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ABSTRACT

Data analysis and interpretation remain a critical bot-
tleneck in current multi-omics studies. Here, we intro-
duce OmicsAnalyst, a user-friendly, web-based plat-
form that allows users to perform a wide range of
well-established data-driven approaches for multi-
omics integration, and visually explore their results
in a clear and meaningful manner. To help navigate
complex landscapes of multi-omics analysis, these
approaches are organized into three visual analyt-
ics tracks: (i) the correlation network analysis track,
where users choose among univariate and multi-
variate methods to identify important features and
explore their relationships in 2D or 3D networks;
(ii) the cluster heatmap analysis track, where users
apply several cutting-edge multi-view clustering al-
gorithms and explore their results via interactive
heatmaps; and (iii) the dimension reduction analy-
sis track, where users choose among several recent
multivariate techniques to reveal global data struc-
tures, and explore corresponding scores, loadings
and biplots in interactive 3D scatter plots. The three
visual analytics tracks are equipped with compre-
hensive options for parameter customization, view
customization and targeted analysis. OmicsAnalyst
lowers the access barriers to many well-established
methods for multi-omics integration via novel vi-
sual analytics. It is freely available at https://www.
omicsanalyst.ca.

GRAPHICAL ABSTRACT

INTRODUCTION

The rapid development and increasing accessibility of var-
ious omics profiling technologies such as massive parallel
sequencing and mass spectrometry have made multi-omics
data collection more routine practices in recent years. These
multi-omics studies promise to provide more holistic pic-
tures to enable comprehensive understanding of complex
diseases and biological processes (1,2). As a result, the last
few years have witnessed a growing number of bioinfor-
matics tools and statistical methods developed for multi-
omics integration (3,4). These computational approaches
can be largely classified as either knowledge-driven or data-
driven strategies. The knowledge-driven strategy is well es-
tablished. A typical example is to map genes and metabo-
lites of interest into known metabolic pathways or networks
and then visually explore the results for hypothesis genera-
tion (5–7). A key limitation of this strategy is its dependency
on a prior knowledge base. Data analysis and interpretation
will be conducted within the confines of this knowledge do-
main, making it unsuitable for novel discoveries and appli-
cations to non-model organisms. The data-driven strategy,
on the other hand, depends primarily on the datasets them-
selves, and can be applied in a more general and unbiased
manner (8).

Many different data-driven approaches have been pro-
posed and practiced for multi-omics integration. They can
be loosely put into three categories based on their main
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themes, including (i) Feature correlation analysis - this theme
aims to identify features that are correlated across differ-
ent omics layers and/or co-vary under the conditions of in-
terest. These correlated features provide more detailed de-
lineations of underlying biological processes than those ob-
tained from a single omics layer; (ii) Sample clustering anal-
ysis - this theme aims to leverage multiple molecular pro-
files to improve sample characterization, such as to iden-
tify subsets of cancer patients for more targeted treatments
(9); (iii) Understanding global structure - this theme aims to
gain a high-level overview of multi-omics data by extract-
ing and examining their shared structural variations and
local patterns. Compared to the knowledge-driven strategy
where many user-friendly tools are available, most data-
driven methods are in the form of complex multivariate
statistics or machine learning algorithms, available mainly
in the form of command line programs (10–14). For most re-
searchers, they are harder to use and the results are harder
to interpret. User-friendly bioinformatics tools supporting
data-driven strategy are urgently needed to help convert the
complex multi-omics data into meaningful patterns and in-
sights.

Here, we introduce OmicsAnalyst, a web-based visual an-
alytics platform dedicated for data-driven multi-omics in-
tegration. It currently supports more than a dozen well-
established methods through three visual analytics tracks
- correlation network analysis, cluster heatmap analysis,
and dimension reduction analysis. These three visualiza-
tion tracks are equipped with comprehensive functions and
menus to allow users to perform parameter customization,
visual exploration and interactive analysis. To help users
navigate the tool, we have compiled a comprehensive list
of frequently asked questions (FAQs), four different screen-
shot tutorials, and a case study. The main features of Omic-
sAnalyst are described below.

Overview of omicsanalyst

The workflow of OmicsAnalyst is shown in Figure 1. It con-
sists of three main phases to help users to navigate the com-
plex procedures of multi-omics analysis. In the Phase 1 (data
processing), users go through the conventional single omics
data analysis workflow including data upload, annotation,
missing value estimation, data filtering, and identification of
significant features. After basic quality check and optional
data normalization for multi-omics integration, users enter
the Phase 2 (method selection). OmicsAnalyst offers a wide
array of approaches organized under three categories: cor-
relation network analysis, cluster heatmap analysis, and di-
mension reduction analysis. After method selection, users
are presented with an overview and diagnostic plots to de-
cide whether the default parameters (if any) should be up-
dated. Finally, users enter the Phase 3 (visual analytics) and
explore the results through interactive visualization coupled
with various statistical and functional analysis.

Data processing

Data upload and annotation. OmicsAnalyst accepts data
tables containing feature abundance values (raw or normal-
ized) generated from different omics platforms. They must

share the same sample names and metadata information.
For data from human and mouse, users can further per-
form feature annotation for transcriptomics, proteomics,
metabolomics and miRNA. The annotation is required for
enrichment analysis in the visual analytics stage. Missing
value estimation. Omics data often contain missing values
which could cause potential issues in downstream analysis.
Users can exclude features with too many missing values or
perform missing value estimation based on several widely
used methods. Data filtering. Given the high-dimensional
nature of omics data, it is strongly recommended to perform
unspecific data filtering to exclude features that are unlikely
to be useful in downstream analysis. In particular, features
that are relatively consistent can be safely excluded based on
their inter-quantile ranges (IQRs) or other variance mea-
sures. Features that are of very low abundance should also
be excluded, as they contribute little to the overall variance-
covariance structure in multi-omics integration. Differential
analysis. Users can perform conventional statistical com-
parisons to identify significant features within individual
omics data. These features will be available for correla-
tion network creation or highlighted in heatmaps or scat-
ter plots. Quality checking and normalization/scaling. The
goal is to make different omics data more ‘integrable’ by
sharing similar distributions. Users can visually examine the
distribution of individual omics data through density plot,
principal component analysis (PCA) plot, and t-distributed
stochastic neighbor embedding (t-SNE) plot. Based on the
visual assessment, users can choose among a variety of data
transformation, centering and scaling options to improve
the integrability.

Correlation network analysis track

The objective of the correlation network analysis is to iden-
tify and visualize relationships between key features from
two omics datasets. It consists of three main steps, detailed
below.

Network creation. This step involves selecting the key fea-
tures and computing their pairwise correlations. By default,
significant features identified by differential analysis dur-
ing the data processing phase will be used for network cre-
ation. However, users can also select top features based
on the loading scores from the multivariate dimension re-
duction methods. Details on the dimension reduction tech-
niques can be found in the ‘Dimension Reduction Analysis
Track’ section. The next step is to compute pairwise similar-
ities between selected features. Due to their simplicity and
widespread familiarity, univariate methods, such as Pearson
correlation, are usually computed as a first line of analysis.
However, these methods can produce many false connec-
tions due to presence of highly collinear features in omics
data. Partial correlation, a multivariate method that mea-
sures the correlation between two variables while control-
ling for all others, has been successfully applied to omics
data to detect connections between features that are more
likely to represent true dependencies (15).

Network customization. Networks with a large number of
nodes and edges are too complex and overwhelming for vi-
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Figure 1. Overall workflow of OmicsAnalyst. Multi-omics integration is divided into three main phases - data processing, method selection and visual
analytics. Each phase contains multiple steps and options to allow comprehensive analysis and customization.

sualization and interpretation. OmicsAnalyst partially ad-
dresses this issue by allowing users to control network sizes
based on the strengths of correlations. However, applying a
single threshold can often produce networks with the ma-
jority of edges existing between nodes of the same omics
type. This is because in many cases, correlations between
features of the same omics type are categorically higher than
those of different omics types, likely due to technical differ-
ences between platforms. To address this issue, OmicsAna-
lyst offers two filters to control correlation strengths, one for
within-omics and the other for between-omics, with a more
stringent default threshold for the former. In addition, users
can also apply degree or betweenness filters to control net-
work size based purely on the topological properties of the
nodes.

Network visual analytics. In addition to providing differ-
ent filters to allow users to refine the nodes and edges that
comprise the network, OmicsAnalyst offers a variety of sim-
ple and advanced functions to facilitate visual identifica-
tion of important network structures. For instance, binary
edge coloring is used to differentiate positive and negative
correlations, and edge thickness is used to reflect strengths
of the correlation to enable quick identification of feature
pairs that are highly correlated. OmicsAnalyst also offers
3D network visualization for a deeper perspective of the re-
lationships. Advanced graph layout algorithms, for exam-
ple edge bundling can be applied to aggregate similar edges
into groups to reduce clutter in visualization. Other features
such as the concentric circular layout facilitate the evalu-
ation of focal nodes and hierarchical relationships within
network. When features are annotated during data process-
ing, users can perform enrichment analysis on a group of
nodes selected either manually or through automatic mod-
ule detection algorithms.

Cluster heatmap analysis track

The objective of the track is to identify and visually explore
relationships between samples and key features in side-by-
side heatmaps, each displaying data from one omics type. It
consists of two main steps, detailed below.

Sample cluster detection. In multi-omics data, each omics
type is a separate representation of the same samples, mak-
ing it suitable for multi-view clustering (4). One main advan-
tage of multi-view clustering is that it tends to reduce spuri-
ous correlations that are due to random noise or platform-
specific technical artifacts, as it is highly unlikely that exact
same erroneous effects are present across multiple datasets.
OmicsAnalyst currently supports three multi-view cluster-
ing algorithms: spectral clustering (14), perturbation-based
clustering (16) and similarity network fusion (13). The dis-
tinguishing features of these three methods are as follows.
Spectral clustering makes use of eigenvalues derived from
a similarity matrix to perform clustering based on fewer
dimensions, which greatly increases the speed (17). Omics-
Analyst employs the Spectrum R package, which combines
the advantages of spectral clustering with several other ad-
vanced techniques (14). Perturbation clustering assumes
that reliable clusters are robust to small alterations to the
data (4). OmicsAnalyst uses the perturbation clustering for
data integration and disease subtyping (PINSplus) R pack-
age to support this approach (16). The similar network fu-
sion (SNF) method involves fusing individual sample simi-
larity matrices together using a rapid nearest neighbour ap-
proach (13). Since the associated SNFtool package does not
support cluster detection, the spectral clustering is applied
to the learned status matrix for this purpose.

Heatmap visual analytics. The results of clustering analy-
sis can be intuitively explored via heatmaps, which use vi-
sual cues to show how samples are clustered and how fea-
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ture abundances vary across samples. OmicsAnalyst imple-
ments an interactive joint-heatmap viewer where two dif-
ferent omics datasets can be visualized and analyzed simul-
taneously. The interactive visualization was implemented
based on the INVEX heatmap viewer (18). It is organized
into two main views consisting of an overview and a fo-
cus view for each omics data. The overview heatmap dis-
plays the overall abundance patterns for all features. Users
can click-and-drag to select a region of interest to be dis-
played in the focus view for a more detailed inspection. The
annotation bars along the top indicate the original group
memberships as well as the cluster memberships based on
the selected multi-view clustering algorithm. Similar to the
correlation network analysis, users can perform enrichment
analysis on the features displayed in the focus view for each
omics type, when features are annotated during data pro-
cessing.

Dimension reduction analysis track

The objective of this track is to perform dimension reduc-
tion, and then visually explore corresponding scores, load-
ings and biplots in interactive 3D scatter plots to under-
stand high-level trends and associated key features. It con-
sists of two main steps, detailed below.

Multi-omics dimension reduction. Many standard multi-
variate dimension reduction techniques do not perform
well on multi-omics datasets, which typically have many
more features than observations (p >> n) and a multi-
collinear structure. Multivariate regression, the foundation
of many multivariate dimension reduction techniques, per-
forms poorly in these cases and so special care has been
taken to develop more robust techniques for multi-omics
data integration (19–21). OmicsAnalyst provides five differ-
ent methods including multiple co-inertia analysis (MCIA),
consensus PCA (CPCA), projection to latent structures
(PLS), Procrustes analysis, and data integration analysis
for biomarker discovery using latent components (DIA-
BLO) (10,11,22,23). In general, these algorithms aim to
identify sets of components that capture maximum variance
within individual datasets and maximum association across
datasets. They can be distinguished by individual optimiza-
tion and constraint criteria used to identify component sets
across the omics datasets. More detailed information and
comparisons on these methods are provided in our FAQs
under the ‘Dimension Reduction Analysis’ tab.

Visual analytics based on 3D scatter plots. OmicsAnalyst
offers an interactive 3D scatter plot viewer that can display
sample space (score plot), feature space (loading plot), as
well as a ‘merged’ space (biplot) that overlays sample and
feature spaces in the same plot to showcase contributions
of key feature to the overall patterns. The 3D scatter plot
viewer is divided into four different sections. The left panel
contains a top section (‘Settings’) for controlling the overall
visual environment of the scatter plots. The middle section
(‘Overall Pattern’) allows users to change the grouping of
nodes based on different meta-data or clustering analysis.
It offers extensive options such as colors, shapes, and high-
lighting effects for group visualization. The bottom section

displays information related to the current selections. The
main scatter plot viewer in the center displays the current
view - score plot, loading plot or biplot which allow users
to specify features of interest to be shown as arrows on top
of sample space. Users can also overlay different metadata
groups as ellipsoids on top of the feature space. The right
panel is divided into top (‘Comparison Test’) and bottom
(‘Enrichment Analysis’) sections to allow users to perform
targeted statistical and functional analysis on the current
selected groups or clusters, respectively. Click a row of the
result tables, the corresponding feature(s) will be displayed
as arrows in the current score plot.

Case study: multi-omics analysis of human pregnancy

To facilitate users to explore different features of Omic-
sAnalyst, three example multi-omics datasets have been
provided including one from the Cancer Genome At-
las (TCGA, https://www.cancer.gov/tcga), one from the
STATegra (24) and one from a recent multi-omics study on
human pregnancy (25). Here, we provide a case study using
the proteomics and metabolomics datasets from the preg-
nancy study.

Various physiological systems are known to change pre-
dictably throughout pregnancy (26). This study was con-
ducted to collect comprehensive molecular data (repeated
samples from the first three trimesters and 6 weeks post-
partum for baseline levels; n = 17 women) to build a pre-
dictive model for gestational age (25). Here, we re-analyze
the proteomics and metabolomics data sets as a case study.
Differential analysis was performed using ANOVA/t-tests
with thresholds chosen to give ∼30% significant features
(|log2FC| > 1; adjusted P-value < 0.005), and datasets
were auto-scaled before integration. All three visual ana-
lytics tracks were used to gain complementary perspectives
of the data. First, we used the ‘Free Exploration’ mode
of the Heatmap Visual Analytics track to understand pat-
terns present in individual omics. While the baseline sam-
ples form a weak cluster, samples from the three trimesters
are very mixed. Next, we computed the multi-dimensional
components that best separated the sample groups using
DIABLO and explored the results with 3D scatter plots.
The global structure confirms what we expect, with base-
line samples well distinguished from those collected during
pregnancy, and samples collected during later trimesters lo-
cated further away from the baseline (Figure 2A). The biplot
overlays the sample space with the top features that most
contribute to the separation (Figure 2B), in this case high-
lighting several proteins and metabolites that are consistent
with the biology of pregnancy. Three out of the five top
metabolites are associated with hormones that are elevated
during pregnancy (thyroxine, pregnanediol-3-glucuronide,
and cortisol). One of the top proteins (ADAM12) is a serum
marker for pregnancy, two (GDF15 and GPC3) are en-
coded by genes that have high expression in placenta rel-
ative to other tissues, and one is angiotensin (AGT), a hor-
mone known to be elevated during pregnancy (27). All fea-
ture arrows point in the same direction, except for the DL-2-
aminooctinoic acid metabolite. Finally, we used correlation
networks to visualize relationships between key features
from the top three DIABLO components. The network has

https://www.cancer.gov/tcga
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Figure 2. Example outputs from the case study. Dimension reduction was performed with DIABLO and results visualized with (A) 3D scatter plot of score
plot, and (B) 3D biplot with elliptical summaries of sample groups (red = baseline, green = first trimester, dark blue = second trimester, light blue = third
trimester) and the contributions of top five differentially expressed proteins and metabolites (red arrows). Correlation networks of features selected from
the top three DIABLO components in (C) concentric circular layout, and (D) linear bipartite/tripartite layout, with modules detected by the ‘WalkTrap’
algorithm.

a central cluster of proteins that are positively correlated
with the proteins and metabolites on the left, and nega-
tively correlated with the metabolites on the right (Figure
2C). Inspecting several individual features shows that the
structure is consistent with Figure 2B: the central proteins
and positively correlated metabolites contain many of the
previously highlighted biplot features (ADAM12, Cortisol,
Sunitinib, and Pregnanediol-3-glucuronide) while one of
the negatively correlated metabolites is DL-2-aminooctinoic
acid, the lone biplot feature that pointed in the oppo-
site direction. Network module analysis with the ‘Walk-
Trap’ algorithm resulted in three modules, all of which con-
tained both proteins and metabolites (Figure 2D). The blue
module was statistically significant, and enrichment anal-
ysis revealed that it is significantly enriched for the Reac-
tome pathway ‘Regulation of Insulin-like Growth Factor
(IGF) transport and uptake by Insulin-like Growth Fac-
tor Binding Proteins (IGFBPs)’. IGF is known to be ele-

vated during pregnancy (28). This case study has illustrated
the improved insights and rich biological context when
multi-omics data and visual analytics are used together.
More details and figures from the case study are available
from the ‘Tutorial’ page (under the ‘Case Study’ tab) of
OmicsAnalyst.

Implementation

OmicsAnalyst was implemented based on JavaServer
Faces (JSF) using the PrimeFaces (v10.0) library (http://
primefaces.org/) and R (version 4.0.2). The visual analytics
methods have been developed based on several JavaScript
libraries including sigma.js (http://sigmajs.org) for 2D net-
work visualization, and three.js (https://threejs.org) for 3D
network and scatter plot visualization. The system is hosted
on a Google Cloud n1-highmem-8 instance (64 GB RAM
and eight virtual CPUs with 2.6 GHz each).

http://primefaces.org/
http://sigmajs.org
https://threejs.org
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Table 1. Comparison of OmicsAnalyst with other web-based tools. Sym-
bols used for feature evaluations with ‘

√
’ for present, ‘-’ for absent and ‘+’

for a more quantitative assessment (more ‘+’ indicating better support).
The URLs for each tool are given below

OmicsAnalyst 3Omics MiBiOmics OmicsNet

Input format Matrix List, matrix Matrix List

Data processing
Annotation +++ +++ - +++
Filtering +++ - + -
Normalization +++ - + -
Scaling +++ - + -
Differential
expression

+++ - - -

Integration
methods
Univariate
correlation

� � � -

Partial
correlation

� - - -

Similarity
network fusion

� - - -

Spectral
clustering

� - - -

Perturbation-
based
clustering

� - - -

MCIA � - � -
CPCA � - - -
Procrustes
analysis

� - � -

PLS � - - -
DIABLO � - - -
Visual analytics
Scatter plot +++ - + -
Heatmap +++ ++ ++ -
Network +++ - ++ +++
Contextual
enrichment
analysis
Metabolite sets ++ ++ - ++
Gene sets ++ ++ - ++
miRNA sets ++ - - -

• OmicsAnalyst: https://www.omicsanalyst.ca/
• 3Omics: https://3omics.cmdm.tw/
• MiBiOmics: https://shiny-bird.univ-nantes.fr/app/Mibiomics
• OmicsNet: https://www.omicsnet.ca/

Comparison with other web-based tools

Table 1 shows the comparisons between OmicsAnalyst and
three other web-based tools dedicated for multi-omics in-
tegration and analysis, including 3Omics (29), MiBiOmics
(30) and OmicsNet (7). The 3Omics supports analysis of
transcriptomics, proteomics and metabolomics data from
human. It includes modules for correlation analysis, co-
expression profiling, phenotype mapping and functional en-
richment analysis. MiBiOmics tackles multi-omics integra-
tion through correlation analysis using WGCNA-based ap-
proach and dimension reduction analysis using MCIA and
Procrustes analysis. Finally, OmicsNet uses a priori inter-
action information to construct multi-omics networks for
genes, proteins, metabolites, miRNA, and transcription fac-
tors. The resulting network is interactively visualized in
3D space. OmicsAnalyst distinguishes itself by bringing to-
gether multivariate, data-driven feature selection and inte-

gration with innovative visual analytics for unbiased explo-
ration and interrogation of complex multi-omics datasets.

CONCLUSIONS

The motivation for OmicsAnalyst was to create an intuitive,
web-based platform for multi-omics integration that allows
researchers to fuse statistical and visual streams of evidence
together to make more informed judgements. In particu-
lar, we implemented three distinct visual analytics tracks -
feature correlation analysis coupled with networks, sample
clustering analysis coupled with heatmaps, and dimension
reduction analysis coupled with 3D scatter plots. In doing
so, OmicsAnalyst enables users to dissect large and com-
plex multi-omics datasets by facilitating pattern recognition
and cognitive reasoning through powerful yet intuitive vi-
sual analytics.
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