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Abstract

Given that all in-situ analytical techniques have a non-zero beam size, all measured profiles,

resulting from diffusion or otherwise, will be artefactually elongated to some degree. Profiles

where the total length over which the concentration changes approaches the resolution of

the analytical technique likely suffer from serious convolution; the measured profiles may be

considerably elongated relative to the true profile. Resolving this effect is non-trivial, except

for some specific combinations of profile type and beam geometry. In this study, a versatile

method for numerically deconvoluting diffusion profiles acquired using techniques with

Gaussian, Lorentzian, (pseudo-)Voigt, circular/elliptical or square/rectangular interaction

volumes, is presented. A MATLAB code, including a user-friendly interface (PACE-the Pro-

gram for Assessing Convolution Effects in diffusion studies), is also provided, and applied to

several experimental and natural profiles interpreted as resulting from diffusion, showing

various degrees of convolution.

Introduction

Diffusion modelling is now commonplace in the earth sciences, given its ability to determine

timescales of geological processes regardless of their absolute age [1–5]. Currently, the litera-

ture contains some open questions regarding discrepancies between different diffusion coeffi-

cients and the applicability of diffusion coefficients determined in the laboratory to natural

systems. However, the effects of analytical convolution, normally artificial broadening of diffu-

sion profiles, can, in some cases, be assessed using various analytical and numerical approaches

[6–11].

The error function, which is fundamental to several analytical solutions of Fick’s second

law, has a geometry that corresponds to the cumulative distribution function of the normal

distribution. This means that analysing a simple step function, using an analytical method

where the interaction volume can be described as Gaussian, will yield an error function. Like-

wise, analysing an error function-shaped profile with any Gaussian beam (e.g. most analyses

using nanoSIMS, electron probe, scanning electron microscope, cathodoluminescence, Fou-

rier transform infrared spectroscopy) will lead to some smoothing-out/lengthening of the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0241788 November 24, 2020 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jollands MC (2020) Assessing analytical

convolution effects in diffusion studies:

Applications to experimental and natural diffusion

profiles. PLoS ONE 15(11): e0241788. https://doi.

org/10.1371/journal.pone.0241788

Editor: Marco Lepidi, University of Genova, ITALY

Received: January 24, 2020

Accepted: October 20, 2020

Published: November 24, 2020

Copyright: © 2020 Michael C. Jollands. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Codes and

downloads are available www.mikejollands.com/

pace and doi.org/10.5281/zenodo.4135070.

Funding: Funding P400P2_183872 from the Swiss

National Science Foundation, www.snf.ch. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The author declares that no

competing interests exist.

https://orcid.org/0000-0003-1442-5133
https://doi.org/10.1371/journal.pone.0241788
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241788&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241788&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241788&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241788&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241788&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241788&domain=pdf&date_stamp=2020-11-24
https://doi.org/10.1371/journal.pone.0241788
https://doi.org/10.1371/journal.pone.0241788
http://creativecommons.org/licenses/by/4.0/
http://www.mikejollands.com/pace
http://www.mikejollands.com/pace
http://doi.org/10.5281/zenodo.4135070
http://www.snf.ch


error function, whilst maintaining its form. The effect of beam convolution, in the simple case

a Gaussian beam, has been derived both by Ganguly et al. and Arnould and Hild [7, 12] as:

D�t ¼ Dtþ s2=2 ð1Þ

where D� is the measured diffusion coefficient, D is the actual diffusion coefficient, σ is the

standard deviation associated with a beam with a Gaussian interaction volume and t is the

time for diffusion. The characteristic length of a diffusion profile is proportional to
p

(Dt).

From (1), the effect of convolution ((D�t)/(Dt)) is, intuitively, greatest for profiles with high σ
and low Dt. Circular/elliptical, square/rectangular (e.g. laser ablation inductively coupled

plasma mass spectrometry, LA-ICP-MS) and Lorentzian/(pseudo-)Voigt (some electron probe

analyses) beams will also convolute profiles, with different resulting shapes (Fig 1).

Whilst this convolution effect has been recognised for several decades, it is still often omit-

ted from diffusion studies. Therefore, to enable the fast, reproducible assessment of convolu-

tion effects, PACE (the Program for Assessing Convolution Effects in diffusion studies) is

presented (Fig 2). PACE is a stand-alone package (for Mac OSX and Microsoft Windows),

built in MATLAB, allowing extraction of deconvoluted profiles from measured profiles where

1) circular, square, Gaussian, Lorentzian or pseudo-Voigt interaction volumes can be assumed;

2) where the beam size is known a priori, or can be estimated and 3) where an assumption can

be made regarding the true nature, i.e. the geometry, of the profile. A second program-

PACE-IC (PACE-Initial Conditions) is also provided, this is based on PACE, but allows the

user to input initial and boundary conditions. In addition, a third program—PACE-GD (Get

Dimensions) is provided for estimating beam sizes from profiles made across known step

functions, with any of the interaction types listed above.

The software does not assume knowledge of programming or diffusion past simple recogni-

tion of profile types. The use of PACE is demonstrated on several diffusion profiles with

Fig 1. Types of convolution considered in this study. The pseudo-Voigt profile (not shown) is a linear combination

of Gaussian and Lorentzian profiles.

https://doi.org/10.1371/journal.pone.0241788.g001
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Fig 2. Screenshots from PACE, PACE-GD and PACE-IC. (a) shows the start screen, from which the others are

accessed. (b) is the main screen from PACE, following fitting and deconvolution of a random profile. The top right

hand panel shows the initial fit (blue line) to the data (points), then the lower panel shows the deconvoluted (solid red

line) and convoluted (dashed black line) fits, incorporating a Gaussian beam with a 15 μm full width at half-maximum

(c) shows PACE-GD following extraction of a beam size from a Gaussian convoluted profile. (d) shows PACE-IC
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different beam geometries, showing both cases where the convolution effects are negligible,

and where they may become important.

Methods

Solutions to Fick’s second law (PACE)

The methodology used in PACE only employs analytical solutions to the diffusion equation—

it does not incorporate any numerical diffusion modelling. Therefore, PACE can only be used

in cases where the boundary conditions are fixed, and the initial conditions are describable

using step functions. Numerical modelling is incorporated into PACE-IC (described below).

This precludes the use of PACE in certain situations including 1) changing temperature, lead-

ing to partition/distribution coefficients changing over time and 2) loss of the original core

composition following a prolonged period of diffusion.

For simulating sigmoidal shaped profiles that include flat plateaus on the left and right, eq

(2) is used:

C x; tð Þ ¼ C2 þ C1-C2ð Þ �
1

2
� erfc

x-X
2
ffiffiffiffiffi
Dt
p

� �

ð2Þ

Where C(x,t) is the concentration at position x and time t, X is the midpoint/inflection point

of the profile and D is the diffusion coefficient (m2s-1).

For U and upside-down-U shaped profiles, eq (3) is used:

C x; tð Þ ¼ C2 þ C1-C2ð Þ � erfc
x

2
ffiffiffiffiffi
Dt
p

� �

þerfc
X-x
2
ffiffiffiffiffi
Dt
p

� �� �

ð3Þ

where in this case, C1 and C2 represent boundary and core concentrations, and X is the length

of the system, i.e. the position of the right-hand boundary, where the left-hand boundary is at

x = 0 by default.

For profiles where the boundary is at x = 0 (left hand side) and the system is considered

semi-infinite, eq (4) is used:

C x; tð Þ ¼ C2 þ C1-C2ð Þ � erfc
x

2
ffiffiffiffiffi
Dt
p

� �

ð4Þ

and where the boundary is on the right-hand side of the profile at x6¼0, again in a semi-infinite

system, eq (5) is used instead:

C x; tð Þ ¼ C2 þ C1-C2ð Þ � erfc
X-x
2
ffiffiffiffiffi
Dt
p

� �

ð5Þ

where X is again the position of the boundary. By default, PACE outputs log10Dt, along with

the respective concentrations. From this, D or t can be readily extracted when the other is

known, or, because Dt =
R

D(t)dt [13], Dt can also be used to extract cooling histories.

Numerical diffusion modelling (PACE-IC)

PACE-IC uses an explicit finite difference method to solve Fick’s second law numerically in

one dimension. This method is described thoroughly elsewhere [14–16], but, briefly, the

following fitting and deconvolution of a profile with a stepped initial condition, and a 15 μm wide square/rectangular

beam. The top panel shows the initial fit using the imported initial condition (red dashed line), then the deconvoluted

profile, as in (b).

https://doi.org/10.1371/journal.pone.0241788.g002
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system is modelled as a vector representing a series of equidistant steps (spacing = Δx), with

the initial and boundary conditions imported by the user. The model then steps forwards

through time (size of time step = Δt), with the concentration (C) at each distance step (i) recal-

culated at every time step (j):

Ci;jþ1 ¼ Ci;j þ DDt
Ciþ1;j-2Ci;jþCi� 1;j

Dx2

� �

ð6Þ

The size of the time step is defined by D and Δx, (DΔt)/Δx2 must be less than 0.5 for stabil-

ity. PACE-IC assumes that the boundaries are constant over time.

Simulating beam convolution

A workflow describing how beam convolution is simulated in PACE is presented in Fig 3, with

the methodology described herein.

The inputs are 1) details regarding the nature of the beam; 2) a model profile vector, which

is generated from the non-linear least squares regression and 3) the measured profile, i.e. the

data vector, which may or may not include uncertainties. The model profile vector is longer

than the data vector, in that it extends past the highest and lowest distance values. This is

shown in the ‘Inputs’ section of Fig 3 –the data vector has a total length X1, and the model pro-

file vector has length X2, where X2>X1.

To simulate convolution, a square matrix is constructed (denoted ‘Matrix accounting for

convolution’ in Fig 3), with dimensions X2 by X2. This is a matrix of zeros, with each column

and row containing a vector representing the sampling density associated with a given beam

type and size (shown as ‘Proportion’ in Fig 3). Notably, this calculation assumes uniform sam-

pling density when using circular/elliptical and square/rectangular beams. For LA-ICP-MS

analyses, this means flat-bottomed craters with vertical walls, which is a reasonable assumption

for modern systems (e.g. Fig 1 of Neymark et al. [17]).

The matrix accounting for convolution is then multiplied by the model profile vector point-

wise. This gives a new matrix, denoted ‘Convoluted model profile, as matrix’ in Fig 3.

This matrix is then summed along one dimension to form a vector, denoted ‘Convoluted

model profile, as vector’ in Fig 3. The vector is then interpolated to find the nearest points to

the data, and the difference between this vector and the data is minimised using the lsqnonlin
solver in MATLAB. Whilst obviously slower computationally than the analytical solution for

Fig 3. Method for convoluting diffusion profiles, described in the text.

https://doi.org/10.1371/journal.pone.0241788.g003
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deconvoluting the effect of a Gaussian beam on an error function [7], this method is versatile—

it can potentially be used for simulating any beam shape and any profile shape, as long as an

assumption can be made regarding the nature of, i.e. the true form of, the deconvoluted profile.

Treatment of boundaries

In order to simulate convolution, it is necessary to begin with a profile that is longer than the

measured profile. In the case of the curves generated by eq (2), where the extremities of the

curve are flat segments, the boundaries are simply extended. However, where the curve inter-

sects a boundary with constant composition (e.g. eqs (3)–(5)), the situation is slightly more

complex. In PACE, the boundaries in these equations are considered as fixed. This means that

the convolution effect becomes smaller towards the boundary, i.e., in the most extreme case, a

point made exactly at the boundary using a Gaussian beam will only be convoluted by the inside

of the crystal, and not the outside. Whilst not ideal, the other options are 1) adding a flat seg-

ment outside of the boundary, which leads to a slight sigmoidal shape at the boundary after con-

volution and 2) continuing the curve outside of the boundary, which is physically unrealistic.

Estimating beam size

Where circular/elliptical or square/rectangular beams are used, the beam size is either known,

or can be directly measured from photomicrographs. Otherwise, the beam size can be deter-

mined using a profile measured over a known step function, either real or simulated.

The diameter of a circular beam can be obtained from a profile made over a known step

function by approximately running the methodology presented in Fig 3 in reverse. The width

of a square or rectangular beam is determined by calculating a moving mean from a step func-

tion, then calculating the window size necessary for fitting the moving mean to the data repre-

senting a convoluted known step function, which should be three linear segments.

Likewise, where the beam is Gaussian, Lorentzian or Voigt, the size can be estimated or

directly measured. For a Gaussian beam, a measured profile over a step function is fitted to an

equation with the form:

C xð Þ ¼ C2 þ C1-C2ð Þ �
1
2

1þ erf
x-X
ffiffiffi
2
p

s

� �� �

ð7Þ

and for a Lorentzian beam:

C xð Þ ¼ C2 þ C1-C2ð Þ �
1
p
arctan

x-X
g

� �

þ
1
2

� �

ð8Þ

C1, C2, x and X have the same meanings as in eq (2). For the Gaussian (G), the full width at

half maximum (FWHM, Γ) is 2
p

(2ln2)σ, and Γ = 2γ for the Lorentzian (L). For beams best

approximated by Voigt shapes, pseudo-Voigt (pV) profiles are simulated from a linear combi-

nation of (7) and (8):

Cðx;GÞ
½pV� ¼ ZCðx;GÞ

½G� þ ð1-ZÞCðx;GÞ½L� ð9Þ

[18]. FWHM (Γ) of the pseudo-Voigt (Γ[pV]) line is determined from those of the Gaussian

(Γ[G]) and Lorentzian (Γ[L]) lines:

Γ ½pV� ¼ ðΓ
5

½G� þ 2:69269Γ 4

½G�Γ ½L� þ 2:42843Γ 3

½G�Γ
2

½L� þ 4:47163Γ2

½G�Γ
3

½L�

þ0:07842Γ ½G� Γ
4

½L� þ Γ
5

½L�Þ
1
5

ð10Þ
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and η is estimated as:

Z ¼ 1:36603
G½G�

G½pV�

 !

� 0:47719
G½L�

G½pV�

 !2

þ 0:11116
G½L�

G½pV�

 !3

ð11Þ

[19]. All of the above methods are incorporated into PACE-GD.

Where a profile over a couple with a perfect step function, either experimental or natural,

cannot be directly measured, software packages allow the direct simulation of electron interac-

tions and thus the extraction of beam size (e.g. CASINO [20]). For example, consider a case

where Fe-Mg profiles are measured by electron microprobe (e.g. [21–24]. A couple between

Fo85 and Fo90 (i.e. Mg/(Mg+Fe) = 0.85 and 0.90, respectively) was simulated using CASINO v2

at a series of accelerating voltages, then the resulting profiles fitted using PACE-GD, both

assuming a Gaussian beam and assuming a pseudo-Voigt shape. According to the simulation,

the assumption of a Gaussian interaction is valid up to ~15 kV, after which the interaction

develops wider tails and becomes more Lorentzian in shape, reflected in the relative FWHMs

of the Lorentzian and Gaussian components of the pseudo-Voigt interaction volumes (Fig 4).

The advantage of the empirical deconvolution method shown in Fig 3 is that any such interac-

tion type can be simulated, without the requirement that the interaction volume is strictly

Gaussian, as required when using eq (1).

Aside from convolution effects associated with interaction volumes, there are also effects

associated with secondary fluorescence in EPMA. This is associated with measuring low con-

centrations of elements in phases adjacent to a phase with a much higher concentration of the

same element [25, 26], such as Ti in quartz adjacent to rutile [27]. The method in PACE does

not account for this phenomenon. The extent of this effect will be sample specific, and specific

to the analytical conditions used.

Fig 4. The effect of EPMA accelerating voltage on a step function measured over a Fo85-Fo90 couple, simulated using the

Monte Carlo method implemented in CASINO (20). (a) profiles of Fe Kα (counts, normalised) as a function of accelerating

voltage, showing an increase in width, but also a change in shape, as the kV increases. (b) the profiles from (a), deconvoluted

using PACE-GD to give the FWHM as a function of kV. This was done both assuming a purely Gaussian interaction (circles)

as well as a pseudo-Voigt interaction (squares). The FWHM of the pseudo-Voigt line is shown (V), as well as those of the

Gaussian (V(G)) and Lorentzian (V(L)) components comprising the Voigt line. Lines (dashed, dotted and solid) represent

increasing intervals of 1 kV.

https://doi.org/10.1371/journal.pone.0241788.g004
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Example applications

These tools have applicability both where experimental diffusion profiles are measured (e.g. in

experimental petrology, materials science) and for natural diffusion profiles (often measured

in petrology, volcanology, etc). Some example applications are presented below.

Experimental Ti diffusion profiles in quartz

Ti diffusion in quartz has had wide ranging applications, including determining timescales of

1) magma chamber processes [3, 28–30]; 2) metamorphic cycles [31] and 3) porphyry forma-

tion [32], as well as for proposing a relatively low granite solidus [33]. Therefore, the accurate

determination of Ti diffusivities in quartz is of considerable importance.

Fig 5 shows cathodoluminescence images of two quartz pieces, both including a low Ti core

(<0.2 wt. ppm) over which a high Ti rim (~3000 wt. ppm) was grown experimentally (both

images courtesy of Andreas Audétat at the Bayerisches Geoinstitut, Germany). The couple in

Fig 5a shows the sample directly after synthesis (1000˚C, 1 kbar, 5 hours). The couple in Fig 5b

shows the same sample after annealing at 1600˚C, 20 kbar, for 89.5 h, to induce diffusive Ti

flux. Fitting eq (7) to five grayscale profiles extracted (using ImageJ [34]) from the interface

between the high and low Ti sections of the non-annealed couple (Fig 5a) gives a mean σ = 137

nm, hence FWHM = 322 nm (determined by PACE-GD). Applying the same FWHM to a pro-

file extracted from the annealed couple gives log10Dt (m2) = -13.41(±0.01) (deconvoluted),

Fig 5. Deconvoluting Ti profiles in quartz determined by SEM-CL. Images were acquired using a Zeiss Gemini 1530 field

emission gun scanning electron microscope equipped with an ellipsoidal mirror and an ASK SEM-CL View VIS (250–900 nm)

imaging spectrometer. The SEM was operated at 7 kV, 10 nA with a working distance of 14.2 mm. (a) CL image of an un-annealed

high Ti quartz-low Ti quartz couple, with an extracted greyscale profile in (c). (b), same sample as in (a), after annealing at 1600˚C,

20 kbar for 89.5 h, showing a wider transition zone, with the extracted profile in (d). (c) assuming that the gradient in (a) is purely

convolution (i.e. (a) is a step function) and the beam-sample interaction is Gaussian, the FWHM is determined by fitting a curve

with the form erf(x/(
p

2σ)) to the data, giving FWHM = 322 nm. (d) extracted profile from (b), deconvoluted using PACE and the

FWHM from (c). The ‘Ti-rich’ section contains ~3000 wt. ppm Ti, versus<0.2 wt ppm for the ‘Ti-poor’ section.

https://doi.org/10.1371/journal.pone.0241788.g005
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with the original fit giving log10D�t (m2) = -13.31(±0.01). As t = 89.5 h, log10t (s) = 5.51 so

log10D (m2s-1) = -18.92. Interestingly, this diffusion coefficient is lower than extrapolations of

both previous experimental determinations of Ti diffusion in quartz [35, 36]. This could be an

effect of pressure, composition or diffusion mechanism, but this does not affect the validity of

the deconvolution routine.

Magmatic timescales from the Bishop Tuff

Volcanic quartz crystals often preserve zoning in Ti content, interpreted to be formed by

changes in titania activity or temperature, or be the consequence of disequilibrium during

growth [37–41]. In any case, the Ti zoning leads to intra-crystalline chemical potential gradi-

ents, which drive diffusive flux. The spatial extent of the diffusion profiles can then be used to

understand the temperature-time history of the magmatic system. Gualda et al. [42] presented

20–30 μm long profiles measured using synchrotron X-ray microfluorescence with a stated

5 μm beam size, assumed to represent the FWHM of a Gaussian beam-sample interaction (e.g.

[43]). Applying PACE to their data shows a minor convolution effect, resulting in a Dt shift of

0.06 log units, which equates to a time decrease of just ~13%. This effect can be considered

negligible given reasonable uncertainties associated with diffusion modelling, which, for this

system, mainly include 1) temperature; 2) whether samples are prepared with a plane exactly

perpendicular to the compositional boundary; 3) discrepancies between experimental determi-

nations of diffusion coefficients [35, 36] and 4) initial conditions.

In this case, given the profile and beam types, the result can be compared to the exact for-

mulation in eq (1), which gives log10D�t (m2) = -10.86 (c.f. -10.87 in Fig 6). The former is

exact, whereas the latter is a numerical approximation, hence the small discrepancy.

Experimental diffusion profiles measured using a rectangular laser beam

Slit-shaped beams are now routinely used in laser ablation inductively-coupled plasma mass

spectrometry (LA-ICP-MS) to measure concentration profiles in minerals and glasses [44–47].

Fig 6. Data from Gualda et al [42], fitted and deconvoluted using PACE, assuming a 5 μm FWHM Gaussian

beam. The measured Dt (D�t) is just 0.06 log units greater than the true Dt (Dt), i.e. convolution has almost no effect

on the measured profile.

https://doi.org/10.1371/journal.pone.0241788.g006
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In this technique, a slit-shaped aperture is placed in the optical pathway and rotated to have its

long axis parallel to the diffusion interface. The sample is then moved beneath the stationary

beam, continuously passing data to a mass spectrometer, creating a profile of concentration

versus distance. Jollands et al. [47] presented an experimental data set of Cr diffusion in olivine

measured in this manner. The diffusivity of Cr was shown to be highly anisotropic in olivine,

with considerably higher diffusivity parallel to [1] than [100], and also dependent on the exter-

nally-buffered silica activity, with higher silica activity giving higher diffusivities. Together,

profiles measured parallel to [100] following low silica activity experiments were often short,

which in this case means <10 μm. One such profile is shown in Fig 7, with a ~9 μm long Cr

diffusion profile, measured using a 6 μm wide (by 100 μm long) laser beam. This was following

an experiment at 1306˚C, for ~35 days. The convoluted log10D� (m2s-1) = -17.65 ± 0.03. Fol-

lowing deconvolution (Fig 7), log10D (m2s-1) = -17.76 ± 0.04, resolvably different from the

convoluted data. The advantage with this method is that, because the length scale of a diffusion

profile is broadly proportional to the square root of time, if such short profiles can be deconvo-

luted, then this opens up the possibility for running shorter experiments and/or experiments

at relatively low temperatures.

Experimental Pb in zircon profiles measured by EPMA

An accurate determination of the diffusivity of Pb in zircon is essential for determining the

closure temperature associated with U-Pb dating. Cherniak and Watson [48] presented a pro-

file of Pb-out diffusion from zircon measured by EPMA to supplement a large dataset of Pb

diffusivities measured by Rutherford Backscattering Spectroscopy. The measured profile was

~6 μm long, measured with a 25 kV beam. A CASINO simulation of a line profile measured at

25 kV, over a high Pb—low Pb zircon couple gives an error function form (i.e. a Gaussian

beam) with σ = 693 nm, i.e. FWHM = 1633 nm. However, because Cherniak and Watson [48]

measured on a section 30˚ from obliquity with the diffusion interface, the interaction volume

Fig 7. An experimental Cr diffusion profile in forsterite, measured using LA-ICP-MS with a 6x100 μm,

deconvoluted. The measured D (D�) is 0.11 log units higher than the deconvoluted D. Note the deviation between

data and model in the near-interface region—this is due to the way that PACE treats boundaries (fixed composition

equal to the rim composition).

https://doi.org/10.1371/journal.pone.0241788.g007

PLOS ONE Convolution of diffusion profiles

PLOS ONE | https://doi.org/10.1371/journal.pone.0241788 November 24, 2020 10 / 14

https://doi.org/10.1371/journal.pone.0241788.g007
https://doi.org/10.1371/journal.pone.0241788


is compressed by approximately a factor of two in the direction of diffusion. Thus, a FWHM of

816 nm was used for deconvolution.

Deconvoluting the measured profile (Fig 8) shows that the effect of artificial profile length-

ening is only 0.01 log10Dt units in this case, far smaller than the uncertainty from curve fitting.

That this effect is so small, even when using a 25 kV beam, is due to a combination of the high

stopping power of zircon and the measurements having been done on a non-oblique section.

Concluding remarks

The PACE software packages allow rapid, simple determinations of analytical convolution

artefacts associated with measuring diffusion profiles, either experimental or natural. Whilst

the majority of experimental and natural profiles are comfortably much longer than the beam

size used to measure them, profiles approaching analytical spatial resolution are becoming

more common in the literature. PACE simplifies the extraction of quantitative data from such

profiles, and also enables a rapid diffusion profile versus no measurable diffusion profile distinc-

tion to be made. Such tools will become more important as diffusion modelling is used to

determine increasingly short timescales.
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Fig 8. Deconvoluting a Pb in zircon profile from [48]. (a) shows an apparent Pb Lα profile between Pb-doped and Pb-free zircon,

generated by CASINO [20], using an incident beam at 25 kV with a nominal 2 μm diameter. From the fit, σ = 693 nm, hence

FWHM = 1633 nm. However, because [48] analysed a section 30˚ from normal to the interface, the relevant FWHM is 1633/~2�

816 nm. (b) shows the [48] EPMA profile, deconvoluted. Convolution has an effect of<0.01 log10D units in this case.

https://doi.org/10.1371/journal.pone.0241788.g008
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