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Introduction. Neurofeedback (NF) has gained increasing popularity as a training method for children and adults with attention
deficit hyperactivity disorder (ADHD). However, it is unclear to what extent children learn to regulate their brain activity and in
what way NF learning may be affected by subject- and treatment-related factors. Methods. In total, 48 subjects with ADHD
(age 8.5–16.5 years; 16 subjects on methylphenidate (MPH)) underwent 15 double training sessions of NF in either a clinical
or a school setting. Four mixed-effects models were employed to analyze learning: training within-sessions, across-sessions,
with continuous feedback, and with transfer in which performance feedback is delayed. Results. Age and MPH affected the NF
performance in all models. Cross-session learning in the feedback condition was mainly moderated by age and MPH, whereas
NF learning in the transfer condition was mainly boosted by MPH. Apart from IQ and task types, other subject-related or
treatment-related effects were unrelated to NF learning. Conclusion. This first study analyzing moderators of NF learning in
ADHD with a mixed-effects modeling approach shows that NF performance is moderated differentially by effects of age and
MPH depending on the training task and time window. Future studies may benefit from using this approach to analyze NF
learning and NF specificity. The trial name Neurofeedback and Computerized Cognitive Training in Different Settings for
Children and Adolescents With ADHD is registered with NCT02358941.

1. Introduction

Neurofeedback (NF) is a training method by which real-time
feedback of brain activity, typically an EEG parameter, is
delivered to the subject to promote voluntary control of brain
activity. The subject has electrodes attached to the head, and
the measured EEG parameter is converted to a sound or
visual stimulus, which is then fed back to the subject. The
main NF protocols for patients with attention deficit hyper-
activity disorder (ADHD) are the training of frequency bands
and the training of slow cortical potentials (SCPs). Frequency
band NF targets tonic aspects of activation by promoting
learning to reduce or to enhance activity of defined frequency

bands. SCP training targets the phasic regulation of cortical
excitability by learning to generate negative and positive
shifts of cortical activity. SCPs originate in the apical
dendritic layers of the neocortex and reflect synchronized
depolarization of large groups of neuronal assemblies.
According to Birbaumer’s threshold regulation model of
cortical excitation [1], negative and positive SCPs are associ-
ated with an activated (i.e., more attentive) or deactivated
(less attentive/more relaxed) state, respectively.

Although frequency band training is the most common
form of NF for ADHD, recent research no longer supports
the presumption that increases in theta power, reductions
in beta power, or the theta/beta ratio is a reliable ADHD
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marker and, in consequence, compelling targets for NF [2–4].
A rationale for using SCP NF is the relatively robust finding
of an ADHD-related reduction of the contingent negative
variation (CNV), a SCP which reflects preparation and
activation and has been shown to normalize partially after
SPC-NF training (e.g., 5 and 6). In addition, regulation rather
than normalization may be the target of the training [5].

In recent meta-analyses of NF efficacy for ADHD [6, 7],
significant treatment effects were found for parents’ but not
for teachers’ ratings. Teacher ratings are regarded as a more
valid measure for treatment effects as they are probably
blinded to what type of training was administered. These
reviews did not consider whether subjects showed successful
NF learning; however, this is an important aspect of training
specificity. If children show good clinical improvements
without successful NF learning, changes have to result from
other nonspecific aspects of the training. NF learning denotes
the ability to modulate the NF target parameter across multi-
ple sessions. Thus, we will refer to the ability to modulate the
NF parameter as “NF learning” without presumptions about
its efficacy (in line with e.g., 10 and 11). The few studies that
have examined NF learning across the course of the training
differed considerably in their methodological approaches and
definition of learner rates (see 12, for a review). In addition, it
has been argued that the analysis of within-session learning
across the training course would result in a more robust mea-
sure than analyzing cross-session learning alone. Through
averaging multiple sessions, the measurement overall error
variance would be reduced [8]. From a clinical perspective,
such within-session analysis also allows progressive fatigue
effects towards the end of a session to be controlled for.

The transfer of learning in NF with respect to every-
day life situations is hypothesized to be better practiced
in the transfer condition than in the feedback condition.
In the transfer condition, the subject has to modulate
the NF parameter without the aid of a feedback stimulus.
The transfer condition is hypothesized to be closer to every-
day life situations as compared to the feedback condition,
where continuous performance feedback is available [9].
However, only few studies report results on that type of
condition [9–12].

Neurofeedback for ADHD has mainly been perceived as
an alternative for stimulant medication, but the combined
effects of medication on NF learning are unknown. In several
ADHD NF studies, MPH has been permitted in constant
dose [10, 12–15] or without explicit restrictions [9, 16, 17],
whereas in other studies, it has been an exclusion criterion
[18, 19]. Moreover, the few studies that included medication
effects in their analyses did not consider their impact on NF
learning [9, 20, 21]. There is little evidence on how stimulants
might affect NF learning in ADHD [22–25]. In other clinical
intervention studies, it has been shown that behavioral
therapy resulted in stronger clinical outcome improvements
when combined with MPH as compared to receiving therapy
only [26, 27]. However, the impact of MPH on learning prog-
ress in training studies in ADHD has been barely examined.

Although a great deal of evidence suggests that EEG
activity is associated with age [28–30], to our knowledge, it
has barely been employed as a possible covariate for NF

learning [31]. It is also unknown whether contextual and
administration factors, such as intensity and duration of ses-
sions, training location, and context—for instance at school,
in a summer camp, or in a clinical setting—may systemati-
cally alter the ability to regulate one’s brain activity. A precise
description of NF learning is necessary to get a better under-
standing, whether at all, and if at all, by what degree and in
which form learning does take place. This question is vital
since training progress may be a necessary condition to
induce clinical improvements and plastic neuronal changes,
at least in a sizable proportion of children [32]. However,
most NF studies in ADHD looked at pre- and post changes,
leaving out the question of learning.

One challenge in analyzing training studies across
multiple sessions is that the training performance variability
varies considerably not only across time within a single
subject but also across multiple subjects, which compromises
conventional basic statistical methods, where correlations
between observations are often obstructive. For that reason,
we opted for a mixed-effects modeling approach. One major
advantage of mixed-effects modeling is that it does not
assume independence among observations and is to some
degree more robust with unbalanced data than basic
multivariate analysis (36).

In this study, we analyze NF learning in children and
adolescents with ADHD. The major research question of this
paper is (1) whether, and to what degree, both subject-
specific (e.g., age or IQ) and treatment-related factors (e.g.,
school versus clinical treatment setting) may be related to
NF learning within and across sessions, (2) whether NF
learning differs in feedback and transfer conditions, and
(3) whether within-session analysis can contribute additional
information to cross-session analysis.

2. Methods and Materials

2.1. Participants. Subjects were recruited in outpatient clinics,
by referral of clinicians, in parent self-aid groups, and at
schools. Forty-four subjects, of whom 33 had a clinical
ADHD diagnosis before entering the study, were included.
See Table 1 for group characteristics.

Inclusion in the study required written consent by both
the child and parents. The study was approved by the local
ethics committee. Age ranged from 8.5 to 16.5 years. Inclu-
sion in the study was based on clinically relevant scores in
the German version of the Conners 3 parent and Conners 3
teacher rating scales [33], according to DSM-IV criteria
(one of two ADHD DSM-IV indices reaching T values ≥65,
the other T≥ 60 according to both teachers’ and parents’
ratings for children of the combined subtype; ADHD DSM-
IV inattention T≥ 65 in one and T≥ 60 in the rating for the
inattentive subtype).

Medication with methylphenidate (MPH) was allowed
if the dose was kept stable over the full treatment time,
including three months before the first assessment. For
children taking MPH, teacher and parent ratings had to
be based on the behaviour on medication. Exclusion cri-
teria were estimated IQ≤ 80 (short form of the German
WISC-IV [34]), taking atomoxetine or a neuroleptic or
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other psychoactive drug, severe comorbidities or other
psychiatric disorders, neurological disorders, previous expe-
rience with NF (more than four lessons), or either partici-
pating in or planning to start a treatment which might
confound training effects. Sufficient knowledge of the
German language was a further precondition so as to fully
understand instructions (children) or to complete question-
naires (parents). Parents had to complete the Development
and Well-Being Assessment ((DAWBA) [35]) to screen for
comorbid clinical conditions.

2.2. Study Design. Parents and teachers rated the child’s
behaviour on the Conners 3 scales and the Behaviour Rating
Inventory of Executive Function (BRIEF) [36] before training
onset. This study focusses on the NF treatment phase of a
larger project that involved additional assessments and
another treatment group. Their specifications are not rele-
vant for the present analyses and are described elsewhere
[37]. About half of the children (N = 23) underwent NF
training in the outpatient clinic of the Department of Child
and Adolescent Psychiatry (clinical setting). The other
children (N = 21) were trained at school in a separate
room, during normal school hours (school setting). A
complete training comprised 15 double sessions (approxi-
mately 100min) administered over 10 to 12 weeks. The
actual training took around 60 minutes, around 30 minutes
per session. The rest of the time was needed to attach and
deattach the electrodes on the child’s scalp, to complete short
questionnaires on well-being and motivation, and to check
for transfer and for a short break between sessions, some-
times with refreshments or a snack. In the clinical setting,
training started as a 2-week vacation course with double

training sessions daily (five double sessions per week; see
Figure 1) followed by weekly double sessions over at least five
weeks. The relatively intensive format for the first training
phase was chosen to ensure the consolidation of learning
in NF, whereas the last 5 double sessions were regarded
as freshen up sessions. As the training in the school set-
ting did not allow five training sessions a week (due to
losing too many classes in a row), the training frequency
in the intensive phase was kept on 2-3 double sessions
per week. A maximal break of 10 days was permitted during
the last training phase (e.g., during vacation). In the school
setting, two to three sessions per week were administered
for the first two weeks, followed by one weekly session over
at least seven weeks (see Figure 1). Training in the school
setting was administered during the school lesson time in a
separate room.

2.3. Description of the NF Training. NF was provided using a
commercially available mobile training device (THERA
PRAX; neuroConn GmbH). Double sessions consisted of
four blocks, each containing 40 trials (see Figure 2). The
subject was seated in a comfortable chair in front of a com-
puter monitor. The NF training was presented as a computer
game. Depending on the colour and direction of a centrally
fixated triangle, the subject was instructed to either activate
(produce negative SCP shifts; red upwards-pointing triangle)
or deactivate (produce positive SCP shifts; blue downward-
pointing triangle). One SCP trial lasted 12 seconds and
consisted three phases (see Figure 2): a baseline phase
(seconds 2 s), an active phase (8 s), and a reinforcement phase
(2 s). In the feedback condition, a direct feedback stimulus
appeared, while in the transfer condition, no feedback

Table 1: Description of participants.

Total With MPH No MPH

N (total) 48 16 32

Male/female (N) 27/21 12/4 15/17

Clinical setting (N) 26 10 16

School setting (N) 22 6 16

Intersession interval (days)

Clinic 4.1± 1.9 4.1± 8.3 4.4± 6.3
School 4.8± 1.1 4.8± 3.2 5.3± 7.7

Age (years) all 11.2± 2.2 10.9± 2.4 11.4± 2.0
MPH dosage (mg) 24.5± 15.1 23.6± 15.0 0

MPH intake duration (years) 2.3± 2.5 2.4± 2.5 0

Estimated IQ 109.5± 14.8 109.9± 14.7 109.1± 15.3
Clinical ratings before training

DSM-IV C-3 P (T-scores)

Inattention 67.8± 5.8 63.3± 6.4 67.5± 8.2
Hyperactivity/impulsivity 64.9± 8.4 66.1± 6.2 59.6± 9.1

DSM-IV C-3 T (T-scores)

Inattention 65.7± 6.1 61.7± 7.0 64.2± 5.3
Hyperactivity/impulsivity 63.0± 7.9 59.96.9 62.9± 8.3

Clinical ADHD diagnosis (yes/no) 33 16/0 17/15

C-3 P/T: Conners 3 parent/teacher ratings (DSM-IV indices); MPH: methylphenidate.
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stimulus was provided. In the feedback condition, the subject
was instructed to steer a stimulus (e.g., fish and airplane)
above or below a central horizontal line while it moved from
left to right across the screen. The change in activation was
fed back by the target stimulus, whose vertical position was
proportional to the SCP shift. Good performance (stimulus
was kept at least two seconds above or below a predefined
threshold of ±40μv) was rewarded in both conditions by
a reward stimulus (sun) at the end of the trial. All condi-
tions (feedback/transfer) and tasks (activation/deactivation)
appeared in randomized order (after conditions and tasks
“feedback/transfer,” “activation/deactivation”; see Figure 2).
The proportion of activation and deactivation trials was
always equal in each block (50% each). The percentage of
transfer trials increased gradually with session and block
number, as it was expected that with increasing training
experience the acquired skill would be transferred to trials
where no concomitant visible feedback was provided (“trans-
fer condition”). Transfer trials per training block of a single
double session were administered in the following percent-
ages: double sessions 1-2: 20/20/20/20, double sessions 3-5:
20/20/20/40, double sessions 6-8: 20/20/40/40, double ses-
sions 9-13: 20/40/40/50, and sessions 14-15: 50/50/50/50.

2.4. Montage and EEG Recording. The participants’ EEGs
were recorded at electrode Cz, referenced to the right mas-
toid electrode (ground was left mastoid) shunted over a
10 kOhm resistance (impedance< 20 kOhm; sampling rate
was 512Hz). The EEG amplifier (THERA PRAX, neuro-
Conn©) used a low-pass filter of 40Hz. Filtering of the
SCPs was performed from 0.01–40Hz with a two-way
least-squares FIR filter. Preprocessing was performed with
MATLAB and EEGLAB. Processing of the SCPs (DC—2Hz)
was performed from channel Cz-A2 for each sample point

and displayed on the trainer screen. The maximal time delay
until the patient saw the feedback of the NF parameter was
about 110ms. Display of the change in mean amplitude with
respect to the pretrial baseline was fed back by the vertical
movement of the feedback stimulus, whereas its horizontal
position corresponded to the time axis. Trials were baseline
corrected (the mean amplitude of the pretrial baseline was
subtracted from each data point of the SCP amplitude) and
then averaged. Since we frequently observed muscle activity
in the first second of the trial, we only incorporated the last
6 seconds of the recording in the active trial. As regression-
based artefact correction procedures did not yield reliable
results, we applied a strict artefact removal procedure,
where after manual artefact rejection, baseline-corrected

Trials 1–40
(Randomized order)

Fe
ed

ba
ck

 co
nd

iti
onAc

tiv
at

io
n

ta
sk

D
ea

ct
iv

at
io

n
ta

sk
Ac

tiv
at

io
n

ta
sk

D
ea

ct
iv

at
io

n
ta

sk

Tr
an

sfe
r c

on
di

tio
n

0 s 10 s2 s

Baseline
Active trial

12 s

Reinforcement

Figure 2: Setup of the SCP-NF. Feedback/transfer condition:
condition where a feedback stimulus is (feedback) or is not
(transfer) visible. Deactivation task: generation of positive
potential shifts. Activation task: generation of negative potential
shifts. 1 double session consists of 4 blocks with 40 trials each,
each block including feedback and transfer conditions and
deactivation/activation tasks as illustrated (pictures by Ilmenau,
neuroConn GmbH).

10 double sessions within 2
consecutive weeks of school
holidays + 5 weekly double
sessions during school time

or

15 double sessions in total

3-month training period

Clinical setting

6 double sessions within 2
consecutive weeks +

5 weekly double sessions during 
school time

School setting

C
on

ne
rs

 3
pa

re
nt

 an
d 

te
ac

he
r r

at
in

gs
 

Figure 1: Study design.

4 Neural Plasticity



trials were rejected if their amplitudes exceeded ±100mV
or their gradients exceeded 50mV between two data points.

2.5. Statistical Analysis. Four separate models were analysed
to predict performance in the feedback condition and trans-
fer condition either across or within sessions. Statistical
analysis was performed with a linear mixed-effects (LME)
regression [38] following a step-up approach, where a ran-
dom effect was retained if there was a significant difference
between the log-likelihood ratio of a model that contained
the random effect and a model that did not (as compared
with ANOVA; p < 0 05). Following the principle of mar-
ginality, main effects for higher-order interactions were
kept in the model [39]. To control for high type I error
rate inflation, we also included a random slope coefficient
in the model [40, 41]. Statistical analysis was performed
using the lme4 package in R [42]. Models to predict NF
learning with respect to within-/cross-session learning
and type of condition (feedback and transfer) were ana-
lysed in separate models to prevent possible overparame-
trization. The dependent variable was mean amplitude
(μV). For cross-session analysis, the mean amplitude of
each baseline-corrected trial was averaged for each session.
For within-session analysis, the mean amplitude of each
baseline-corrected trial was averaged across sessions and
then further averaged across 10 equally spaced units (from
here on called bins). All analyzed effects are summarized in
Table 2 and ANOVA tables in supplementary S3 and S4 for
feedback and transfer condition, respectively.

3. Results

3.1. Feedback Condition. The statistics of the best model fit
for each of the four models to predict NF performance are
presented in the following sections. We will call performance
progress in each condition “feedback learning” and “transfer
learning,” respectively.

3.1.1. Cross-Session Feedback Learning. As shown in Table 3,
the final model for cross-session learning for the feedback
condition included subject as random intercept (τ00 = 7.214)
and session number as random slope (τ11 = 0.0734). As
shown in Figure 3(a), a four-way interaction between ses-
sion number, task, age, and MPH resulted in the best
model fit (β=0.32; CI = 0.16–0.47; p < 0 001). As shown in
Figure 3(b), IQ was negatively associated with mean ampli-
tude (β=−0.08; CI =−0.14 to −0.02; p = 0 006), meaning that
with increased IQ a more negative mean amplitude occurred.
The inclusion of the remaining effects summarized in Table 2
did not result in a better model fit.

As shown in Figure 3(a), the desired learning pattern,
showing a positive slope in the deactivation task and a
negative slope in the activation task, became more promi-
nent with increasing age and MPH. To test for possible
overparametrization effects due to the complex four-way
interaction, a separate model was analyzed in which the
task effect was omitted and accounted for in the dependent
variable: The dependent variable was the SCP differentiation,
the difference between mean amplitudes of deactivation, and

Table 2: Effects considered for statistical analysis.

Model specifications Measure

Time

Cross-session model Double session number (15 double sessions)

Within-session model
Bin number: 10 bins per session. The mean amplitude of baseline-corrected trials was averaged across

sessions and then averaged across the ten equally spaced units (bins).

Condition type

Feedback (FB) Continuous performance feedback stimulus visible

Transfer (TR) Performance feedback, delayed

Effects

Tasks
Deactivation (generation of positive potential shifts of SCPs) versus activation (generation of negative

potential shifts of SCPs)

Intersession interval Days passed between training sessions

Age
In years (continuous variable in the model, only for visualization in plots dichotomized into younger and

older age classes)

MPH Being on constant stimulant medication (methylphenidate), factorized into yes versus no

Stimulants intake duration Years of MPH intake

Dosage of stimulant medication Methylphenidate (MPH) in mg

Sex Factorized into female versus male

IQ Estimated IQ (WISC-IV short form)

Setting Factorized into school setting versus clinical setting

Severity of ADHD symptoms
T values of the Conners 3 DSM-IV indices for hyperactivity/impulsivity and inattention based on parent

and teacher ratings before training

Preexisting ADHD diagnosis Clinical ADHD diagnosis before entering the study factorized into yes versus no

Artifact rate Percentage of rejected trials within a session
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activation. The results are in line with the original model (see
Figure S1 and Table S2). ANOVA results for the feedback
learning models are shown in the supplement (Table S3
and Table S4).

3.1.2. Within-Session Feedback Learning. The final model for
within-session learning for the feedback condition included

subject as random intercept (τ00 = 9.093) and bin number
as random slope (τ11 = 0.05569). As shown in Figure 4(a),
an increasing bin number was associated with a more
negative mean amplitude (bins: β=−0.29; CI =−0.40 to
−0.18; p < 0 001). Thus, over the course of a session, subjects
managed to generate more negative potentials, irrespective of
the condition. A higher IQ was associated with a more
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Figure 3: Visualization of effects moderating cross-session NF learning in the feedback condition. The dependent variable is mean amplitude
(μV) of baseline-corrected trials. (a) Interaction effect between session, task, age, and MPH. For comparison between effects and raw data, see
scatter plot under each effects panel, fitted with a least squares regression based on the same factors as in the effect plots. Session number: 15
training sessions in total. Task. Deactivation: generation of positive potential shifts. Activation: generation of negative potential shifts. MPH:
being on constant methylphenidate medication. Feedback condition: feedback stimulus visible. For visualization, age is subdivided into two
age classes (8–12 and 13–16 years), but preserved as a continuous variable in the original model. (b) Visualization of IQ effect. IQ is estimated
based on the short form of the German WISC-IV [34].
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negative mean amplitude (β=−0.07; CI =−0.13 to −0.01;
p = 0 018) and was comparable to the effect achieved in
the cross-session model for FB learning (see Figure 3(b)).

A three-way interaction between task, MPH, and age
resulted in the best model fit (β=0.86; CI = 0.36–1.35; p =
0 001; see Figure 4(b)). The ability to regulate (activation
and deactivation) in the desired direction was positively
associated with both MPH and age: The inclusion of effects

of the remaining factors summarized in Table 2 did not result
in a better model fit.

3.2. Transfer Condition

3.2.1. Cross-Session Transfer Learning. The final model for
cross-session learning for the transfer condition included
subject as random intercept (τ00 = 8.501) and session number
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Figure 4: Visualization of effects moderating within-session NF learning in the feedback condition. The dependent variable is mean
amplitude (μV) of baseline-corrected trials. (a) Effect plot for the effect bin number. For comparison between effect and raw data, see
scatter plot in the right panel. Bin number: trials of all sessions were averaged and subdivided into ten equally spaced units. For
visualization age is subdivided into two age classes (8–12 and 13–16 years), but preserved as a continuous variable in the original model.
(b) Effect plot for the interaction between MPH, age, and task. Act.: activation task. Deact.: deactivation task.

8 Neural Plasticity



as random slope (τ11 = 0.1325; Table 3). A three-way inter-
action between the fixed effects session number, task, and
MPH resulted in the best model fit (β=0.39; CI = 0.05–
0.76; p = 0 036). As shown in Figure 5(a), performance
improved predominantly in the deactivation task, while
remaining stable in the activation task. MPH was associated
with larger performance increments in the deactivation
task as compared to no MPH. As shown in Figure 4(b),
age was negatively associated with amplitude (β=−0.59;

CI =−0.94 to −0.24; p = 0 002). Thus, NF learning was
rather prominent when being on constant methylpheni-
date medication. The inclusion of effects of the remaining
factors summarized in Table 2 did not result in a better
model fit.

3.2.2. Within-Session Transfer Learning. The final model for
within-session learning in the transfer condition included
subject as random intercept (τ00 = 13.320) and bin number
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Figure 5: Visualization of effects moderating cross-session NF learning in the transfer condition. (a) Interaction effect between session, task,
and MPH. Transfer condition: no continuous feedback stimulus visible. Task. Deactivation: generation of positive potential shifts. Activation:
generation of negative potential shifts. MPH: being on constant methylphenidate medication. (b) Age effect plot.

9Neural Plasticity



as random slope (τ11 = 0.1231). As shown in Figure 6(a), a
two-way interaction between bin number and task resulted
in the best model fit (β=0.33; CI = 0.07–0.56; p = 0 011).
Age was negatively associated with mean amplitude and
was comparable to the effect of the model predicting
cross-session learning (see Figure 5(b); β=−0.40; CI =−0.78
to −0.00, p = 0 040). As shown in Figure 6(b), MPH was pos-
itively associated with mean amplitude (β=1.71; CI = 0.03–
3.40, p = 0 051). ANOVA results of both transfer learning
models are shown in the supplement (S4).

Thus, NF learning in the transfer condition took place
in the activation task rather than in the deactivation task.
Moreover, being on constant methylphenidate medication
was associated with a more positive mean amplitude (see
Figure 6(b)), while age was negatively associated with
mean amplitude. The inclusion of the remaining factors
summarized in Table 2 did not result in a better model fit.

3.3. Artifacts. We also analyzed whether NF learning was
associated with the number of trials rejected due to artifacts
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Figure 6: Visualization of effects moderating within-session NF learning in the transfer condition. (a) Interaction effect between bin number
and task. Transfer condition: no continuous feedback stimulus visible. Task. Deactivation: generation of positive potential shifts. Activation:
generation of negative potential shifts. (b) MPH effect plot. MPH: being on constant methylphenidate medication.
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by performing separate models for within and cross-session
learning that included artifact rejection in the models. The
mean artifact rate was 29.1% (±17%). The inclusion of the
artifact rate did not yield a significantly better model fit for
either condition.

3.4. Learning Rates. To explore the number of subjects
showing the desired learning slope in cross-session NF learn-
ing, models for both the feedback and transfer conditions
were calculated separately and the subjects’ random slopes
were extracted to determine the individual learning perfor-
mance for each task. Successful NF learning was defined by
a negative slope in the activation task or a positive slope in
the deactivation task. Subjects presenting both a positive
slope in the deactivation task and a negative slope in the
activation task were labelled “successful regulators.” In the
feedback condition, 20 learners (41.7%) in the activation task,
23 learners (47.9%) in the deactivation task, and 10 subjects
(20.8%) were classified as successful regulators. In the trans-
fer condition, 23 subjects (47.9%) were classified as learners
in the activation task, 23 as learners in the deactivation task
(47.9%), and eight as successful regulators (16.7%).

4. Discussion

This paper addresses the lack of NF studies in ADHD that
map learning in NF and control for both treatment-related
effects, such as setting and time frequency, and subject-
related effects, such as IQ and stimulants. It presents the
groundwork for measuring treatment specificity [43] by
presenting a novel methodological approach, mixed-
effects modeling, to investigate learning in NF both across-
and within-sessions. Applying mixed-effects modeling
enabled us to show that NF learning is indeed moderated
by subject-related factors. The moderators partially differ
when performance feedback is provided continuously (feed-
back condition) and delayed (transfer condition) and when
within-session or cross-session learning is considered.

4.1. Feedback Condition

4.1.1. Cross-Session Feedback Learning. Children on constant
MPH showed stronger performance increments across
sessions with increasing age (age range between 8.5 and
16.5 years). In contrast, children who did not take MPH
showed less pronounced potential shifts than when on
constant stimulant medication. For these children, learning
was negatively moderated by age, albeit the generation of
potential shifts was still in the desired relative direction
(mean amplitude in the activation task was more negative
than that in the deactivation task).

4.1.2. Within-Session Feedback Learning. Similarly to the
cross-session NF model, performance was also interacting
with age and MPH of comparable direction and strength.
In contrast to cross-session analyses, children generated neg-
ative potential shifts within sessions irrespective of task and
time. However, the generation of potential shifts remained
in the desired direction (mean amplitude in the activation
task was more negative than that in the deactivation task).

Thus, children produced progressively more negative poten-
tial shifts throughout a session, irrespective of whether the
task demanded positive or negative potential shifts. Since
moderators of learning have been rarely examined in
SCP-NF before, these findings are difficult to explain in
the context of previous research. It is open to speculation
whether this finding might reflect the time required to
fully mobilize attentional resources within a session. The
added value of within-session analyses in the feedback
condition relies here on the possibility that two consecutive
training sessions of NF might not necessarily be too tiring
for children and adolescents with ADHD; on the contrary,
our findings might even indicate that subjects need time to
immerse themselves in the training scenario if they are to
tap into the full potential of the training, especially with
respect to the activation task. Thus, it might even be recom-
mended to perform trainings in the form of double sessions.

4.1.3. General Discussion Feedback Learning. The NF litera-
ture offers little help in interpreting these opposite findings
with respect to medication and age (feedback learning across
sessions was positively associated with age for children
with stimulants, but negatively associated with age for
medication-free children). Previous NF studies allowing
MPH have not included these factors as covariates for
learning together [9, 10, 12, 13, 16, 17], although there
are few studies considering age as a moderator of frequency
band NF learning [44]. It appears that the self-regulation of
brain activity in the feedback condition is positively associ-
ated with both maturation and intake of stimulants. One
possible explanation for this interaction of age and MPH
is that substantial performance progress in NF might be
dependent on executive functioning (EF), which has been
shown to improve with maturation [45] and intake of stimu-
lants [46]. Thus, age-related improvements of EF might have
been a necessary but not a sufficient condition to NF learn-
ing, with medication being the critical factor for learning with
increasing age.

Taken these results together, it appears that feedback
learning may become easier and faster with MPH and
increasing age. Therefore, it might be more beneficial for
older children taking stimulants to increase the proportions
of transfer trials earlier in training sessions than for younger
children not taking stimulants. Older subjects taking stimu-
lants might benefit earlier from generalizing effects of the
acquired NF skills. In contrast, younger children without
MPH might need more training sessions and more feedback
trials to consolidate the NF skills.

Children with a higher estimated IQ generated more
negative potentials, irrespective of other effects such as time,
task, age, and stimulants. This finding was expected and is
supported by another study showing that the CNV, one form
of a SCP reflecting cognitive mobilization, was positively
associated with IQ [47]. A general confounding factor might
be that children on medication still had to present clinically
relevant symptoms to be included in the study. In such cases,
consequently, either the medication was ineffective or the
clinical impairment would have been more severe if not
on MPH. Thus, children on MPH might actually be even
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more clinically impaired than suggested by behavioral mea-
sures. This might further explain why younger children on
stimulant medication, being possibly more severely affected
than the age-matched nonmedicated children, but without
the maturated EF skills of the older medicated children,
had more difficulty in learning EEG regulation.

4.2. Transfer Condition

4.2.1. Cross-Session Transfer Learning. Transfer learning was
especially challenging, as shown by potential shifts that were
smaller than those in feedback learning. As no continuous
performance feedback is available during the transfer condi-
tion, regulating attention becomes more difficult. Further-
more, and in line with Strehl et al. [9] and Drechsler et al.
[10], transfer learning was more evident in the deactivation
task. This finding cannot be explained by simple cross-
session motivation decrements, as these would lead to
decreased attention and thus produce a positive learning
slope in both conditions. Indeed, it might have been more
difficult for the group to improve average performance in
the activation task (voluntary upregulation of attention) than
in the deactivation task (voluntary downregulation of
attention), since many children suffering from ADHD show
electrophysiological hypoarousal [48]; this might impede
the upregulation of attention but not its downregulation.
Children on constant stimulant medication showed stronger
learning across-sessions than children who did not take
stimulants (irrespective of age), suggesting that MPH was a
critical factor for substantial learning progress (i.e., in the
deactivation task across-sessions).

4.2.2. Within-Session Transfer Learning. Within sessions,
transfer learning took place only in the activation task
but remained unchanged in the deactivation task. Thus,
subjects managed to improve the voluntary upregulation
of attention within a session, while the voluntary downreg-
ulation of attention remained stable. It is difficult to inter-
pret this finding. As with the within-session feedback
learning, it might have taken the subjects some time to
fully mobilize attentional resources within a session. Cur-
rently, no study on SCP-NF has reported results on
within-session learning (but see 22, 24, 48, 49 for within-
session analyses for frequency band NF in ADHD). Thus,
further research is needed to map learning within sessions
and to fully understand its interdependency with learning
across sessions.

4.2.3. General Discussion Transfer Learning. In transfer
learning both within and across sessions, age was negatively
associated with the mean amplitude irrespective of time or
session number. This association was probably related to
larger proportions of fast frequencies as a function of age
[28–30]. One salient result is that cross-session transfer
learning seems rather confined to the deactivation task,
which we hypothesized to be a result of facilitated downreg-
ulation of attention due to hypoarousal, but within-session
transfer learning is confined to the activation task, which
we hypothesized to reflect a mobilization of attentional
resources. Comparing these two different time windows

reveals that learning does not take place in the activation
and deactivation tasks concurrently, but across two different
time windows (within and across sessions, resp.). Thus,
considering both time windows provides a more complete
picture of learning in NF than merely investigating cross-
session learning, as is common. Learning to generate poten-
tial shifts without continuous performance feedback (transfer
condition) is thought to be a better indicator for regulation
capacities outside the laboratory than in situations where
continuous performance feedback is available [10]. It is
possible that more time might have been needed to practice
the up- and downregulation of attention in the transfer
condition. Thus, the ability to generalize the acquired skills
might not have fully developed and might have needed more
transfer training sessions.

4.3. General Discussion. Taken these findings together with
respect to condition, task type, time window and subject-
related or treatment-related factors, age and stimulants were
the dominant moderators of learning: in medicated children,
age was positively associated with NF performance while
being negatively associated in nonmedicated children—for
both within- and cross-session analyses. In contrast, transfer
performance across time was only moderated by MPH and
only when considered learning across sessions, but not
within session. In this study, transfer and feedback trials were
mixed within one block and the number of transfer trials
increased across sessions.

4.3.1. Effects Not Moderating Learning. Neither dosage nor
duration of stimulant intake predicted learning. However,
we cannot exclude any general effects of dosage and intake
duration on learning, since dosage and duration of stimulant
intake did not vary by amounts that might have led us to
expect possible moderating effects. Clinical symptoms or
severity rated by parents and teachers did not moderate
learning. This was unexpected, since we had hypothesized a
more severe initial impairment of attention to be reflected
in weaker overall NF performance. However, clinical severity
might have not been linearly associated with performance
but might have been moderated by a threshold of relevant
impairment; we did not investigate this issue. The artifact
reduction rate has been shown in previous studies to improve
over time, possibly as a nonspecific effect of the treatment
helping children learn to sit still [12], but whether this
reduction in artifacts is related to NF learning has rarely been
examined. In the present study, inclusion of the artifact
reduction did not result in a better model fit, which suggests
that even though artifact reduction took place across
sessions, it was not related to NF learning within or across
sessions. Gender has rarely been included as a predictor
due to the common overproportion of males in ADHD
populations. As almost 50% of our participants were females,
we could test for possible gender differences in NF learning.
We might have included more females (almost 50%) than
other studies because training took place not only in the
clinic but also in schools, where we may have reached a more
diverse population. However, including gender did not yield
a better model fit.
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It was not surprising that setting was not associated with
NF learning, as NF learning should not be affected by the
training environment; however, differential setting effects
on NF learning have never been tested directly before, so
our study is the first to provide empirical confirmation of this
common assumption. Likewise, intersession interval has
rarely been examined as an effect on NF learning or clinical
improvement [49, 50]. It did not yield a better model fit here,
but this might also be attributable to only small variations in
the time schedule.

4.4. Mixed-Effects Modeling. By employing a mixed-effects
modeling approach, we expected to achieve a more realistic
mapping of NF learning in ADHD than other statistical
models, such as multivariate analysis of variance (MANO-
VAs). First, results achieved by MANOVAs are very sensitive
to outliers, and furthermore, results can easily be biased by
unbalanced datasets and missing data. Mixed-effects models
can deal with these impediments to a certain extent. A major
advantage of our statistical approach when drawing conclu-
sions about the usefulness of MPH for NF learning is that
independence amongst observations is not a necessary
precondition; performance variability can be accounted for
both within a subject across sessions and between subjects.
One limitation of this approach may be the lack of current
consensus whether and if so by what degree it is possible to
rely on p values in mixed modeling and on how to derive
proper effect sizes (33).

4.5. Limitations. The study did not include follow-up or
booster sessions. Although there is evidence that SCP-NF
performance can be maintained at least up to two years
[51], it would have been important to investigate whether
we could have replicated these findings with a mixed-effects
modeling approach. A more systematic study with randomi-
zation of children on and off medication would be needed to
analyze this association and replicate our findings. In
addition, this study did not include a NF control group to
contrast learning effects that are characteristic for SCP-NF
learning with other training protocols. We deliberately did
not include clinical outcome data here to examine treatment
efficacy. The aim of the paper was instead to present a novel
methodological approach to the investigation of treatment
moderators and treatment specificity.

4.6. Conclusion.Given the complex interactions in our results
which have not been shown before, we conclude that mixed-
effect modeling is an appropriate approach to analyze NF
learning. We therefore suggest this approach for future
research to reach a better understanding of the mechanism
of NF learning and treatment specificity.
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Supplementary Materials

Figure S1: visualization of cross-session NF learning in the
feedback (A) and transfer conditions (B). The dependent
variable is the difference between mean amplitude (visualiza-
tion of cross-session NF learning in the feedback (A) and
transfer conditions (B)). For raw data, see scatter plot under
each effects panel, fitted with a fixed linear regression based
on the same factors as in A. A: interaction plot for the fixed
effects session number, MPH, and age. B: interaction plot
for the fixed effects session number and MPH. Session num-
ber: 15 sessions in total. Condition: deactivation: generation
of positive potential shifts. Activation: generation of negative
potential shifts. MPH: being on regular methylphenidate
medication (yes versus no). Condition: feedback: feedback
stimulus visible. Transfer: no feedback stimulus visible. A
and B: for visualization age is subdivided into two age classes
(8–12 and 13–16 years), but preserved as a continuous
variable in the original model. Table S2: results for linear
mixed effects models for cross-session NF learning with a
condition type (feedback/transfer) in titles. Table S3:
ANOVA results of models predicting NF performance in
the feedback condition. Table S4: ANOVA results of models
predicting NF performance in the transfer condition.
(Supplementary Materials)
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