡. In this study, RWR was carried out by a custom R
program in the total DEG PPI subnetwork with EZR protein
set as the seed node (see Supplementary Material 1 available
online at http://dx.doi.org/10.1155/2014/651954). We set the
parameter 𝑟 at 0.7, the same with Kohler’s study [18]. And
this parameter has been proved to have little influence to
prioritization result in many other studies [19]. DEGs were
ranked according to the values in the steady-state probability
vector 𝑃

∞
. This was obtained at query time by performing

the iteration until the change between 𝑝𝑡 and 𝑝𝑡+1 (measured
by the 𝐿1 norm) fell below 10−10. The probabilities scores of
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Table 1: Topological parameters of the downregulated, upregulated, and total DEGs PPI subnetwork.

PPI subnetwork 𝑦 = 𝛽𝑥
𝑎

𝑅
2 Correlation Clustering coefficient Network centralization Network density

Downregulated DEGs 𝑦 = 74.313𝑥−1.357 0.858 0.91 0.267 0.217 0.022
Upregulated DEGs 𝑦 = 452.48𝑥

−1.510 0.871 0.839 0.163 0.074 0.01
Total DEGs 𝑦 = 631.42𝑥

−1.564 0.905 0.823 0.16 0.068 0.009

DEGswere log 10 transformed and regarded as node attribute
and displayed by Cytoscape.

3. Results

3.1. PPI Networks of DEGs. Totally, we obtained 244 dif-
ferentially expressed genes (DEGs), including 199 upregu-
lated genes and 45 downregulated genes (Supplementary
Material 2). It is critical to explore the potential roles of
Ezrin by the explication of the DEGs; the investigation
of their interactions with other proteins would provide a
deep insight into the functions of Ezrin and its DEGs. The
downregulated DEG PPI subnetwork contained 187 nodes
and 384 edges (interactions), including 21 downregulated
DEGs (Figure 1(a)). The upregulated DEG PPI subnetwork
contained 799 nodes and 3097 edges, including 103 upreg-
ulated DEGs (Figure 1(b)). The total DEG PPI subnetwork
composed of 942 nodes and 4095 edges, containing 123DEGs
(Figure 1(c)) (SupplementaryMaterial 3).These three subnet-
works indicated that knockdown of Ezrin greatly disturbed
the PPI network in ESCC as hundreds of DEGs interact with
thousands of proteins to enlarge the biological consequences.
The subnetwork based on the axis of EZR-neighbors-DEGs-
neighbors was also constructed to detect the relationship
between EZR and its neatest DEG proteins (Figure 1(d)).
This axis subnetwork composed of 79 nodes and 93 edges,
including 16DEGs; except for the downregulated EZR, SDC2,
and DCN, the others were 13 upregulated genes. The current
HPRD dataset contains 44 EZR interacting proteins, of
these only SDC2 was downregulated 2.6-fold, while other
proteins did not change significantly (Figure 1(d)).The DEG-
DEG interactions were acquired and showed the internal
interactions between DEGs. This subnetwork contained 17
nodes (4 downregulated nodes and 13 upregulated nodes) and
10 edges, forming 3 three-DEG interactions and 4 two-DEG
interactions (Figure 1(e)). EZR connects with the upregulated
KAL1 through its interaction with SDC2.

3.2. Analyses of Network Topological Properties. Whether
the node degree distribution of a network approximates
a power law distribution is a standard character of scale-
free networks. PPI network also obeys this rule, making it
distinguished from random network [20]. The distributions
of node degree of the downregulated, upregulated, and total
DEG subnetworks approximately followed power law fit dis-
tributions, with an 𝑅2 = 0.858, 0.871, and 0.905, respectively
(Figure 2). These indicated three PPI subnetworks are true
cellular complex biological networks characterized as scale-
free. These results also suggest that a few protein nodes act

as hubs with a large number of links to other protein nodes
[21].Other topological parameters of these subnetworks, such
as clustering coefficient, network centralization, and network
density were shown in Table 1. We also applied STRING
database [22] to construct a new DEG PPI network (Sup-
plementary Material 4), which is also characterized as scale-
free (Supplementary Material 5). We compare several critical
topological parameters of these two DEG PPI networks and
find that these parameters are very similar (Supplementary
Material 6). We consider our DEG PPI network derived from
either HPRD or STRING is reliable and robust.

3.3. Subcellular Localization of Proteins in the PPI Subnetwork.
After being synthesized, proteins are transported to cellular
different compartments depending on their molecular roles,
sometimes are even transported to multiple sites. Protein
localization data is valuable information for elucidation of
protein functions [23]. To show their subcellular localization
and provide clues for their functions, the total DEG subnet-
work was rearranged into 8 layers in this study (Figure 3(a)).
As a linker between the actin cytoskeleton and plasma
membrane proteins, Ezrin protein EZR mostly locates in the
cytoskeleton/cytoplasm. Most of EZR interacting proteins
mainly locate in membrane, cytoskeleton, or cytoplasm,
where EZRmainly locates.However, four interacting proteins
ADRA1B, S100P, WWOX, and CTNNB1 are able to translo-
cate into nucleus (Figure 3(b)).

On the other hand, the proteins in the EZR-central
network also involved various subcellular localizations
(Figure 3(c)). Because a major component of signal flow in
cellular signaling cascades is mediated by PPIs, we assumed
various cellular signal transduction processes were built
through the interactions between DEG and their neighbor
proteins except the traditional acknowledged pathways. We
have identified that transcription factor ATF3 was upregu-
lated after Ezrin knockdown in our previous report [6]. To
find the possible shortest path from EZR to ATF3, we applied
the shortest path algorithm, which is able to find the shortest
connection between two nodes in the graph, to identify the
linking proteins between EZR and ATF3. We found nine
shortest paths fromEZR toATF3 (Table 2)with all the lengths
equal to 3.

For better illustration, these proteinswere also rearranged
into multiple layers according to their subcellular local-
izations (Figure 3(d)). Since most of the signal transduction
is induced from cytoplasm to nucleus, we assumed the
four following shortest paths had the maximum likeli-
hood: EZR→ACTB→SMAD3→ATF3; EZR→PRKAR2A→
SMAD3→ATF3; EZR→CTNNB1→NFKB1→ATF3; EZR→
WWOX→TP53→ATF3.
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(a) (b)

(c) (d)

Downregulated DEGs
Upregulated DEGs

(e)

Figure 1: PPI subnetworks were constructed by mapping DEGs to HPRD PPI network. ((a)–(c)) PPI subnetworks for downregulated,
upregulated, and total DEG, respectively. (d) EZR-central PPI subnetwork. (e) Internal interactions between DEGs. Square nodes represented
proteins encoded by downregulated genes, while round nodes represented proteins encoded by upregulated genes. The other interacting
proteins without significantly differentially expression were represented as diamond-shaped nodes.
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Figure 2: Power law distribution of node degree. (a) Degree distribution of the downregulated DEG PPI subnetwork. (b) Degree distribution
of the upregulated DEG PPI subnetwork. (c) Degree distribution of the total DEG PPI subnetwork. The graph displays a decreasing trend of
degree distribution with increase in number of links displaying scale-free topology.

Table 2: The nine shortest paths from EZR to ATF3.

Number Protein members in the shortest paths
1 EZR→ FAS→C1orf103→ATF3
2 EZR→CTNNB1→ SMAD3→ATF3
3 EZR→ACTB→ SMAD3→ATF3
4 EZR→PRKAR2A→ SMAD3→ATF3
5 EZR→CTNNB1→NFKB1→ATF3
6 EZR→WWOX→TP53→ATF3
7 EZR→CDK5→TP53→ATF3
8 EZR→PRKCA→TP53→ATF3
9 EZR→PTK2→TP53→ATF3

3.4. Functional Annotation Map of PPI Subnetwork. ClueGO
generated a functional annotation map for the total DEG PPI
subnetwork, in which protein members were presented by
nodes corresponding to their enriched GO terms, with edges
indicating that two terms share the same enriched genes
(Figure 4). Interestingly, many GO terms associated with
cytoskeleton organization were found, such as “cytoskeleton
organization,” “regulation of actin filament-based process,”
and “regulation of actin cytoskeleton organization.” To our
surprise, the PPI subnetwork also involved cell adhesion and
extracellular matrix, such as “cell-cell junction organization,”
“regulation of cell-matrix adhesion,” and “cell-substrate adhe-
sion.” These results suggested that the knockdown of Ezrin
affected various biological activities through the disturbed
PPI subnetwork, which were closely consistent with the
functions of EZR.

3.5. DEGs Prioritization. Usually to obtain hundreds or thou-
sands of DEGs from profile or -omics analyses, it is urgent to
identify which DEGs are most related to the target gens(s) or

which DEGs are expected to be investigated subsequently to
reveal the underlie mechanisms. RWR algorithmwas applied
to prioritize the proteins in the total DEG PPI subnetwork
with EZR set as seed node. The probability scores of DEGs
ranged from −2.06 to −8.28 after log 10 transformation.
The higher scores indicated the nodes were more closely
connected with EZR. The scores were loaded as the node
attributes of total PPI subnetwork by the indication of the
node sizes (Figure 5(a)). The DEGs were solely displayed for
a better distinguishing view (Figure 5(b)). To better illustrate
their distance to EZR, the DEGs were classified according
to the score range and rearranged into different layers; for
example, EZR was classified as A, DEGs within score −2.0 ∼
−2.99 were classified into B, DEGs within −3.0 ∼−3.99 were
classified into C, and so on (Figure 5(c)). The downregulated
SDC2 ranked the first closed DEGs to EZR, while other
upregulated DEGs such as ITGA5 and NDRG1 were ranked
the second class.

4. Discussion

ESCC is the fourth most frequently diagnosed cancer and
the fourth leading cause of cancer death in China [24]. The
biological roles and molecular mechanisms of Ezrin in ESCC
are far from elaboration. A big challenge in the postgenomic
era is to determine protein function at the scale level. Accu-
mulated researches have demonstrated that an integrative
analysis of gene expression profiles and PPI network can
provide new lights into the molecular mechanisms of specific
genes, or diseases [25, 26].

In this study, a system approach was developed by linking
DEGs to public available PPI data to generate subnetworks,
which provide unique insights into the mechanism of Ezrin
from a network aspect. The three PPI subnetworks indicated
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Figure 3: Subcellular localizations of proteins in the PPI subnetwork were illustrated by Cerebral. (a)The total DEG PPI subnetwork. (b) EZR
and its interacting proteins. (c) EZR-central PPI subnetwork. (d) The shortest paths from EZR to ATF3.

EZR influent the protein activities through the directly or
indirectly interactions with DEGs and other proteins, and
its knockdown might affect various biological functions in
ESCC. It has been suggested that methods based on network
knowledge are important approaches for protein function
annotation in the postgenomic era [27]. We would consider
the downregulated EZR interacting protein SDC2 might also
be crucial for the cytoskeleton organization before we began
to search the literatures. Actually, Granés et al. reported

that Ezrin links SDC2 to the actin cytoskeleton through the
interaction between Ezrin N-terminal domain and SDC2
cytoplasmic domain, which confirmed our presumption [28].

The PPI subnetwork might provide clues to explain the
potential molecular mechanisms that have not been revealed
before. We previously confirmed that the knockdown of
Ezrin decreased the invasion of ESCC cells throughTGF-beta
pathway with a decreased level of p-Smad2/3 [6]. However,
the direct evidences have not been discovered. Recently,
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Figure 4: Functional annotationmap of the total DEGs PPI subnetwork.The terms related to Ezrin functions were indicated by a pink shape.

Mytilinaiou et al. demonstrated that the inhibition of SDC-
2 abolished HT1080 cell adhesion through the inhibition of
TGF-beta-induced Smad2 phosphorylation [29]. We found
SDC2 was greatly decreased 2.6-fold in mRNA expression
profile and confirmed the decrease of SDC2 as well as p-
Smad2/3 in our previous report, which were consistent with
the Mytilinaiou’s report [6], while the downregulated CYR61
and CTGF are direct transcriptional targets of Smad2/3, with
consensus Smad binding sequences in their promoters [30,
31]. By these combination analyses of PPI subnetwork and
literatures, we suggested an axis of signal cascade of EZR
(↓)→SDC2 (↓)→p-Smad2/3 (↓)→CYR61 and CTGF (↓).

Since the Ezrin knockdown induced a wide range change
of gene expression profile, it is interesting to understand
how this signal is transduced from cell front/surface into
nucleus as EZR is a linker of membrane-cytoskeleton. One
of the evidences is that the EZR directly interacting proteins,
such as CTNNB1 (𝛽-Catenin), S100P,WWOX, and ADRA1B,
have the ability to translocate into nucleus [32–35]. Since
so many directly and indirectly interacting proteins could
translocate into nucleus, it is convinced that knockdown of
Ezrin caused great impact on the ESCC gene expression
profile. The localization of a protein is one of its most
important attributes, which provides useful insight into the
function of the protein and an in-depth understanding of how

the biological processes are regulated by the intricate path-
ways [36]. In this study, subcellular localization information
was incorporated into total DEG PPI subnetwork and gener-
ated more biologically intuitive pathway-like layouts of a net-
work.These results indicated that EZR affected the signal cas-
cades of extracellular-membrane-cytoskeleton/cytoplasm-
nucleus. To illustrate the strength of this kind analysis, we
applied shortest path algorithm to find the links between
knockdown EZR and upregulated ATF3. Nine possible short-
est paths were found. It was convinced that PPI network com-
bined with protein subcellular localization provided great
help in future experimental identification of the relationships
between Ezrin and the DEGs.

How to choose critical gene from hundreds of DEGs is a
big challenge for the researchers to continue the subsequent
experiments after the chip experiment is finished. In this
study, the algorithm RWRwas applied to prioritize the DEGs
by ranking their closeness to EZR. The most important
advantage of RWR is that it can perform without any existing
protein annotation, which is the limitation step for large scale
protein analysis. Of the nearest DEGs closed to EZR, many
of them are important for cytoskeleton organization and
arrangement and are even involved in invasion andmetastasis
in multiple carcinomas. AKAP12, a scaffold protein for
PKA and PKC, controls actin-cytoskeleton reorganization
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Figure 5: Prioritization analysis of DEGs in the total DEGs PPI subnetwork. (a) The size of each node in the PPI subnetwork was designed
in a gradient based on the scores. (b) The DEGs were extracted from (a) to show their size. (c) The DEGs were rearranged according to their
closeness to EZR protein.

in a spatiotemporal manner [37]. ITGA5 is an important
component for focal adhesions through a short cytoplasmic
tail that structurally links the cytoskeleton to the extracellular
matrix, transmitting mechanical signals across the plasma
membrane in both directions and regulating cell migration

[38]. These results provided the priorities of other DEGs
by considering their relationship with EZR and provided
important clues for experiments identification of DEGs.

Moreover, shortest path method has been widely used
to discover disease genes on the network, such as colorectal
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cancer related genes and gastric cancer related genes [39, 40].
These two studies considered the proteins within the shortest
path may share some common features of the two known
cancer related genes and found dozens of new cancer related
genes. In this research, we assumed that the information
transmitted fromour target protein EZR to another protein in
the network would also adopt these most economic ways, so
we applied the shortest path algorithm to illustrate how EZR
reach a specific transcription factor. Similarly, we also found
that some proteins in these shortest paths are ESCC related
or at least cancer related. For example, the persistent SMAD3
phosphorylation is critical in the TGF-beta1-mediated EMT
in ESCC [41]. In our previous study, we found that activating
CTNNB1 (𝛽-Catenin) signaling is important in the promo-
tion of ESCC cell aggressiveness by downregulating DSC2
[42]. Inspired by the results described above, we also assumed
the proteins close to EZR might also share some common
features with EZR, suggesting these proteins might be very
important in ESCC.The gene and protein levels of ITGA5 are
increased in mucinous colorectal carcinomas [43]. Jin et al.
found AKAP12 promoter hypermethylation can distinguish
esophageal adenocarcinoma from esophageal squamous cell
carcinoma and normal esophagus after they are detected in
259 human esophageal tissues [44]. So our both results of
Random Walk with Restart and shortest path are different
methods that are able to find key ESCC related genes.

5. Conclusion

In summary, the analyses based on PPI network have greatly
expanded our understanding of themRNA expression profile
following Ezrin knockdown in ESCC. The GO annotation of
PPI network provides a wide range of choice to explore the
potential role of Ezrin. Both results from shortest paths and
RandomWalkwithRestart analyses are able to find important
ESCC related genes, which could serve as research targets in
the future experiments to confirm themolecularmechanisms
of Ezrin in ESCC.
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Vilaró, “Identification of a novel Ezrin-binding site in syndecan-
2 cytoplasmic domain,” FEBS Letters, vol. 547, no. 1–3, pp. 212–
216, 2003.

[29] M.Mytilinaiou, A. Bano,D.Nikitovic et al., “Syndecan-2 is a key
regulator of transforming growth factor 𝛽 2/smad2-mediated
adhesion in fibrosarcoma cells,” IUBMB Life, vol. 65, no. 2, pp.
134–143, 2013.

[30] L. Bartholin, L. L.Wessner, J.M.Chirgwin, andT.A.Guise, “The
human Cyr61 gene is a transcriptional target of transforming
growth factor beta in cancer cells,” Cancer Letters, vol. 246, no.
1-2, pp. 230–236, 2007.

[31] A. C. K. Chung, H. Zhang, Y. Kong et al., “Advanced glycation
end-products induce tubular CTGF via TGF-𝛽-independent
Smad3 signaling,” Journal of the American Society of Nephrology,
vol. 21, no. 2, pp. 249–260, 2010.

[32] J. Behrens, J. P. vonKries,M. Kühl et al., “Functional interaction
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