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Extensive research in recent decades has expanded our insights into the pathogenesis of

Parkinson’s disease (PD), though the underlying cause remains incompletely understood.

Neuroinflammation have become a point of interest in the interconnecting areas of

neurodegeneration and infectious diseases. The hypothesis concerning an infectious

origin in PD stems from the observation of Parkinson-like symptoms in individuals

infected with the influenza virus who then developed encephalitis lethargica. The

implications of infectious pathogens have later been studied in neuronal pathways

leading to the development of Parkinsonism and PD, through both a direct association

and through synergistic effects of infectious pathogens in inducing neuroinflammation.

This review explores the relationship between important infectious pathogens and

Parkinsonism, including symptoms of Parkinsonism following infectious etiologies,

infectious contributions to neuroinflammation and neurodegenerative processes

associated with Parkinsonism, and the epidemiologic correlations between infectious

pathogens and idiopathic PD.

Keywords: encephalitis lethargica, infectious diseases, Parkinson’s disease, neurodegeneration,

neuroinflammation

BACKGROUND

Parkinson’s disease (PD) is a debilitating neurodegenerative disorder manifesting as reduced
facilitation of voluntary movements. It affects 1% of the population above the age of 60 years, with
an annual incidence of 15 per 100,000 (1). A substantial growth in the prevalence of PD worldwide
is predicted as a result of population aging and increases in life expectancy (2). Extensive research
over the past few decades, including epidemiologic and genetic studies and post-mortem analysis,
has expanded our insights into the pathogenesis of the disease. For the vast majority of cases, the
underlying cause of PD remains incompletely understood.

It has been suggested that PD’s complex and multifactorial etiology results from environmental
contributions in genetically predisposed individuals (3). Genetic links have been identified by
recent genome-wide association studies as causes or risk factors for PD development (4, 5).
However, the sporadic nature of the occurrences suggests interactions between additional factors
that has largely remained enigmatic.

Parkinsonian symptoms refer to PD-like manifestations, such as rapidly progressing rigidity,
bradykinesia, postural instability, cognitive, and oculomotor abnormalities, but which do not lead
to a firm diagnosis of PD. The role of bacterial and viral infections in the etiology of Parkinsonism
and idiopathic PD has been indicated by recent studies, although a clear correlation is yet to be
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established. Parkinsonism arising from the loss of dopaminergic
neurons as a consequence of an infectious process occurs rapidly,
contrary to the late-onset and progressive course of idiopathic PD
(6). Although infection-dependent Parkinsonism and idiopathic
PD are distinct entities, the role of infectious pathogens have
been implicated in both pathologies whether in the disease
pathogenesis or through epidemiologic correlations.

The original hypothesis of an infectious origin in PD stems
from the observation of Parkinson-like symptoms in individuals
infected with the influenza virus who developed encephalitis
lethargica (7). A “dual-hit hypothesis” was later formulated
concerning the pathogenesis of idiopathic PD. This hypothesis
describes a neurotropic pathogen which enters the nervous
system through the nasal mucosa (via the olfactory pathways)
and intestinal mucosa (via enteric plexuses and preganglionic
vagal fibers), ultimately leading to a cascade of neurodegenerative
events in the substantia nigra pars compacta (SNpc) (8).

This review highlights the association between important
infectious pathogens and Parkinsonism, including symptoms
of Parkinsonism following infectious etiologies, infectious
contributions to neuroinflammation and neurodegenerative
processes associated with Parkinsonism, and the epidemiologic
correlation of infectious pathogens to idiopathic PD (Tables 1, 2).

VIRAL ETIOLOGIES

Influenza a Virus
The premise of a causative association between influenza virus
and PD stems from the outbreak of encephalitic lethargica
and postencephalitic Parkinsonism (PEP) which occurred in
the aftermath of the 1918 influenza pandemic. Although the
two events are temporally coincidental, influenza virus has not
been confirmed as a direct causation to encephalitic lethargica
and PEP. PEP is clinically and pathologically distinct from
idiopathic PD. The overlapping clinical features include the
classic extrapyramidal symptoms of bradykinesia, tremor, and
“mask-like” features. However, patients affected with PEP do
not exhibit cognitive disturbances such as aphasia and apraxia.
Pathological evidence of neuronal loss and neurofibrillary tangles
were similarly observed in the substantia nigra. Unlike in
idiopathic PD, there is an absence of Lewy bodies deposition on
histological samples from patients with PEP (9).

Although reports of PEP have become extremely rare in the
last decade when compared to almost 50% of all diagnosed
cases of Parkinsonism between 1925 and 1938, clinical research
has suggested the role of influenza A virus in the processes of
neuroinflammation and neurodegeneration contributing to the
development of Parkinsonism. Transient neurological sequelae
(including tremor and gait disturbance) have been reported in
association with influenza infections, particularly within the first
few weeks of diagnosis (10). A significant link between severe
influenza and PD, as well as an inverse relationship between PD
and influenza vaccinations has also been reported (23). Although
the association of influenza and symptoms of Parkinsonism
has been indicated, the risk of developing idiopathic PD in
individuals whowere previously infected with influenza virus was
not shown to be increased (10).

The increasing risk of developing Parkinsonism is associated
with increasing number of influenza attacks, suggesting that
influenza-associated neuronal injury may be a cumulative
inflammatory process (10). Individuals with susceptible
genetic makeup, may suffer from immunologically mediated
mitochondrial injury and development of neuronal oxidative
stress subsequent to influenza-induced pyrexia and increased
inflammatory cytokines, ultimately resulting to neuronal
apoptosis. This is supported by findings of increased pro-
inflammatory mediators, including interleukin 6 (IL-6) and
tumor necrosis factor alpha (TNF-α), elevated levels of
cytochrome C, a marker of mitochondrial injury, and reactive
oxygen species (ROS) production in infected individuals, which
point to the underlying immunological mechanisms in the
pathophysiology of PEP (24–26).

On the other hand, a study on animal models found that
the H5N1 influenza virus, upon its progression to the central
nervous system (CNS) from the peripheral nervous system,
is able to activate the innate immune response in the brain
and cause the degeneration of dopaminergic neurons in the
SNpc (27). Though this transient dopaminergic neuronal loss
was found to be mostly restored within 90 days of infection,
a long-lasting inflammatory response—permanent activation of
microglia—persisted (28). The sustained activation of microglial
cells was also reported after H1N1 infection, suggested to be
a non-neurotropic virus, supporting the possibility that the
virus may initiate inflammatory signals via direct microglia
activation, contributing to disorders of protein aggregation,
and neurodegeneration pathologies in the CNS (29). Synergistic
effects of influenza and the parkinsonian toxin 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) have been observed
in animal models infected with H1N1, in which the cumulative
effects induced a greater loss of SNpc dopaminergic neurons than
either insult alone. This loss of dopaminergic neurons is shown
to be eliminated through the use of influenza vaccinations or
treatment with oseltamivir carboxylate (30). These findings of
synergistic effects from multiple insults supports the “multiple
hit hypothesis,” where the combination of toxic stress and an
inhibition of neuroprotective response lead to neuronal death
(31, 32). Despite recent histologic evidence in animal models,
unclear conclusions can be drawn from these findings as no
significant neuropathological evidence of direct viral invasion in
the CNS has been presented in infected individuals (33).

Herpes Simplex Virus 1
The role of herpes simplex virus 1 (HSV-1) in the development
and progression of neuropsychiatric disorders has been reported.
Of particular interest is its pathological effect in provoking beta-
amyloid deposition, tau phosphorylation, and demyelination,
leading to cognitive deficits observed in neurodegenerative
disorders including Alzheimer’s disease and multiple sclerosis
(61, 62). With regards to PD, the serological measure of exposure
to HSV-1 amongst other common infectious pathogens such as
CMV and EBV is shown to be elevated. The level of this infectious
burden was additionally found to correlate to the severity of
clinical symptoms and higher levels of serum inflammatory
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TABLE 1 | Clinical, histological, and structural features of Parkinsonism in infectious diseases.

Species Disorder Clinical features Histological/structural features References

Influenza A Post-infectious

encephalitis

• EPS symptoms predominant (bradykinesia,

tremor, mask-like features)

• No cognitive disturbances

• Neuronal loss and neurofibrillary tangles in snpc

• Absence of lewy body deposition

(9, 10)

EBV EBV encephalitis • Akinetic-rigid mutism, tremor, apraxia of eyelid

opening

• Progressive putaminal and caudate atrophy (11–13)

VZV Herpes Zoster • Cardinal symptoms of PD during follow-up,

especially first 3 months after diagnosis

(14)

JEV Japanese

encephalitis

• Varying severity of rigidity, hypokinesia, masking

of the face

• Lower frequency of tremor

• Prominent hypophonia

• Most symptoms improve with time

• Structural damage to the thalamus, basal ganglia,

and brainstem observed in MRI findings of JE

patients with parkinsonian features

(15, 16)

WNV West Nile

encephalitis

• Tremor, myoclonus, rigidity, bradykinesia, and

postural instability

• Transient PD features (resolve over time)

• Bilateral, focal lesions in the basal ganglia,

thalamus, and pons observed on MRI

• Increased level of a-syn in post-mortem analysis

(17, 18)

HIV AIDS dementia

complex

• Bradykinesia, postural instability, gait

abnormalities, hypomimemetic facies, and

disorders of ocular motilit

• Higher prevalence of a-syn in snpc

• Presence of HIV in inflammatory infiltrates and

glial cells of basal ganglia

• Absence of lewy bodies deposition in ADC

(19–22)

HIV

Parkinsonism

• Parkinsonism features similar to idiopathic PD

• Distinct characteristics include bilateral onset,

rapid symptom progression, abnormal eye

movements, earlier development of

motor complications

cytokines and alpha-synuclein (α-syn), supporting the role of
infection in the etiology of PD (34).

The involvement of autoimmunity in PD’s pathogenesis and
the hypothesis that HSV-1 infections may lead to progression
of the disease has been investigated. Recent findings indicate a
mechanism of molecular mimicry between HSV-1 and α-syn in
membranes of dopaminergic neurons of the SNpc. A difference
in the level of autoantibodies recognizing HSV-1-Ul4222−36

was observed in PD patients compared to healthy controls.
The antibodies were able cross-react with the homologous α-
syn100−114 epitope, potentially promoting α-syn aggregation.
These results suggest that HSV-1 may play a role in triggering an
autoimmune response in PD, leading to dopaminergic neuronal
destruction (35, 36).

Epstein-Barr Virus
Statistical evidence suggests that Epstein-Barr virus (EBV)
seropositivity in patients with PD was found to be higher than
that of the general population. Rare incidences of Parkinsonism
in EBV infection, specifically EBV encephalitis, comprises
the clinical symptoms of akinetic-rigid mutism, tremor, and
apraxia of eyelid opening. Structural brain changes including
progressive putaminal and caudate atrophy were reported with
one case showing direct acute neutropic effect of EBV on nigral
dopaminergic cells (11–13). Similar to HSV-1, the evidence for
molecular mimicry with α-syn, although currently speculative,
has been indicated in EBV infection and PEP. Specifically, anti-
EBV latent membrane protein antibodies targeting the critical
repeat region cross reaction with the homologous epitope on the
α-syn and induce its oligomerization (11, 37).

Varicella Zoster Virus
Herpes zoster results from the reactivation of latent varicella-
zoster virus (VZV) as a result of a decline in human cell-
mediated immunity (63). A recent population-based cohort
study in Taiwan found an increased risk of PD development
among individuals with prior diagnosis of herpes zoster (age
> 65 years) (14). Based on the overlapping mechanisms
of neuroinflammation, immunological changes and resulting
neuronal death in the two conditions, patients with herpes zoster
may present with cardinal symptoms of PD during their follow-
up period. These symptoms, particularly in the first 3 months
after herpes zoster diagnosis, can lead to an earlier detection of
PD (14).

This potential link was initially proposed by Ragozzino
et al. (64), although the results were deemed equivocal due to
limitations of the study (64). Findings reported that varicella,
on the other hand, was not associated with PD (65). In fact,
childhood infections with chicken pox were found to be inversely
related to PD, suggesting a possible protective mechanism
(23). This may be due to the “hygiene hypothesis,” in which
immune challenges in early childhood are believed to support
the development of a strong immune system later in life, though
more evidence is necessary to develop a stronger connection (66).

Hepatitis C
Hepatitis C virus (HCV) primarily infect hepatocytes, leading
to progressive liver diseases. Its association with a number
of CNS abnormalities including cognitive dysfunction, fatigue,
and depression has also been well-documented (38). The
development for HCV-associated neuropathology was described
through the findings of Fletcher et al. in which the expression of
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TABLE 2 | Association of infectious pathogens in PD development and pathogenesis.

Species Associations with PD development Indicated role in PD pathogenesis References

Influenza A • Risk of PD development in individuals who were previously

infected with influenza virus not shown to be increased

• Inverse relationship between PD and influenza vaccinations has

also been reported

• Elevations in inflammatory cytokines leading to mitochondrial

injury, development of oxidative stress, and neuronal apoptosis

• Direct contribution to transient dopaminergic neuronal loss in

snpc: synergistic effect with MPTP, effect eliminated through the

use influenza vaccinations or treatment with oseltamivir

carboxylate

• Permanent activation of microglia:

subsequent neuroinflammation

(23–33)

HSV-1 • Elevated serological measure of HSV-exposure in PD patients

correlated to disease severity

• Molecular mimicry between HSV-1 and a-syn in the membranes

of dopaminergic neurons of snpc: autoantibodies against HSV

cross-react with a-syn epitope and promote a-syn aggregation

(34–36)

EBV • EBV seropositivity higher in PD patients than general population • Molecular mimicry between EBV and a-syn: anti-EBV latent

membrane protein antibodies cross-react with a-syn and a-syn

promote aggregation

(11, 37)

VZV • Increased risk of PD development with prior herpes zoster

• Childhood infections with varicella inversely related to PD

• Overlapping mechanisms of neuroinflammation and

immunological changes leading to neuronal death in both

herpes zoster and PD

(14, 23)

HCV • Increased rate of PD development in patients with previous

hepatitis C infection

• Expression of HCV receptors on microvascular endothelial cells

of the brain allow viral entry and CNS infection

• HCV upregulates chemokines leading to neuroinflammation,

neuronal apoptosis, and dopaminergic toxicity

• HCV down-regulates TIMP-1 (astrocyte-derived factor known to

promote neuronal survival during neurotoxicity)

(38–42)

JEV • Higher incidence of prior JEV infection among PD patients

compared to the control

• Damage to dopaminergic and norepinephrinergic systems

• Structural damage to the thalamus, basal ganglia, and

brainstem observed in MRI findings of JE patients with

parkinsonian features

(43, 44)

WNV • WNV-induced death of dopaminergic neurons (45)

HIV • PD prevalence in persons living with HIV was similar to that of

the general population Earlier onset of PD in HIV patients

• Chronic neuroinflammation leading to basal ganglia dysfunction,

altered blood-brain barrier permeability, and neurodegeneration

• Genetic associations
◦ HIV exposure lead to dysregulated expression of DJ1
◦ Pathogenetic similarities between HIV-associated neurologic

disorders and LRRK2

(21, 46–49)

H. Pylori • Increase prevalence of H. Pylori infection in PD patients

compared to healthy controls

• H. Pylori infection associated with increased risk of subsequent

PD in the general population

• PD patients with H. Pylori seropositivity display symptoms of

worse motor severity

• Eradication of H. Pylori improves motor function in PD patients

• Chronic inflammation and release of pro-inflammatory cytokines

leading to BBB dysfunction, microglial activation, and neuronal

injury

• Molecular mimicry between H. Pylori and proteins essential for

normal neurological functions (NFIA, PDGFB, and EIFA3)

(34, 50–60)

functional HCV receptors (CD81, claudin-1, occluding, LDLR,
scavenger receptor-B1) were found on microvascular endothelial
cells of the brain, paving a pathway for HCV entry and replication
into the CNS (39).

A recent meta-analysis demonstrated an increased risk
of subsequent PD in patients with and hepatitis C (40).
As there are no observed associations between autoimmune
and chronic hepatitis to PD, it has been suggested that
a specific aspect of viral hepatitis, rather than the general
hepatic inflammatory process, contributes to these findings (41).
HCV-induced upregulation of chemokines (including sICAM-
1 and RANTES) in animal models which mediate mechanisms
of neuroinflammation, neuronal apoptosis, and dopaminergic
toxicity, was found to be similar to that of toxicity caused by 1-
methyl-4-phenylpyridinium (MPP+) (42). In addition, HCVwas
shown to down-regulate TIMP-1, one of the neuroprotectants

derived from astrocytes known to promote neuronal survival
subsequent to toxic effects during neuroinflammation.

Japanese Encephalitis Virus, West Nile
Virus
Japanese encephalitis virus (JEV) and West Nile virus (WNV)
are two important examples of zoonotic viral encephalitides.
The clinical spectrum of these flaviviruses ranges from self-
limiting flu-like illness to severe fatal meningoencephalitis,
often with parkinsonian features (17, 67). Japanese encephalitis
presents a wide spectrum of movement disorders including
hypokinesia, tremor, rigidity, and dystonia. A transient form
of parkinsonian syndrome, characterized by varying severity of
rigidity, hypokinesia, masking of the face, lower frequency of
tremor and prominent hypophonia, was observed in the acute
stage of the illness after 1–4 weeks after the disease onset.
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Hypophonia was striking in most patients and was an important
sequelae after the substantial regression of other manifestations
in the subsequent months (15). Reports of Parkinsonism as a
long-term sequela of JEV was also presented in patients 3–5 years
after acute JE infection with associated lesions in the substantia
nigra observed on MRI (16).

Burdwan, India has witnessed several outbreaks of JEV
over the past two decades. Das et al. reported a higher
incidence of prior JEV infection among PD patients within this
region, compared to the control subject, suggesting the viral
association to PD development (68). The analysis of JEV-induced
Parkinsonism model rats showed decreased dopamine levels and
neuropathological changes resembling those with idiopathic PD
(43). Evaluation of cerebrospinal fluid in JEV-infected patients
with movement disorders showed lower concentrations of
norepinephrine, dopamine, and homovanillic acid, with respect
to patients with non-JEV movement disorders. This observed
decrease in catecholamine levels may be a result of damage to the
dopaminergic and norepinephrinergic systems (44). Structural
damage to the thalamus, basal ganglia, and brainstem observed
inmagnetic resonance imaging (MRI) findings of JE patients with
parkinsonian features may contribute to this damage (44).

Features of Parkinsonism in acute WNV illness, including
tremor myoclonus, rigidity, bradykinesia, and postural
instability, are prominently reported and appear in most cases to
be transient and resolve over time (18). These manifestations are
uncommon among WNV-seronegative patients. Parkinsonian
features were present in patients both in the presence and
absence of MRI abnormalities showing bilateral, focal lesions in
the basal ganglia, thalamus, and pons (17). Post-mortem analysis
showed an increased level of α-syn in WNV-infected individuals.
An increase in α-syn expression was also observed subsequent
to WNV infection of primary neurons in vitro. The introduction
of WNV into α-syn-knockout mice models were conducted, in
which a 10-fold increase in viral production, increased neuronal
injury, and a more rapid mortality was observed. This suggests
the potential role of α-syn in inhibiting viral infection, rather
than incurring CNS damage following viral infection. This data
implies that the acute onset of parkinsonian features during
WNV encephalitis is a result of the WNV-induced death of
dopaminergic neurons (45).

Human Immunodeficiency Virus
Parkinsonism is a common movement disorder in human
immunodeficiency virus (HIV), occurring in up to 5% of infected
individuals in the context of neuroleptic drugs exposure, cerebral
opportunistic infections or AIDS dementia complex (ADC) (69).
Parkinsonism may occur early in HIV infection reflecting viral
infection within the basal ganglia or late in the disease course
in combination with ADC. The basal ganglia and dopamine-rich
brain regions are a vulnerable target to HIV, and Parkinsonism
may develop as a result of underlying chronic neuroinflammation
leading to basal ganglia dysfunction, altered blood-brain barrier
(BBB) permeability, and neurodegeneration (19).

Bradykinesia, postural instability, gait abnormalities,
hypomimemetic facies, and disorders of ocular motility, are
common parkinsonian manifestations of ADC, a collective of

neuropsychiatric complications in HIV (20–22). The clinical
features of HIV Parkinsonism are similar to idiopathic PD.
Several distinctions include bilateral onset, rapid symptom
progression, abnormal eye movements, and earlier development
of motor complications (69). The introduction of highly active
antiretroviral therapy (HAART) has contributed to the evident
decrease in AIDS-related Parkinsonism, while dopaminergic
medication may also help to alleviate some symptoms of
Parkinsonism and could be used in selected cases in which the
benefits outweigh the medication’s adverse effects (20, 70).

PD prevalence in persons living with HIV was similar to
that of the general population. Earlier symptom onset (before
the age of 60) was noted (21, 46). Studies of brain tissue
from postmortem autopsies showed a higher prevalence of α-
syn in the SNpc in individuals with HIV infection compared
to healthy control samples. The presence of HIV preferentially
in inflammatory infiltrates and glial cells of the basal ganglia
including the substantia nigra were also observed (47). In ADC,
however, typical pathological features in brains of patients with
PD, such as Lewy bodies, have not yet been reported.

From a genetic viewpoint, HIV has been shown to affect the
levels of PD-associated proteins, including DJ1 and Leucine-
rich repeat kinase 2 (LRRK2). DJ1, a gene linked to early-
onset PD, is a key regulator of dopamine transmission and ROS
production in neuronal cells. Acute and chronic HIV exposure
has been found to play a role in its dysregulated expression
(48). LRRK2, a common genetic cause of familial and sporadic
PD, shares pathogenetic and neurologic similarities with HIV-
associated neurologic disorders. Pathologic LRRK2 activation
was found to be an important mediator of neuroinflammation
and neuronal damage in in-vitro and in-vivo models of HIV-
associated neurologic disorders (49).

BACTERIAL ETIOLOGY

Helicobacter pylori Infection
Helicobacter pylori (H. pylori) is a bacterium on the luminal
surface of the gastric epithelium that induces chronic
inflammation of the underlying mucosa (71). It is found to
be prevalent in the gastric mucosa of over half of the global
human population (50, 72, 73). Ever since the initial observation
of a high prevalence of gastric ulcers in addition to the
gastrointestinal symptoms which preceded motor manifestations
in PD patients, the link between H. pylori infection and the
pathogenesis of PD has been extensively explored (51, 74).
Stemming from the initial hypothesis of PD’s origin within the
gastrointestinal tract, the bidirectional interactions between the
central and the enteric nervous system (namely, the gut-brain
axis) is of particular interest (8). Research has supported the
premise that H. pylori may play a role in the development of
PD via several pathways. This centers around its involvement in
neuronal damage, through the production of neurotoxic bacterial
products and the disruption of the BBB. Another possible link
is H. pylori’s disruption of the intestinal microbiome, leading to
altered inflammatory mediators that predispose to PD as part of
the brain-gut axis interactions (75, 76).
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Increased prevalence of H. pylori infection and higher titers
of antibodies to H. pylori are observed among patients with PD
compared to healthy controls. Accumulating evidence suggests
that H. pylori infection is associated with increased risk of
subsequent PD development in the general population. A
positive correlation has been reported between worse motor
severity and H. pylori seropositivity among patients (51–55).
This is speculated to be a result of chronic inflammation
exacerbating the neurodegenerative process or due to reduced
absorption of anti-parkinsonian medication secondary to H.
pylori-related gastroduodenitis. The improvement in clinical
status, particularly symptoms of bradykinesia, subsequent to the
eradication of H. pylori further supports a significant correlation
(50, 53, 56–58).

H. pylori infection has been indicated to trigger
neuroinflammation, neurotoxicity, and apoptosis related to
the pathogenesis of PD. Chronic inflammation with H. pylori
infection is associated with the substantial release of pro-
inflammatory cytokines, which may lead to the disruption of
the BBB, microglial activation and ultimately, neuronal injury
(34, 59, 60). A subset of patients infected with H. pylori have
been found to have elevated levels of autoantibodies against
proteins essential for normal neurological functions (Nuclear
factor 1 A-type (NFIA), Platelet Derived Growth Factor Subunit
B (PDGFB), eukaryotic translation initiation factor 4A3 (EIFA3),
suggesting a mechanism of molecular mimicry contributing
to increased PD motor severity in H. pylori seropositive
individuals (77).

Other Bacterial Etiology
Nocardia asteroides is one of the bacterial influences that
has been studied in PD pathoetiology over the past decades,
initially stemming from the study by Kohbata et al. (78) which
observed the development of motor abnormalities in animal
models infected by a strain of Nocardia asteroides. This L-dopa-
responsive movement disorder was found to be accompanied
by neuronal inclusions which resembled lewy bodies (78).
Nocardiae were reported to be able to propagate through
neuroglia to neurons in mouse models. They are seen to multiply
within the astroglia, through which they may invade midbrain
neurons and induce neuronal loss and lewy body formation (79).

The association remains, however, inconclusive, as there is
a lack of evidence for Nocardia asteroides in brain specimens
from lewy body-containing disorders (80). Because spheroplasts
found in the SNpc of PD patients have been shown to not
be Nocardia, researchers have postulated that the bacterium
known to form spheroplasts may alternatively beMycobacterium
avium ss. Paratuberculosis (MAP). MAP has been proposed
to be the “unidentified enteric pathogen” that triggers α-syn
aggregation (81).

Recent research has explored the relationship between
gut dysbiosis and the onset and aggravation of PD. The
interaction between intestinal microbiota and the autonomic
and CNS has been indicated via diverse pathways including
the enteric nervous system and the vagal nerve (82–84). In a
recent study, Proteus mirabilis (commonly increased in the gut
microbiota of PD mouse models) has been shown to directly

induce PD-related pathological changes and motor deficits. This
includes the induction of dopaminergic neuronal damage and
inflammation within the substantia nigra and the striatum, and
the stimulation of α-syn aggregation in the brains and colons
of PD mice (85). Lipopolysaccharide (LPS), a virulence factor of
P. mirabilis, has been implicated in these pathological changes.
Increased intestinal permeability leading to a greater exposure
of intestinal neuronal tissue to pro-inflammatory products
have been suggested to result in oxidative stress and neuronal
pathological α-syn aggregates (85, 86).

A number of bacterial infections have been explored in
association with PD, including Chlamydia pneumoniae (34,
87), Bordetella pertussis (65, 88), Streptococcus pyogenes (65,
89), and Borrelia burgdoferi (34). The varying results amongst
epidemiological and laboratory studies are primarily suggestive,
as there is inadequate evidence to support their role in PD
development. The relationship between these bacterial etiologies
and PD requires more comprehensive studies in the future.

PATHOMECHANISMS OF
POST-INFECTIOUS PARKINSONISM

Neuroinflammation
Neuroinflammation is a common feature of neurodegenerative
disorders of the CNS, characterized by augmented numbers of
activated and primed microglia, increased level of inflammatory
cytokines and decreased levels of anti-inflammatory molecules.
Neuroinflammation might initiate from the periphery and
relative data suggest that peripheral conditions through the
disrupted BBB notably influence various pathologic processes
in the brain (60). Subsequent to its access to the CNS
through the systemic circulation, the olfactory pathways, and
the gastrointestinal tract, infectious pathogens may induce
neuroinflammation through the induction of pro-inflammatory
cytokines in microglia (27, 29).

The activation of microglia and release of inflammatory
factors promote damage to DA neurons. Infectious pathogens
have been shown to be associated with the release of large
amounts of proinflammatory mediators, including TNF-α, IL-6,
and IL-1β which may lead to disruption of the BBB, microglial
activation and, ultimately, neuronal injury and death (90). Such
relationships between the innate autoimmune response and
infectious pathogens has also been investigated by other literature
such as Caggiu et al. (91).

This mechanism of microglial activation and
hypercytokinemia can cause further activation and clustering
of microglia around DA neurons, leading to a continuous
cycle of chronic inflammation and neuronal damage. Chronic
activation of microglia and release of cytokines have been shown
to cause extensive damage to the dopaminergic neurons in
the SNpc, contributing significantly to neuronal death in PD
(92, 93) (Figure 1).

From another view point, viral agents through their
replication and subsequent cell lysis may result in direct
neuronal damage (30, 94). Similarly, vascular inflammation
due to hypercytokinemia can lead to apoptosis of endothelial
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FIGURE 1 | Infectious pathogens inciting the neuroinflammatory process and subsequent blood-brain barrier disturbance through the release of pro-inflammatory

cytokines. This ultimately leads to the activation of microglia and subsequent clustering around neuronal cells, resulting in neuronal damage.

cells and loss of vascular integrity, which result in increased
permeability of cerebral vessels and cerebral edema and
ultimately neuronal damage.

Role of Alpha-Synuclein in the Immune
System
A-syn is a presynaptic neuronal protein involved in
neurotransmitter release that is thought to play a significant
role in the initiation and progression of PD. A-syn is also a
major constituent of Lewy bodies and Lewy neurites, which
are well-known pathological hallmarks of the disease. Recent
studies suggest that oligomers or protofibrils of α-syn, rather
than the fibrils, are responsible for the toxic effects causing
neurodegeneration (95–97). Oligomerized α-syn is hypothesized
to have toxic effects on synaptic transmission (98), cause
membrane disruption (99), impairment of protein degradation,
as well as impairment of several organelles including the
mitochondria and endoplasmic reticulum (100, 101). The
ability of α-syn to cause membrane disruption and organelle
impairment has also been hypothesized to give the protein
antimicrobial properties. This was demonstrated in a study
by Park et al. in which recombinant a-syn proteins were
used in antimicrobial assays against various bacterial and
fungal strains (102). This antimicrobial effect could suggest
a protective mechanism of the post-infectious increase in
α-syn oligomers.

Bidirectional relationships have been proposed between
α-syn and microglia through the activation and release
of inflammatory mediators, potentiating each other and
causing dopaminergic neuronal loss and neurodegeneration
(103). A similar relationship is also seen between α-syn and
mitochondria, in which α-syn oligomers cause disruption
of mitochondrial function and the resultant oxidative stress

in turn furthers the oligomerization of α-syn. It has been
proposed that aggregated α-syn may function as a messenger
molecule for immune responses against infectious pathogens
by inducing microglial activation. This is similar to the
proinflammatory cytokines’ incitation of antimicrobial responses
within the intestinal epithelium (83, 104–106). Together
with its antimicrobial and antifungal effect, this supports a
potential immunoprotective role of α-syn. Viral agents have
been shown through these mechanisms of molecular mimicry
to induce the aggregation and oligomerization of α-syn,
leading to deposition in neuronal cells and further damage
(35, 36) (Figure 2).

CLINICAL IMPLICATIONS

Currently, the diagnosis of PD relies on the clinical presence
of the disease cardinal features, including resting tremor,
rigidity, bradykinesia, and loss of postural reflexes. The
efficacy of this diagnostic method is limited during the
early stages of the disease, permitting PD progression before
any therapeutic intervention. The positive correlation of PD
development amongst patients with underlying chronic infection
suggests the benefit of PD screening before progressive
symptom onset. Neurological examinations may be beneficial
to detect the earlier stages of PD in, for example, anti-
HCV positive groups, which would be an important clinical
implication for high endemic HCV areas. Conversely, PD
patients may benefit from an evaluation for underlying
infection as clinical improvement of motor symptoms have
been shown subsequent to the eradication of disease, for
example as in chronic H. pylori infection (50, 53, 56–
58). Whether the clinical deterioration observed in these
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FIGURE 2 | A diagram depicting the relationships between the different factors affecting neuroinflammation and neuronal cell death.

cases is a result of chronic inflammation exacerbating the
neurodegenerative process or due to reduced absorption of
anti-parkinsonian medication secondary to H. pylori-related
infection is a topic for further investigation. On the other
hand, anti-parkinsonian drugs may have possible therapeutic
antiviral potential. For example, Parkinsonian drugs (L-dopa,
Isatin, Amantadine) have shown in-vitro to significantly inhibit
WNV multiplication as well as reduced viral RNA levels
(Amantidine) (107).

Another significant limitation in diagnosis is that the
neurodegenerative process associated with PD precedes the
onset of clinical symptoms, in which up to 70% of neurons
in the SNpc are lost before the appearance of motor features
(108, 109). A-syn oligomers could serve as a biomarker
that would allow the identification of at-risk individuals
before clinical diagnosis. Detection of α-syn oligomers may
additionally be useful in monitoring disease progression
and response to treatments. Emerging information on the
pathomechanism of diseases such as loss of BBB integrity
may also lead to formulating strategies to protect BBB and to
prevent and treat PD and other BBB-related neurodegenerative
disorders (110, 111).

CONCLUSIONS AND FUTURE
PERSPECTIVE

Accumulating evidence in recent years implicates the role
of infectious etiologies in neuronal pathways leading to
the development of Parkinsonism and PD. Studies have
demonstrated the independent association between specific

pathogens and PD. The synergistic effect of infectious pathogens
in inducing neuroinflammation leading to the PD development
have also been observed. Neuroinflammation may not only
play a part in the precipitation of PD but may also
be a sustaining factor in its progression. However, the
pathomechanism of dopaminergic neuronal loss in infection-
induced Parkinsonism cannot explain the pathogenesis of
idiopathic PD. The conclusion that all cases of PD are associated
with increased inflammation and underlying chronic infection
cannot be established. This is due multiple factors, including
the consideration that not all PD patients have consistent
evidence of inflammatory cytokine dysregulation and that
the state of increased inflammation in individuals do not
always lead to PD development. Parkinsonism development
may be part of a response to an underlying immune system
dysregulation in individuals with genetic predisposition to
the disease.

Further research is necessary to examine the involvement and
extent to which pathogens and inflammatory cytokines play in
the pathomechanism of PD. Confounding factors, including the

roles of genetics and exposure to environmental insults, have to

be taken into account in further investigation. Studies should

explore the possibility of a subtype of PD that is characteristically

associated with pro/anti-inflammatory cytokines and the reason
why certain individuals develop PD in the context of elevated
inflammatory markers. Through further understanding these
mechanisms, we may be able to classify variants of PD, use
biological markers to aid in the diagnosis and prediction of
treatment response and adjust treatment for an improved
prognosis for patients.
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