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Abstract: Accurately improving the mechanical properties of low-alloy steel by changing the alloying
elements and heat treatment processes is of interest. There is a mutual relationship between the
mechanical properties and process components, and the mechanism for this relationship is complicated.
The forward selection-deep neural network and genetic algorithm (FS-DNN&GA) composition design
model constructed in this paper is a combination of a neural network and genetic algorithm, where the
model trained by the neural network is transferred to the genetic algorithm. The FS-DNN&GA
model is trained with the American Society of Metals (ASM) Alloy Center Database to design
the composition and heat treatment process of alloy steel. First, with the forward selection (FS)
method, influencing factors—C, Si, Mn, Cr, quenching temperature, and tempering temperature—are
screened and recombined to be the input of different mechanical performance prediction models.
Second, the forward selection-deep neural network (FS-DNN) mechanical prediction model is
constructed to analyze the FS-DNN model through experimental data to best predict the mechanical
performance. Finally, the FS-DNN trained model is brought into the genetic algorithm to construct the
FS-DNN&GA model, and the FS-DNN&GA model outputs the corresponding chemical composition
and process when the mechanical performance increases or decreases. The experimental results show
that the FS-DNN model has high accuracy in predicting the mechanical properties of 50 furnaces of
low-alloy steel. The tensile strength mean absolute error (MAE) is 11.7 MPa, and the yield strength
MAE is 13.46 MPa. According to the chemical composition and heat treatment process designed by
the FS-DNN&GA model, five furnaces of Alloy1–Alloy5 low-alloy steel were smelted, and tensile
tests were performed on these five low-alloy steels. The results show that the mechanical properties
of the designed alloy steel are completely within the design range, providing useful guidance for the
future development of new alloy steel.

Keywords: alloy steel; neural networks; genetic algorithm; mechanical properties

1. Introduction

Low-alloy steel is an important metal material in economic and defense contexts. The mechanical
properties of alloy steels depend on the internal organization microstructure, and the internal
organization depends on the influence of important factors, such as alloy elements and process
parameters [1–5]. The production process involves many physical and chemical reactions, and the
uncertain factors in the process are difficult to determine and evaluate. Therefore, based on the
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appropriate processing of actual mass production data, a composition design model with sufficient
accuracy and reliability is constructed to achieve a predictable tensile strength, yield strength, and other
performance indicators of steel products; the model should also reasonably reveal the composition,
process, and other parameters. The relationship between the mechanical properties and processing
parameters has always been of concern to scientists [6,7]. Since the mechanical properties of steel are
usually determined by the internal organization, which depends on the chemical composition and
process parameters, it is common to study the organizational properties or to change the processing
conditions to determine their impact on the properties. Kimura et al. [8] successfully designed a new type
of Fe-0.4C-2Si-1Cr-1Mo (wt %) low-alloy ultra-high-strength steel. This low-alloy ultra-high-strength
steel becomes a tough material with conventional high temperature treatments, and a ductile material
with conventional low-temperature treatments. Zhu et al. [9] used thermodynamic and kinetics
calculation methods to design the multiphase structure of phase transformation-induced plasticity
(TRIP) auxiliary steel with a composition of Fe-1.5Mn-1.5Si-0.3C (wt %). To achieve a significant
increase in strength and ductility, Zhang et al. [10] used the microstructure and micromechanical
properties of C-Mn weld metal to study their influence on its tensile properties by finite element
analysis and realized the inverse design of the mechanical properties of the weld metal. The above
modeling was done to obtain metallurgical trends that reflect the evolution of mechanical properties
through designing physical experiments and transforming the trends into a mathematical model
based on numerical simulation and other methods. These results can reflect the evolution of steel
structures during the actual hot rolling process and have a certain reliability and universality. However,
as the complexity of the evolution of the organizational structure increases, the difficulty of modeling
increases exponentially, causing a certain error between the calculation results of the model and the
actual evolution results, and the prediction accuracy of the model is greatly restricted. In addition,
the above modeling is mainly for a single steel grade, and there are certain limitations in realizing a
prediction of the structure and performance of multiple steel grades.

Based on data modeling, genetic programming (GP), fuzzy regression (FR), or artificial neural
networks (ANNs) can be used to explore high-dimension and complex nonlinear relationships between
various factors and determine the valuable information within the data [11–17]. In this regard,
Li et al. [10] considered the rapid modeling and plane defect prediction of a certain rolling process
and used model migration strategies to develop a new flatness defect prediction model by changing
the data set used for modeling. Bustillo et al. [18], based on several data mining techniques, such as
multilayer perceptrons, support vector machines, and regression trees, selected the optimal data model
to predict wear during the forming process of steel component thread processing. Among them, genetic
programming requires prior knowledge for prediction [19], fuzzy regression depends on user-defined
instructions [20], and intelligent methods, such as neural networks, have specific advantages that do not
require complicated mathematical equations to explain nonlinear and multidimensional systems [21].
Therefore, neural networks are widely used in the metallurgical industry because of their outstanding
modeling capabilities.

Specifically, Shen et al. [22] designed a new type of high-strength stainless steel with desirable
chemical properties through a material design method combining machine learning and genetic
algorithms, and verified its excellent hardness through experiments. Datta et al. [23] used neural
networks and multiobjective genetic algorithms to design high-strength multiphase steels with a
customized performance. John et al. [24], based on thermodynamic and kinetic models by CALPHAD
that were combined with gradient algorithm and genetic algorithm multiobjective optimization,
proposed an Integrated Computational Materials Engineering (ICME) method for alloy and process
design for the development of d-ferrite medium-manganese steel. The approach above used machine
learning and genetic algorithms to model the material design, but they only used machine learning to
establish a predictive model and used genetic algorithms to obtain an optimal point in the corresponding
steel. However, as the mechanical properties may increase or decrease, it is impossible to determine
how the alloying elements and processes should change. Therefore, this paper proposes a neural



Materials 2020, 13, 5316 3 of 23

network and genetic algorithm combined with a forward selection-deep neural network and genetic
algorithm (FS-DNN&GA) model to design a composition and heat treatment process of alloy steel.
The contributions of this paper can be summarized as follows:

(1) The forward selection method (FS) is constructed to screen out the main influencing factors that
affect the mechanical properties, the eigenvalues selected by the FS method are used as the input
of the neural network to predict the mechanical properties of alloy steel, and the FS-deep neural
network (DNN) mechanical prediction model is then constructed.

(2) The FS-DNN trained model is brought into the genetic algorithm (GA) to construct the
FS-DNN&GA composition design model. As the mechanical properties increase or decrease,
this model outputs the corresponding alloy elements and processes.

2. Data Acquisition

2.1. Data Sources

2.1.1. American Society of Metals (ASM) Database

This article uses the ASM Alloy Center Database data to train and test the FS-DNN&GA model.
The ASM Alloy Center Database includes more than 10,000 data points for alloying elements, mechanical
properties, physical properties, and chemical properties, all of which were collected from published
papers [25,26]. This paper selects 2000 sets of complete data for training the FS-DNN&GA model.
Some of the data are shown in Table 1. The chemical composition and heat treatment process are used as
characteristic values, and the tensile strength and yield strength are used as predicted values (0 means
air cooling, 1 means water cooling, and 2 means oil cooling, the complete data is in Appendix A).

Table 1. Partial data of the American Society of Metals (ASM) Alloy Center Database.

Number Grade
Chemical Composition (%) Quenched Tempering σb/MPa σs/MPa

C . . . Cr Temperature Coolant Temperature Coolant

1 15Cr 0.15 . . . 0.85 880 0 200 0 390 195
2 12CrMo 0.12 . . . 0.55 900 2 650 2 440 275
3 20CrMnTi 0.20 . . . 1.15 890 1 230 2 615 395
4 40CrMnMo 0.40 . . . 1.05 860 1 460 1 835 640
5 20CrMnMoB 0.20 . . . 1.65 850 1 500 2 880 735
6 30CrMnSi 0.30 . . . 0.95 860 0 200 2 685 460
7 35CrMoV 0.35 . . . 1.15 860 0 400 2 880 745
8 34CrNi3Mo 0.34 . . . 0.90 860 1 460 1 765 636
9 30Cr2Ni2Mo 0.30 . . . 2 870 1 500 2 900 700
10 24Cr2Ni4MoV 0.24 . . . 1.65 860 0 200 2 1000 870

2.1.2. Low-Alloy Steel Smelting

To objectively evaluate the accuracy of the prediction model from the perspective of actual
tests, steel was smelted in 35 furnaces, and heat treatments and tensile tests were performed on the
steel. This experiment used vacuum arc melting equipment (model: DHL-630, Shenyang Scientific
Instrument Development Center, Chinese Academy of Sciences, Shenyang, China) to smelt the low-alloy
ultra-high-strength steel. The experimental process is as follows:

(1) The surface of pure iron and pig iron raw materials was mechanically polished to remove oxide
scale, and low-carbon pure iron and various iron alloys were used as raw materials to prepare
steel ingots according to the nominal composition.

(2) The raw materials were placed into a water-cooled copper crucible in a magnetron tungsten
vacuum arc melting furnace that was evacuated below 6.8 × 10−4 Pa and filled with high-purity
argon (99.99%). The alloy ingot was remelted many times to ensure the uniform distribution of
the alloy elements.
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(3) Hot forging was performed on the sample, where the starting temperature of hot forging was
1150 ◦C, and the final forging temperature was 850 ◦C.

(4) The mechanical properties of samples under different heat treatment conditions were determined.

2.1.3. Tensile Testing

In this experiment, a tensile specimen was prepared according to the HB5143-96 standard. The size
of the specimen is shown in Figure 1. The tensile test was carried out on a universal material testing
machine (model: CMT5504, MTS Industrial Systems (China) Co., Ltd. Shenzhen, China). The tensile
strength and yield strength of the low-alloy ultra-high-strength steel was measured.
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2.2. Data Preprocessing

2.2.1. Data Normalization

To obtain a complete data set, the sample data for different feature dimensions was considered,
and their meanings and magnitudes differed. Sample values with very large differences among the data
increase the difficulty of adjusting the weight threshold during network training. To make the data less
variable so that there was an excellent generalization ability and to facilitate the learning process of the
neural network, the data samples were first processed in disorder and normalization. Neural networks
usually use double-sigmoid functions as transfer functions, and the range of double-sigmoid functions
is (0, 1), so the sample data needed to be normalized to the interval [0, 1]. Here, we used the dispersion
standardization method to map the data, and the normalization formula was as follows [27]:

X′ =
(X −Xmin)

(Xmax −Xmin)
(1)

where X and X′ represent the values before and after normalization of the data, X′ ∈ (0, 1),
respectively; Xmin and Xmax represent the minimum value and maximum value of the parameter in
the same dimension.

2.2.2. Data Outlier Elimination

To ensure the cleanliness of the sample data based on data standardization processing methods,
it was also necessary to eliminate outliers in the data [28]. This is because actual production sites
usually contain various sources of noise, such as system interference caused by equipment or raw
materials and external noise caused by operators. The integrity and correctness of data are often
affected by production interference and measurement errors. Such noise negatively affects the input
samples of the predictive model. To reduce the impact, this paper uses a distance-based abnormal point
detection algorithm to preprocess the sample data. The main principle is to determine whether the
data point is abnormal by measuring the distance between the data tables. Each set of training samples
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is regarded as the utility point di = {xi1, xi2, xi3, . . . , xim}, i = 1, 2, . . . , n. For n groups of m-dimensional
data tables, the formula for the distance between utility points B and C is

Dk(dB, dC) =
(∑m

i=1
|xBi − xCi|

K
) 1

k
(2)

where K is any positive integer; when K is 1, the calculated distance is the absolute distance; when K is
2, the calculated distance is the Euclidean distance. Given a small positive number δ and an empirical
critical value N, when Dk(dB, dC) < δ, utility points B and C are adjacent to each other. For any utility
point, when the number of nearby points is less than N, the utility point is recorded as an abnormal
point. This method can be used to screen the sample data to ensure its accuracy.

3. Method

3.1. FS-DNN Mechanical Prediction Model

Three main types of factors affect the mechanical properties of alloy steel. One is alloying
elements, such as C, Si, Mn, and Cr, the second is heat treatment process parameters, such as quenching
temperature, tempering temperature, and coolant, and the third is plastic processing. Due to the
complexity of plastic processing, if all the influencing factors are used as inputs in the prediction model,
it is easy to cause overly high dimensionality, which will interfere with the calculation. Therefore,
the modeling of this article does not consider plastic processing. If all alloying elements and heat
treatment process parameters are used as input variables in the prediction model, the distribution of
state points in the input space will be sparse, and the possibility of model overfitting will increase.
Therefore, extracting important factors that impact the performance and reducing the coupling among
variables can improve the quality of the input samples. This article adopts the forward selection (FS)
method [29,30]. The main advantage of this method is that, after a variable is selected, the probability
of the variable being highly correlated with it is reduced. Therefore, before the prediction model uses
sample data for training and learning, FS can be used to determine the best combination of input
variables for the prediction model. The FS method adopts a sequential selection method, and only a
certain impact factor for the performance is extracted for each selection. This method is based on linear
regression modeling and uses a support vector machine regression model to determine the correlation
coefficient R-squared (R2) to measure the regression model under different parameters. If the value of
the determination coefficient is close to 1, the correlation between the input parameter and the target
value is high. A flowchart of this method is shown in Figure 2.
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Step 1: Build a single-input single-output regression model for each variable given the input
variables X = {X1, X2, . . . , Xn}. If the corresponding output target is Y and the number of input
variables is n, then a single-input regression model for all influencing variables can be established:
y = f (X j), j = 1, 2, . . . , n.

Step 2: Determine the input order of the characteristic variable X, calculate the R2 value of all
single-input regression models, select the regression model input variable corresponding to the highest
R2 value, and use this variable as the first input variable of the FS model.

Step 3: Build a new multiple regression model, combine the determined variables with other
remaining variables, and build m-1 new multiple regression models. The form of the new model is
y = f (Xa, X j), j = 1, 2, . . . , a− 1, a + 1, . . . , m. Calculate the R2 value of the multiple regression model,
and determine the second input variable based on the regression model with the highest R2 value.

Like the above process, the number of variables input into the FS model can be gradually increased.
Usually, each new variable further increases the R2 value of the regression model. When the newly
added variable is highly correlated with the selected variable, the R2 value of the regression model
remains unchanged or changes very little. At this time, the FS process can be stopped. The final input
variable of the FS model is the feature set of the prediction model. The new feature set is brought into
the neural network and the FS-DNN mechanical prediction model is constructed. Neural network
modeling is essentially a nonlinear statistical analysis technique and a black box that uses a specific set
of nonlinear functions to link input data to output data. It provides a way to use an example of an
objective function to find the coefficients so that a certain mapping function is as close to the objective
function as possible. Srinivasu et al. [31] used the DNN method to predict the stress–strain curve of a
near-beta titanium alloy, which established the best combination method to predict stress–strain curves.
To prevent an algorithm from overfitting the data or coupling among the data, this paper introduces a
random forest (RF) [32,33] and a support vector machine (SVM) [34] network model for comparison.
The model is constructed as shown in Figure 3.
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Figure 3. Mechanical properties prediction model.

A DNN, as a technology that provides an alternative method for simulating fuzzy and complex
problems, has the ability to transform nonlinear mathematical models into simplified black box
structures. The advantages of using neural networks in process modeling are its learning ability,
generalization ability, and nonlinearity. For the four-layer DNN in Figure 4, the eigenvalue of the DNN
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training sample set is recorded as X =
{
xi ∈ RD

∣∣∣i = 1, 2, . . . , n
}
, and the sigmoid function is used as the

activation function:
σ(z) =

1
1 + e−x (3)
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The mathematical principle of forward propagation of the DNN in Figure 1 is as follows:
After inputting the feature value for the first layer, the second layer outputs 1:

a2
1 = σ(z2

1) = σ(w2
11x1 + w2

12x2 + . . .+ w2
1ixi + b2

1) (4)

a2
2 = σ(z2

2) = σ(w2
21x1 + w2

22x2 + . . .+ w2
2ixi + b2

2) (5)

a2
i = σ(z2

i ) = σ(w2
i1x1 + w2

i2x2 + . . .+ w2
iixi + b2

i ) (6)

The third layer output a3
1 is as follows:

a3
1 = σ(z3

1) = σ(w3
11a2

1 + w3
12a2

2 + . . .+ w3
1ia

2
i + b3

1) (7)

Assuming that there is a total of m neurons in the layer, the output of the l− 1 neuron in the layer
is al

j:

al
j = σ(zl

j) = σ(
m∑

k=1

wl
jkal−1

k + bl
j) (8)

If l = 2, then a1
k is xk of the input layer.

The matrix expression of the above formula can be simplified. Suppose that there are m neurons
in the l− 1 layer, and that there are n neurons in the l layer. The linear coefficient w of the l layer then
forms an n*m matrix Wl, and the offset b of the l layer forms an n*1 vector bl. The output a of the l− 1
layer constitutes an m*1 vector al−1. The linear output z of the l layer before inactivation forms an
n*1 vector zl. The output a of the l layer constitutes an n*1 vector al. This is expressed by the matrix
method, and the output of the l layer is

al = σ(zl) = σ(Wlal−1 + bl) (9)
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3.2. Constructing a Neural Network and Genetic Algorithm Component Design Model

This paper constructs an FS-DNN&GA model to study the composition of alloy steel. First, we use
the ASM Alloy Center Database data to train the FS-DNN model, save the network parameters,
and bring them into the genetic algorithm. The genetic algorithm evaluates the quality of the solution
through the fitness value. Therefore, the choice of its fitness value determines the search direction of
the algorithm. First, the genetic algorithm is used to generate random individuals, calculate the fitness
function f(x) for each individual, and call the DNN model for the calculation of the fitness function to
find the best individual corresponding to f(x). A select-cross-mutate process is then started to obtain a
new individual, and so on. After the iteration is completed, the individual corresponding to the best
f(x) is found and the process returns. The component design process is shown in Figure 5.
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4. Results and Discussion

4.1. Screening of Factors Affecting the Mechanics Based on the FS Method

In view of the screening of factors affecting the mechanical properties of steel, when the tensile
strength is the research object, all the influencing parameters for the tensile strength are introduced
as modeling factors. The results of the factor extraction process are shown in Table 2 (the quenching
temperature is represented by QT, the tempering temperature is represented by TT, and the quenching
coolant is represented by QC). It can be seen in Table 2 that, in the first step, the R2 value of the
regression model built with C and the tensile strength is the largest, indicating the strongest correlation
between C and the tensile strength. When taking Ni as the input parameter, other characteristic
variables are added to the second step, and C, Ni, QT, and other factors are gradually selected as the
input parameters of the prediction model by comparing the model’s R2 values under different variables.
When Cr is added to the model in the seventh step, the change in the value of R2 is small, less than 0.5%,
indicating that there is a high coupling relationship between the variable and the extracted variable.
Therefore, the parameter extraction process ends.
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Table 2. Results of FS of parameters that impact the tensile strength.

The Value of Coefficient of Determination R2 (%) from Step 1 to Step 12

1 2 3 4 5 6 7 8 9 10 11

C 71.79
Ni 63.56 77.82
QT 64.26 73.66 82.87
Mn 63.47 72.85 81.24 87.61
TT 47.84 75.46 80.57 85.47 90.16
Si 55.53 71.32 81.02 85.32 88.65 92.25

Mo 41.5 70.54 79.35 85.54 88.32 92.45 93.96
Cr 21.57 70.32 79.56 85.68 88.12 92.11 93.35 94.82
V 15.76 69.23 79.12 85.12 88.07 91.97 93.09 94.3 95.16

Cu 12.2 69.23 78.32 84.87 88.17 92.07 92.94 94.22 94.38 95.28
QC 23.73 69.17 78.15 84.56 88.01 92.18 93 94.12 94.42 94.52 95.22

Figure 6 shows the value of R2 in the first 11 steps according to the FS. Figure 6a shows the trend
for the R2 value during the selection process of the tensile strength parameters. It can be seen in the
figure that the increase in the R2 value gradually decreases and tends to flatten. This shows that,
as the number of input variables increases, the influence of individual variables on the tensile strength
decreases. When the R2 value reaches a certain level, the selected influencing variable has an increased
degree of explanation for the tensile strength.
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In the same way, the FS results of the yield strength affecting variables are shown in Figure 6b.
By comparing the R2 values of the models under different variables, eight characteristic variables,
such as C, Ni, and Mn, can be continuously selected as the input parameters of the yield strength
prediction model. According to the graph representing the FS results, it can be seen that, in the extracted
parameter set, the types of elements for the tensile strength and yield strength in the parameter sets
are the same, but the order of importance of the influencing parameters is different. For the tensile
strength, Mn ranks fourth in importance, while the fourth most important parameter for the yield
strength is the quenching temperature. Mn ranks third, indicating that the same parameters have
different effects on different properties.

To test the correlation between the extracted parameters, a heat map of the correlation between
each factor was drawn, as shown in Figure 6. The value in each rectangular box indicates the degree of
correlation between the factors corresponding to the horizontal and vertical coordinates. A darker
color indicates a smaller correlation between the factors, and a lighter color indicates an increased
correlation between the factors.

Figure 7 shows the following:
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(1) The correlations among the eight key influencing factors selected and extracted based on the
previous item are generally small, indicating that feature extraction can effectively reduce the
coupling between variables and help improve the quality of input samples.

(2) Among the eight extracted parameters, the correlation between the carbon and performance is
the largest, which is consistent with the results of the forward extraction process, indicating that
carbon can affect the performance of steel when the composition is optimized.

(3) The correlation coefficient between the tensile strength and yield strength is 0.97, indicating a high
correlation. This is because, during the design of steel products, the yield ratio (yield strength to
tensile strength ratio) is usually used as the evaluation index to measure the material performance,
and it is required to be within a certain parameter range. Therefore, the quality of the sample
data meets certain physical metallurgy requirements.
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4.2. Prediction of the Mechanical Properties of Low-Alloy Steel Based on the FS-DNN Model

To predict the mechanical properties of steel and provide the required information, prediction
models under different properties are established to verify the predictive ability of the FS-DNN model.
First, the preprocessed sample data are divided into dimensions based on the parameter extraction
results from the FS and divided into different sample sets according to the main factors that influence
the performance. Second, the capacity of different samples is divided. Two thousand sets of sample
data are divided into a training set and a test set. Ten-fold cross-validation is used to predict the
mechanical properties of alloy steel. To evaluate the effect of the regression model, we use R2 [35],
mean absolute error (MAE) [36], and root mean square error (RMSE) [37] as evaluation indicators.

R2 = 1−

∑m
i=1 (yi − ŷi)

2∑m
i=1 (yi − yi)

2 (10)
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MAE =
1
m

m∑
i=1

∣∣∣yi − ŷi
∣∣∣ (11)

RMSE =

√√
1
m

m∑
i=1

(yi − ŷi)
2 (12)

Here, m is the number of samples, yi is the true value, ŷi is the predicted value, yi is the average
value of the real labels of m samples, and i is the sample label. The evaluation results are shown
in Table 3.

Table 3. Evaluation indexes of the mechanical prediction model.

Mechanical
Properties

Evaluation
Index

Modeling after Eigenvalue Screening Introduce All Eigenvalue Modeling

DNN SVM RF DNN SVM RF

TS

R2 0.953 0.935 0.921 0.752 0.802 0.673
MAE 14.736 16.75 17.19 23.95 21.69 26.02
RMSE 23.993 24.247 25.35 31.34 29.78 33.46

Eigenvalues 8 8 8 11 11 11

YS

R2 0.962 0.942 0.938 0.752 0.765 0.673
MAE 13.46 14.25 14.04 20.95 21.39 18.12
RMSE 20.31 21.57 22.25 28.33 27.78 26.46

Eigenvalues 8 8 8 11 11 11

Based on the screening results of the important parameters from the FS, eight key feature values,
such as C, Ni, and Mn, are used as inputs in the prediction model, and the output performance indicators
are the tensile strength and yield strength. The comparison models are constructed as follows:

(1) The prediction model after eigenvalue screening is improved by directly introducing the eigenvalue
model at the accuracy level, and the FS-DNN model has the best prediction effect. In addition,
the prediction model does not need to manually set the structural parameters, which improves
the stability and reliability of the prediction model and is convenient for practical application.

(2) In addition to the large improvement in the prediction accuracy of modeling after feature value
screening, the feature dimensions are also reduced from the original 11 dimensions to eight
dimensions, which not only simplifies the model input structure and improves the modeling
speed but also reduces the dependence on prior knowledge in parameter selection.

To further verify the prediction model and the effectiveness of the extraction of important
parameters, the trained model is used to predict the 50 furnaces of steel smelted in the steel plant.
These steels are quenched and tempered at high temperatures, and tensile specimens are made and
tested on a universal testing machine. The 50 sets of data are input into the prediction model, and the
measured values of the tensile strength and yield strength are compared with the predicted values
and fit to a straight line, as shown in Figure 8. It can be seen in the figure that the fit of the prediction
model filtered by the eigenvalues is better than that of the original model, and the FS-DNN has the
best fit compared to that of the other models.
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4.3. Composition Design of Low-Alloy Steel Based on the FS-DNN&GA Model

At present, improving the mechanical properties of alloy steels usually entails the use of
metallurgical mechanisms to establish empirical formulas. However, metallurgical mechanism
modeling is not only complicated but also has a single research object, which cannot meet the
requirement of improving the performance of multiple steels at the same time. At the same time,
physical metallurgy experiments are time consuming and not economical. In this paper, through the
design of neural networks and genetic algorithms, using the mutual transformation of genotypes and
phenotypes, the complex relationships among the composition, process parameters, and mechanical
properties are explored, and a composition design model is established. The advantage of this model
is that, when the mechanical properties are increased or decreased, the changes in the chemical
composition and heat treatment process can be accurately given, and the uncertainty caused by the
trial-and-error method of empirical formulas is avoided.

Through the FS method, it can be seen that the main influencing factors that affect the tensile
strength and yield strength are the eight main influencing factors, such as C, Ni, and Mn. The alloy
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steels containing these six elements and the heat treatment process are shown in Table 4, in which we
can see that the tensile strength of 18CrNiMnMoA is 1180 MPa, which is relatively low. Therefore,
this paper uses the FS-DNN&GA model to increase 150 MPa sequentially on the basis of 1180 MPa and
thus obtain the corresponding chemical composition and heat treatment process.

Table 4. 18CrNiMnMoA chemical composition.

Composition and Processing C Si Mn Cr Mo Ni QT TT TS

18CrNiMnMoA 0.18 0.27 0.85 1.15 0.25 1.15 830 200 1180

The FS-DNN&GA model is constructed to model the chemical composition and heat treatment
process of low-alloy steel. Table 5 is the input boundary of the characteristic value of the FC-DNN&GA
model. However, the boundary of the chemical composition and heat treatment process is determined
according to the effective sample value interval of each single factor variable in the ASM Database.
For example, the sample range of element C is [0.1, 0.9], because the minimum value of the low-alloy
steel’s C content in the ASM Database is greater than 0.1, and the maximum value is less than 0.6.
Therefore, we use the range of [0.1, 0.9] as the effective input interval. The quenching sample range is
[850, 1100]. In the quenching stage, in order to make the steel fully austenitized, the lowest temperature
is selected to be 850 ◦C. If the quenching temperature is too high, it will cause overburning of the
quenched steel, causing the steel to easily crack and brittle. The toughness is insufficient, so the
highest quenching temperature is 1100 ◦C. The tempering sample range is [150, 650]. If the tempering
temperature is too low, more austenite remains, and a tempering temperature that is too high causes a
phase change. Therefore, the tempering temperature boundary is set at 150 to 650 ◦C. Table 6 shows
that the FS-DNN&GA prediction model outputs the chemical composition and heat treatment process
of the tensile strength of Alloy1~Alloy5 within the boundary range of Table 5. For example, to obtain
the tensile strength of Alloy1 TS [1300, 1350] MPa, the FS-DNN&GA outputs the following predictions,
according to the boundary range of Table 5: C is 0.25, Si is 0.36, Mn is 0.21, Cr is 0.26, Mo is 0.21, Ni is
0.75, QT is 863, and TT is 234.

Table 5. Composition design input range.

Composition and Processing C Si Mn Cr Mo Ni QT TT

Min 0.10 0.17 0.40 0.25 0.10 0.30 850 200
Max 0.90 1.80 1.90 2.25 2.20 2.30 950 650

Table 6. Characteristic elements corresponding to the tensile strength output range.

Composition and Processing Min Max C Si Mn Cr Mo Ni QT TT

Alloy1 TS 1300 1350 0.25 0.36 1.19 0.26 0.21 0.75 863 234
Alloy2 TS 1400 1450 0.32 0.55 1.28 0.27 0.25 1.16 918 358
Alloy3 TS 1500 1550 0.38 1.02 1.43 0.23 0.32 1.45 882 454
Alloy4 TS 1600 1650 0.43 1.6 1.19 0.38 0.36 1.65 869 320
Alloy5 TS 1700 1750 0.45 1.8 1.23 0.45 0.37 2.25 864 469

4.4. Composition Analysis of Newly Designed Alloy Steel

The important influencing factors of the mechanical properties of alloy steels are explored to
determine whether the parameters that influence the model output can reflect the regularity of the
original production data. After feature extraction, the main influencing alloy elements include C, Si,
Mn, Cr, Ni, and Mo. Next, the controlled variable method is used to analyze the tensile properties of
the above six single factors. The specific operations are as follows.

(1) Determine the effective sample value interval of each single factor variable and use the uniform
distribution method to regenerate 20 sets of value points in this interval. For example, the sample
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range of element Mn is [0.1, 2.6], but, based on the one-point graph, the sample distribution is
continuous and relatively concentrated in the interval [0.40, 1.9]. Therefore, the latter serves as
the effective sample value interval of the element Mn.

(2) Fix the values of other parameter variables. Based on the known sample data, use valid statistical
indicators (for example, mean, median, and mode) as the fixed value points of the remaining
variables. In this article, the mean is used.

The new sample points generated by the above process are used as the input of the prediction
model, and the tensile strength values under different factors are output. The influence of the main
factors on the tensile strength of steel is shown in Figure 9.
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Figure 9 shows the following trends.

(1) Carbon: It can be seen in the figure that the C content and the tensile strength are directly
proportional. As the carbon content gradually increases, the strength of the steel continues to
increase, and the correlation is greatest. Because the strength of low-alloy ultra-high-strength
steel is mainly achieved by solid solution strengthening with carbon [38], the addition of alloying
elements can adjust the carbon content in the steel, and specific alloying elements, such as
Ti, Nb, V, and Mo, can achieve coexistence with C in the martensite structure and achieve
precipitation strengthening during tempering. However, the strength, plasticity, and initial
properties contradict each other. A high strength causes a decrease in the plastic toughness,
which gradually decreases. Therefore, in this model, the input C content sample interval is
[0.1, 0.9] to avoid an excessive C content and poor plasticity, because materials with these
properties cannot be used in actual production.

(2) Silicon: It can be seen in the figure that the Si content is proportional to the tensile strength because
the addition of Si can significantly increase the tensile strength after solid solution and improve
the impact toughness of the steel, mainly due to Si in the grain boundaries. Precipitation increases
the activity of C and N, so it can replace the active atoms in the grain boundary regions [39] and



Materials 2020, 13, 5316 15 of 23

increase the strength of steel through solid solution strengthening [40]. Even though the addition
of a small amount of Si still has unexpected effects of increasing the strength of the steel and
improving the impact toughness [41], it can also increase the temperature of low-temperature
tempering brittleness and promote the use of fine MC particles in low-activity martensitic steel.
Precipitation has the effect of precipitation strengthening [42,43]. However, too much Si leads
to a decrease in toughness and welding performance [44]. Therefore, the sample interval of the
input Si content in this model is [0.17, 1.8]. It can also be seen from the figure that, when the Si
content exceeds 1.5%, the tensile strength tends to be flat.

(3) Manganese: It can be seen in the figure that, with the increase in Mn content, the tensile strength
also increases, but this increase is relatively slow. This is because the addition of Mn can
promote the formation of hardening phases, such as bainite and martensite [45,46], and inhibit the
formation of ferrite-pearlite and acicular ferrite during the hardening process, thereby increasing
the hardening of steel. In particular, when a small amount of N, V, or Mn is added to the
steel, due to the precipitation strengthening effect of the second phase of VN [47,48], the effect
of increasing the hardenability is obvious, and the relative tensile strength is not significantly
improved. Thus, Mn is a microalloying element added to steel to improve its overall performance.
However, an excessively high amount of Mn leads to severe segregation in the cast slab, which in
turn causes the formation of banded structures during the rolling process and reduces the
toughness of the steel. Therefore, the sample interval of the input Si content in this model is
[0.4, 1.9].

(4) Chromium: It can be seen in the figure that the Cr content is [0.25, 2.25], and the tensile strength
increases with an increase in Cr content, but it is relatively slow. This is because Cr can inhibit the
growth of M3C during the heat treatment process, increase the tempering stability of steel, reduce
carbon activity, and slow the decarburization tendency of steel. At the same time, the addition of
Cr can promote the formation of bainite and martensite complex structures, which can improve
the strength, toughness, and oxidation resistance of steel [49–55]. However, after the Cr content
exceeds 1%, the tensile strength may decrease or increase, which is not stable. Zhang [49] studied
the effect of Cr content on oxide dispersion strengthened (ODS) ferritic steels and found that Cr
and C form carbides, which can offset the solid solution strengthening effect of a single C element,
and found that a large amount of Cr-rich precipitates. However, at relatively high temperatures,
certain specific elements in steel (such as W and Ti) can also induce the precipitation of Cr-rich
phases [56,57]. It is well known that Cr-rich precipitates are hard and brittle. An excessive amount
of Cr-rich precipitation can damage the toughness and uniformity of steel and cause microcracks.
Therefore, a high Cr content may reduce the tensile strength.

(5) Nickel: It can be seen in the figure that the content of Ni is proportional to the tensile strength.
Because the addition of Ni can improve the strength and ductility of steel at the same time,
the improvement in the low-temperature impact performance is very obvious. An appropriate
amount of Ni is added to ultra-fine WC-10Co steel [58–62]. Due to solid solution strengthening and
WC grain refinement, the transverse strength of the steel increases significantly, but the hardness
of the hard metal decreases. The addition of Ni promotes the formation of rod-like or needle-like
ferrite, inhibits the precipitation of pearlite, and prolongs the precipitation time of various
morphological meso-temperature transition structures. Therefore, the model is constructed with
an Ni content sample interval of [0.3, 2.3].

(6) Molybdenum: Mo increases the strength by increasing the hardenability of steel. The addition of
Mo can inhibit the formation of eutectoid ferrite and pearlite during the hardening process [63,64],
forming a small amount of overaged martensite islands and promoting the formation of hardened
phases, such as bainite and martensite [64,65], to increase the steel yield strength. Mo is a strong
carbide-forming element that is mainly present in solid solutions and carbides in alloy steel. It has
the effects of solid solution strengthening and precipitation strengthening and can simultaneously
improve the hardenability of steel [66]. Chen et al. [67] also pointed out that adding a certain
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amount of Mo to NbX80 steel can significantly improve the toughness and especially the strength.
Mo can also increase the AC3 temperature of the steel. Therefore, the model is constructed with a
Mo content sample interval of [0.1, 2.2].

To effectively improve the mechanical properties of products, additional attention should be paid
to the optimal design of components for product quality control or new product designs. Analysis of the
main parameters that impact the performance of steel shows that the relationship between the output
variables and the input variables based on the built FS-DNN model conforms to the metallurgical
mechanisms. This shows that the built model not only can achieve high prediction accuracy but also
has high reliability at the level of model regularity. Therefore, a comparison of Figure 8 and Table 6
was done to analyze whether the FS-DNN&GA model design for Alloy1~Alloy5 conforms to the
metallurgical mechanisms.

(1) The alloying element parameters, including C, Si, and Ni, have a great influence on the tensile
strength. It can be seen in Table 6 that, for Alloy1~Alloy5, the contents of C, Si, and Ni account
for the high chemical composition of each alloy steel. At the same time, as the tensile strength
increases, the content of C, Si, and Ni also increases accordingly.

(2) It can be seen in Figure 8 that the Cr content is in the range 0.25%~7.5%. As the Cr content
increases, the tensile strength increases, albeit relatively slowly, and the Cr content exceeds 1.2%.
With an increase in Cr content, the tensile strength is unstable. The low-alloy steel Cr designed in
Table 6 increases with increasing tensile strength, and the content is in the range 0.26%~0.45%,
which conforms to the metallurgical mechanisms.

(3) It can be seen in Figure 8 that the tensile strength is more sensitive to Mo than the other alloying
elements within the range 0.1%~0.5%. In Table 6, with an increase in the tensile strength, the
content of Mo changes from 0.21% to 0.37%.

To verify the accuracy of obtaining the five alloy steels, Alloy1 through Alloy5 were smelted
according to the chemical composition and heat treatment process in Table 6. The alloys were processed
into standard tensile specimens, and the tensile strengths and yield strengths were obtained, as shown
in Figure 10. The alloy we designed fully meets the tensile strength requirements and provides
guidance for future production.
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In this article, 20CrMnTi is used as an example. The alloying elements of 20CrMnTi are C, Si,
Mn, Cr, P, S, Ni, Cu, and Ti. Based on the forward selection method, only C, Si, Mn, Cr, and Ti in the
ASM Database were retained for FS-DNN&GA model training. P, S, Ni, Cu, and other interfering
alloying elements were removed. The 20CrMnTi inputs in the FS-DNN&GA model are shown
in Table 7 (QT: quenching temperature; TT: tempering temperature). 20CrMnTi 0 represents the
chemical composition and heat treatment process of the database. The tensile strength is 1097 MPa,
which is increased by 100 MPa on the basis of 20CrMnTi 0. In the FS-DNN&GA model, the 20CrMnTi
1 tensile strength output range is [1200, 1250], and the 20CrMnTi 2 tensile strength output interval is
[1300, 1350]. The FS-DNN&GA model output chemical composition and heat treatment process are
shown in Table 8.

Table 7. Composition design input range.

Composition and Processing C Si Mn Cr Ti QT TT

Min 0.17 0.17 0.80 1.00 0.04 850 200
Max 0.23 0.37 1.10 2.25 0.1 950 200

20CrMnTi 0 0.20 0.22 0.89 1.04 0.065 880 200

Table 8. Characteristic elements corresponding to the tensile strength output range.

Composition and Processing Min Max C Si Mn Cr Ti QT TT

20CrMnTi 1 1200 1250 0.21 0.23 0.92 1.06 0.064 886 218
20CrMnTi 2 1300 1350 0.23 0.24 0.96 1.15 0.070 892 232

Smelting was performed according to the chemical composition and heat treatment process
specified in Table 6. Standard tensile specimens were processed for tensile testing. The tensile strengths
of 20CrMnTi 1 and 20CrMnTi 2 were 1220 and 1346 MPa, respectively, which meet the material design
requirements. Figure 11 shows 20CrMnTi 1 and the microstructure of 20CrMnTi 2. The tensile strength
of Alloy2 was increased by 300 MPa to a total of 1420 MPa to obtain Alloy5. Low-alloy steels 20CrMnTi
1 and 20CrMnTi 2, compared with the 20CrMnTi 0 steels, changed little in C, Si, and Ti, but Mn and Cr
highly increased. The addition of Mn can promote the formation of hardening phases; for example,
bainite and martensite [32,33] can significantly increase the tensile strength and improve the impact
toughness of steel. The addition of Cr promotes the formation of rod-shaped or acicular ferrite and
can simultaneously improve the strength and ductility of the steel. The quenching temperatures of
low-alloy steel 20CrMnTi 1 and 20CrMnTi 2 were higher than that of 20CrMnTi 0, and the ferrite in
the structure after quenching was no longer in block shape, but rather in a flake shape and an island
shape. At this time, the presence of ferrite had the same effect on the tensile strength and the yield
strength of the steel. As the quenching temperature increased, the amount of ferrite contained in
the steel decreased, so the tensile strength increased. 20CrMnTi 1 and 20CrMnTi 2 were subject to
low-temperature tempering. As the low-temperature tempering temperature increased, the internal
atomic mobility increased. The supersaturated carbon in the martensite began to gradually precipitate
in the form of carbides. Regarding the carbon in the martensite, the degree of supersaturation
was continuously reduced, and the diffusion of carbon atoms caused the content of carbon in the
surrounding ferrite to gradually increase. The matrix was still dominated by martensite. Therefore,
the tensile strength of the sample increased.
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Aiming at the mechanical properties and composition design of low-alloy steel, based on the
perspective of data modeling, this paper conducts modeling research based on neural network
mechanical properties and composition design, and proposes a combination of a forward selection
neural network and genetic algorithm (FS-DNN&GA). The model meets the design requirements of
the mechanical properties. This model can also be used to elongate or reduce the area of low-alloy
steel to quickly respond to market demand and improve the quality of product design.

5. Conclusions

Considering the high-dimensional issues that may be caused by the direct introduction of parameter
modeling, screening important factors, such as the entry point, and using the FS method to extract
important factors reduce the coupling between variables and simplify the input of the prediction model.
Introducing the FS method effectively improved the generalization ability and efficiency of the alloy
design. The FS-DNN mechanical prediction model is constructed by combining it with a neural network.
The FS-DNN model has the best predictive effect on mechanical properties. Among them, the tensile
strength R2, MAE, and RMSE are 0.953, 14.736 MPa, and 23.993 MPa, respectively, and the yield strength
R2, MAE, and RMSE are, respectively, 0.962, 13.46 MPa, and 20.31 MPa. Experiments have shown
that the model can effectively improve the prediction accuracy while simplifying the input structure.
The FS-DNN&GA component design model is constructed based on the neural network prediction
model FS-DNN and GA. By changing the model input variable range, the output performance index
change trend was explored, and the influence of various factors on the mechanical properties is explained
by the relationship with the metallurgical mechanisms. Experimental verification shows that the tensile
strengths of low-alloy steels Alloy1~Alloy5 are 1320, 1420, 1532, 1620, and 1745 MPa, respectively,
which are completely within the design interval of the FS-DNN&GA model. The FS-DNN&GA
composition design model can be used for future metallurgical development.
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Appendix A

Table A1. Partial data of the ASM Alloy Center Database. (0 means air cooling, 1 means water cooling, and 2 means oil cooling).

Number Grade

Chemical Composition (%) Heat Treatment Process Mechanical Properties

C Si Mn Cr Mo Ni W Ti V Cu p S Quenched
Temperature Coolant Tempering

Temperature Coolant σb/MPa σs/MPa

1 20Mn2 0.205 0.27 1.6 0 0 0 0 0 0 0 0 0 880 1, 2 440 0, 1 785 590

2 30Mn2 0.305 0.27 1.6 0 0 0 0 0 0 0 0 0 840 1 500 1 785 635

3 35Mn2 0.355 0.27 1.6 0 0 0 0 0 0 0 0 0 840 1 500 1 835 685

4 40Mn2 0.405 0.27 1.6 0 0 0 0 0 0 0 0 0 840 1, 2 540 1 885 735

5 45Mn2 0.455 0.27 1.6 0 0 0 0 0 0 0 0 0 840 2 550 1, 2 885 735

6 50Mn2 0.51 0.27 1.6 0 0 0 0 0 0 0 0 0 820 2 550 1, 2 930 785

7 20MnV 0.205 0.27 1.45 0 0 0 0 0 0.095 0 0 0 880 1, 2 200 0, 1 785 590

8 27SiMn 0.28 1.25 1.25 0 0 0 0 0 0 0 0 0 920 1 450 1, 2 980 835

9 35SiMn 0.36 1.25 1.25 0 0 0 0 0 0 0 0 0 900 1 570 1, 2 885 735

10 42SiMn 0.42 1.25 1.25 0 0 0 0 0 0 0 0 0 880 1 590 1 885 735

11 20SiMn2MoV 0.2 1.05 2.4 0 0.35 0 0 0 0.085 0 0 0 900 2 200 0, 1 1380 0

12 25SiMn2MoV 0.25 1.05 2.4 0 0.35 0 0 0 0.085 0 0 0 900 2 200 1, 2 1470 0

13 37SiMn2MoV 0.36 0.75 1.75 0 0.45 0 0 0 0.085 0 0 0 870 1, 2 650 0, 1 980 835

14 40B 0.405 0.27 0.75 0 0 0 0 0 0 0 0 0 840 1 550 1 785 635

15 45B 0.455 0.27 0.75 0 0 0 0 0 0 0 0 0 840 1 550 1 835 685

16 50B 0.51 0.27 0.75 0 0 0 0 0 0 0 0 0 840 2 600 0 785 540

17 40MnB 0.405 0.27 1.25 0 0 0 0 0 0 0 0 0 850 2 500 1, 2 980 785

18 45MnB 0.455 0.27 1.25 0 0 0 0 0 0 0 0 0 840 2 500 1, 2 1030 835

19 20MnMoB 0.19 0.27 1.05 0 0.25 0 0 0 0 0 0 0 880 2 2000 0, 2 1080 885

20 15MnVB 0.15 0.27 1.4 0 0 0 0 0 0.095 0 0 0 860 2 200 0, 1 885 635

21 20MnVB 0.2 0.27 1.4 0 0 0 0 0 0.095 0 0 0 860 2 200 0, 1 1080 885

22 40MnVB 0.405 0.27 1.25 0 0 0 0 0 0.075 0 0 0 850 2 520 1, 2 980 785

23 20MnTiB 0.205 0.27 1.45 0 0 0 0 0 0.07 0 0 0 860 2 200 0, 1 1130 930

24 25MnTiBRE 0.25 0.325 1.45 0 0 0 0 0 0.07 0 0 0 860 2 200 0, 1 1380 0

25 15Cr 0.15 0.27 0.55 0.85 0 0 0 0 0 0 0 0 880 1, 2 200 0, 1 735 490
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Table A1. Cont.

Number Grade

Chemical Composition (%) Heat Treatment Process Mechanical Properties

C Si Mn Cr Mo Ni W Ti V Cu p S Quenched
Temperature Coolant Tempering

Temperature Coolant σb/MPa σs/MPa

26 38CrSi 0.39 1.15 0.45 1.45 0 0 0 0 0 0 0 0 900 3 600 1, 2 980 835

27 12CrMo 0.115 0.27 0.55 0.475 0 0 0 0 0 0 0 0 900 0 650 0 410 265

28 15CrMo 0.15 0.27 0.55 0.475 0 0 0 0 0 0 0 0 900 0 650 0 440 295

29 20CrMo 0.205 0.27 0.55 0.2 0 0 0 0 0 0 0 0 880 1, 2 500 1, 2 885 685

30 30CrMo 0.3 0.27 0.55 0.2 0 0 0 0 0 0 0 0 880 1, 2 540 1, 2 930 785

31 30CrMoA 0.295 0.27 0.55 0.2 0 0 0 0 0 0 0 0 880 2 540 1, 2 930 735

32 35CrMo 0.36 0.27 0.55 0.2 0 0 0 0 0 0 0 0 850 2 550 1, 2 980 835

33 42CrMo 0.415 0.27 0.65 0.2 0 0 0 0 0 0 0 0 850 2 560 1, 2 1080 930

34 12CrMoV 0.115 0.27 0.55 0.45 0.3 0 0 0 0.225 0 0 0 970 1 750 0 440 225

35 35CrMoV 0.34 0.27 0.55 1.15 0.25 0 0 0 0.15 0 0 0 900 2 630 1, 2 1080 930

36 12Cr1MoV 0.115 0.27 0.55 1.05 0.275 0 0 0 0.225 0 0 0 970 0 750 0 490 245

37 25Cr2MoVA 0.255 0.27 0.55 1.65 0.3 0 0 0 0.225 0 0 0 900 2 640 0 930 785

38 25Cr2Mo1VA 0.255 0.27 0.65 2.3 1 0 0 0 0.4 0 0 0 1040 0 700 0 735 590

39 38CrMoAl 0.385 0.325 0.45 1.5 0.2 0 0 0 0 0 0 0 940 1, 2 640 1, 2 980 835

40 40CrV 0.405 0.27 0.65 0.95 0 0 0 0 0.15 0 0 0 880 2 650 1, 2 885 735

41 50CrVA 0.505 0.27 0.65 0.95 0 0 0 0 0.15 0 0 0 860 2 500 1, 2 1280 1130

42 15CrMn 0.15 0.27 1.25 0.55 0 0 0 0 0 0 0 0 880 2 200 1, 2 785 590

43 20CrMn 0.2 0.27 1.05 1.05 0 0 0 0 0 0 0 0 850 2 200 1, 2 930 735

44 40CrMn 0.41 0.27 1.05 1.05 0 0 0 0 0 0 0 0 840 2 550 1, 2 980 835

45 20CrMnSi 0.2 1.05 0.95 0.95 0 0 0 0 0 0 0 0 880 2 480 1, 2 785 635

46 25CrMnSi 0.25 1.05 0.95 0.95 0 0 0 0 0 0 0 0 880 2 480 1, 2 1080 885

47 30CrMnSi 0.305 1.05 0.95 0.95 0 0 0 0 0 0 0 0 880 2 520 1, 2 1080 885

48 30CrMnSiA 0.31 1.05 0.95 0.95 0 0 0 0 0 0 0 0 880 2 540 1, 2 1080 835

49 35CrMnSiA 0.355 1.25 0.95 1.25 0 0 0 0 0 0 0 0 950 2 230 0, 2 1620 1280

50 20CrMnMo 0.2 0.27 1.05 1.25 0 0 0 0 0 0 0 0 850 2 200 0, 1 1180 885
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