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A B S T R A C T

Recent advances in single-cell sequencing technologies enable the generation of large-scale data sets of paired
TCR sequences from patients with autoimmune disease. Methods to validate and characterize patient-derived TCR
data are needed, as well as relevant model systems that can support the development of antigen-specific tolerance
inducing drugs. We have generated a pipeline to allow streamlined generation of ‘artificial’ T cells in a robust and
reasonably high throughput manner for in vitro and in vivo studies of antigen-specific and patient-derived immune
responses. Hereby chimeric (mouse-human) TCR alpha and beta constructs are re-expressed in three different
formats for further studies: (i) transiently in HEK cells for peptide-HLA tetramer validation experiments, (ii) stably
in the TCR-negative 58 T cell line for functional readouts such as IL-2 production and NFAT-signaling, and lastly
(iii) in human HLA-transgenic mice for studies of autoimmune disease and therapeutic interventions. As a proof of
concept, we have used human HLA-DRB1*04:01 restricted TCR sequences specific for a type I diabetes-associated
GAD peptide, and an influenza-derived HA peptide. We show that the same chimeric TCR constructs can be used
in each of the described assays facilitating sequential validation and prioritization steps leading to humanized
animal models.
1. Introduction

Genome-wide association studies (GWAS) have linked specific HLA
alleles to several autoimmune diseases. For example, versions of the class
II HLA-DRB1*04 allele are strongly linked to an increased risk of devel-
oping rheumatoid arthritis (RA) and type 1 diabetes (T1D) [1–4]. A
common model explaining the increased risk relates to the ability of
different class II HLA proteins to present peptides linked to disease
development, and consequently activation of autoreactive CD4þ T cells
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[5–7]. In line with this concept, increasing numbers of peptides have
been identified as activating T cells in patients with different
HLA-restricted autoimmune diseases [8–14]. The fact that RA and T1D
patients demonstrate reduced symptoms of disease when treated with
Abatacept (a CTLA4-Ig complex that reduces T cell activation) further
highlights the role of interactions between antigen presenting cells and T
cells in the disease pathogenesis [15–17]. Existing animal models also
support this concept where specific α/β TCR – MHC/HLA combinations
are sufficient to cause full-blown autoimmune disease [18–20].
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Current treatments for autoimmune diseases are predominately
comprised of non-specific immunosuppressive drugs [21]. These drugs
are often effective but do not provide a cure, and thus need to be
chronically administered to the patients. A great hope within the field of
autoimmunity is to develop curative immunomodulatory drugs that
specifically target disease-causing peptide-HLA-TCR interactions. To
achieve this, experimental systems allowing for detailed interrogation of
relevant peptide-HLA-TCR interactions and their consequences are
needed. Importantly, recent advances allowing for large scale TCR
repertoire sequencing in patients will greatly facilitate the identification
of relevant TCR sequences for therapeutic interventions [22–25]. Still,
TCR validation and prioritization tools are a pre-requisite for exploiting
the translational potential of patient repertoire sequencing. Given this,
we here present a platform to validate and prioritize TCRs cloned from
patients. We believe that such a platform can be central for preclinical
studies of antigen-specific tolerance therapies for autoimmune diseases.

2. Material and methods

(See supplementary table 1 for more detailed ordering information
for reagents.)

2.1. Cell lines

The HEK293T line was purchased from ATCC and used at a passage
number below 15. The cells were cultured in DMEM (Sigma-Aldrich)
with 10% heat-inactivated bovine serum, and 1% penicillin-
streptomycin-glutamine (100x, Gibco), from here on referred to as
complete DMEM (cDMEM). The 58 alpha-beta- TCR negative cell line
[26], from here on referred to as 58 cells, was a gift from Dr. Bernard
Malissen (Centre d’Immunologie de Marseille Luminy, France). The 58
cell line was cultured in RPMI-1640 (Sigma-Aldrich) with 10%
heat-inactivated bovine serum, and 1% penicillin-streptomycin-
glutamine (100x, Gibco), from here on referred to as complete RPMI
(cRPMI). For activation assays with 58 cells, 2mM Ca2þ was typically
added to the medium. Cells were incubated in a humidified incubator
with 5% CO2 at 37 �C and handled in laminar flow hoods using standard
sterile techniques.

2.2. Mice

DRAG mice (human DRB1*04:01/DR4 transgene, Rag1�/�,
IL2Rγc�/� on NOD background; Stock No: 017914 [27,28]), and
B6.Tcrb (Tcrb�/� on C57BL/6 background; Stock No: 002118) were
obtained from the Jackson Laboratories. Mice were genotyped with
primers specified in supplementary table 1 using genomic DNA extracted
from ear punch biopsies with the REDExtract-N-Amp Kit (modified using
20 μl lysis and neutralization buffers, and 5 μl tissue preparation buffer
per sample) (Sigma-Aldrich). Strains were crossed to generate RAG.DR4
mice (Rag1�/�, I–Ag7þ/þ, DR4Tg/0; lacking B and T cells, unable to
recombine the TCR locus, and hemizygous for the human DR4 trans-
gene), and TCR.DR4mice (Tcrb�/�, I–Ag7þ/þ, DR4Tg/0; lacking α/β T
cells, and hemizygous for the human DR4 transgene) on a mixed
NOD/C57BL/6 background. Strains were maintained by breeding pairs
where one parent was hemizygous for the DR4 transgene, and the other
did not express the transgene. All experiments were approved by the local
ethical committee at Karolinska Institute, Sweden. Sex-, and age-matched
mice aged between 8 and 12 weeks old were used for experiments. Mice
were housed in individually ventilated cages (IVC) in a specific
pathogen-free environment in a 12/12 h light-dark cycle with standard
diet ad libitum.
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2.3. Peptides and proteins

The Hemagglutinin306-318 (HA306-318: PKYVKQNTLKLAT), Glutamate
decarboxylase115-127 (GAD115-127: MNILLQYVVKSFD), and control (ATI-
KAEFVXAETPYM) peptides were synthesized by GenScript, reconstituted
in DMSO at a concentration of 10 mg/ml, and stored at�20 �C in aliquots
until being used. Influenza A H3N2 (A/Aichi/2/1968) and Influenza A
H1N1 (A/California/07/2009) Hemagglutinin proteins (SinoBiological)
were reconstituted at 50 μg/ml in PBS and kept at �20 �C in aliquots for
short term storage.

2.4. TCR expression construct

The GAD65 reactive TCR expression construct was described in
Ref. [29]. The sequence for the H3N2 HA reactive TCR HA1.7 was ob-
tained from the NCBI nucleotide database: GenBank accession number
X63455.1 (TCRα), and X63456.1 (TCRβ), as deposited by Hewitt et al.
[30]. The variable TCRα and TCRβ chains were ordered as separate
gBlocks (IDT), or with both the TCRα and TCRβ sequence in the same
gBlock, containing 50 and 30 adaptors with respective restriction sites,
and sequentially cloned into the TCR-pMSCVII-Ametrine (TCR-pMIA)
plasmid [29]. Briefly, the TCRα gBlock and vector were digested with
SnaBI and SacII (both New England Biolabs), and the digested gBlock
product was purified with a DNA clean and concentrate kit (Zymo
Research), while the digested TCR-pMIA plasmid was run on an agarose
gel and the correct band purified with a gel purification kit (Zymo
Research). The purified insert and plasmid backbone were ligated, and
the product expanded in DH5α competent cells (Invitrogen). The insert
was confirmed by sequencing, and subsequently the TCRβ was cloned
into the vector by restriction digestion using MfeI and BstbI (both New
England Biolabs), using the same setup as for the cloning of the TCRα
chain.

2.5. Transient transfection of HEK293T cells with TCR, CD3, and CD4

HEK293T cells were plated in 24-well plates at a density of ~5 x104

cells/well in 1 ml cDMEM. The next day, cells were transfected with 0.5
μg TCR-pMIA plasmid [29], 0.5 μg mouse CD3
WTdelta-F2A-gamma-T2A-epsilon-P2A-zeta pMIG II plasmid (Addgene
[31]) and 0.5 μg pMX human CD4 plasmid (Addgene [32]) in different
combinations using Lipofectamine LTX transfection reagent (Invitrogen)
and cDMEM lacking antibiotics. Cells were incubated for 24h after
transfection before analysis by flow cytometry for surface expression,
staining with anti-mouse CD3-APC (Invitrogen), anti-mouse TCRβ-biotin,
Streptavidin-PE or Streptavidin-PeCy7 (all three from BD Bioscience),
and anti-human CD4-PE (Miltenyi Biotech) antibodies, as well as 7-AAD
viability dye (BD Pharmingen).

2.6. Tetramer staining of TCR transfected HEK293T cells

HEK293T cells were harvested, filtered through a 70 μm cell strainer,
and stained with anti-mouse CD3-BV421 and anti-human CD4-BUV737
(both BD Biosciences) antibodies. Cells were washed and then stained
with near IR fixable viability dye (ThermoFischer Scientific) and washed
with sterile room temperature PBS. The cell pellet was then stained with
HLA-DRB1*04:01 HA (PE) and GAD65 (APC) tetramers (1:50 dilution)
(generated as described in Ref. [33]). The cells were stained for 1 h in a
humidified incubator with 5% CO2 at 37 �C, with intermittent mixing
after 30 min. The cells were washed and analyzed on a BD LSRFortessa
flow cytometer, using appropriate single-color controls for compensa-
tion. The FCS files were analyzed using FlowJo 10.7.1.
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2.7. T cell stimulation

For 58 cell co-culture assays, antigen-presenting cells (single-cell
suspensions of red blood cell lysed splenocytes from TCR.DR4þ or
TCR.DR4-mice) and 58 cells were co-cultured in 200 μl cRPMI/well in U-
bottom 96-well plates at a concentration of 2x105 58 cells/well and
2x105 splenocytes/well in cRPMI. Peptides or proteins were added to
cultures as indicated in the figures, and cells and supernatant were
collected after 24h (peptide, anti-CD3/28, PMA/ionomycin), or 72h
(protein).

For HLA/peptide stimulation of 58 cells, HLA-DRB1*04:01 mono-
meric protein (500 μg/ml, produced as described in Ref. [34]) was
incubated for 72 h at 37 �C with peptide (400 μg/ml, a ~20–30 M excess
depending on the peptide) in sodium phosphate buffer (pH 6.0) con-
taining n-octyl β-D-Glucopyranoside (Sigma-Aldrich, 2.5 mg/ml) and
Pefabloc SC (Sigma-Aldrich, 1 mM), and then stored at 4 �C until used.
Loaded HLA monomers were subsequently coated (0.5–2 μg/well) onto
U-bottom 96-well plates in 50 μl PBS for 4 h at 37 �C. The HLA/peptide
solution was subsequently flicked off the plate and specific T cells
(2x105) and anti-CD28 (1 μg/well) were added to the monomer-coated
wells and incubated for 48 h at 37 �C before collecting cells and
supernatant.

For assays with splenocytes from retrogenic mice, single-cell sus-
pensions were generated using 40 μm cell strainers (Fisher Scientific),
and red blood cells lysed using RBC lysis buffer (ThermoFisher Scientific)
following the suggested protocol. Cells were plated in a U-bottom 96-well
plate at a concentration of 2x105 cells/well in cRPMI and stimulated as
indicated in the figures.

As positive controls, anti-mouse CD3/28 beads (Gibco), anti-CD3
(BioLegend), anti-CD28 (BioLegend), or PMA/Ionomycin (Sigma-
Aldrich, stock solution 1.6 mM and 1mM, respectively, in DMSO) were
used. Tofacitinib, a JAK inhibitor, was purchased from Sigma-Aldrich,
dissolved in DMSO at 5 mg/ml (9.9 mM) concentration, and used at
concentrations indicated in the figure.

To evaluate T cell activation, for 58 cells, GFP signal was assessed in
cells gated on viable, singlets, and for retrogenic mice, anti-CD44 (Bio-
legend) and anti-CD25 (Invitrogen) signal was assessed on viable, CD3þ,
CD4þ singlets using a BD B6 Accuri or a BD FACSVerse. In co-cultures
with splenocytes and 58 cells, the splenocytes were removed by gating
on the FSC high 58 cells. IL-2 secretion was assessed by ELISA according
to manufacturer instructions (BioLegend).
2.8. Retroviral production and transduction

For retroviral production, HEK293T cells were seeded at 3x105 cells/
well in 6-well plates with 2 ml cDMEM/well. The next day, the medium
was replaced with cDMEM lacking antibiotics, including a brief wash of
the cells to remove residual antibiotics. The cells were subsequently
transfected using Lipofectamine LTX (Invitrogen) as suggested by the
manufacturer, with 2 μg transfer plasmid and 2 μg EcoPak gag-pol-env
plasmid (the EcoPak plasmid was a kind gift from Dr. Mark P. Kamps,
University of California San Diego, CA, USA). The medium was changed
24h and 48h post-transfection with 2 ml cDMEM/well. The 0–24h me-
dium was discarded, while the 24–48h, and 48–72h medium were
collected, centrifuged at 360 g for 10 min, and the cell-free medium was
then immediately used to transduce the target cells. For the transduction,
3x105 cells were plated in 500 μl cDMEM per well in 6-well plates, and
1.5–2 ml fresh retroviral supernatant and lipofectamine 2000 (Invi-
trogen, 1:1000 dilution) was added to the cells. Plates were then
centrifuged at 815 g for 2h at room temperature and incubated for 24h in
a humidified incubator with 5% CO2 at 37 �C. A second round of trans-
duction was subsequently carried out with supernatant collected 72h
post-transfection. The medium of the transduced cells was changed 24h
after the last transduction, and cells cultured for 5–6 days, with 2–3
changes of the medium, before using the cells for sorting or assays.
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2.9. Generation of 58 cells with stable expression of NFAT-GFP reporter,
hCD4, and TCR

The NFAT-GFP reporter cell line (58.NFAT-GFP) was generated by
transducing 58 cells with retroviral particles carrying the pSIRV-NFAT-
eGFP transfer plasmid (Addgene plasmid) [35]. Five-six days after
transduction, cells were plated one cell/well in 96-well plates and
expanded for 2 weeks until visible colonies appeared. Colonies were then
stimulated with PMA and Ionomycin (100 nM each) for 24h and analyzed
by flow cytometry for GFP signal. 58.NFAT-GFP clones were selected
based on having a low GFP signal in unstimulated conditions and a strong
GFP signal following PMA/Ionomycin stimulation.

58.NFAT-GFP cells expressing human CD4 (58.NFAT-GFP.CD4) were
generated by transducing the 58.NFAT-GFP line with retroviral particles
carrying the pMX hCD4 transfer plasmid (Addgene [32]) and subsequent
sorting of cells based on high CD4 expression using the SH800 cell sorter
(Sony Biotechnology). Importantly, human CD4 interacts well with both
human and mouse MHC class II molecules [36].

TCR expressing versions of the 58 cell line were generated by trans-
ducing 58 cells with the TCR-pMSCVII-Ametrine (hTCR-pMIA) plasmid
[29], and sorting cells based on strong Ametrine signal or strong staining
with anti-mouse CD3, rabbit anti-TCR alpha/TRAC Picoband polyclonal
antibody (Bosterbio), and PE donkey anti-rabbit (BioLegend).

2.10. Generation of retrogenic TCR mice

Bone marrow (BM) cells were isolated by flushing the femurs and
tibias from RAG.DR4 mice using a 10 ml syringe and cRPMI. Mono-
nuclear cells were isolated using Histopaque-1077 (Sigma-Aldrich), col-
lecting a generous part of the medium and gradient adjacent to the
interphase. Cells were subsequently washed with cRPMI and resus-
pended in cRPMI with mouse cytokines (50 ng/ml SCF, 20 ng/ml IL-3,
and 50 ng/ml TPO; all from PeproTech). Cells were cultured for 2 days
before transduction using undiluted TCR retroviral supernatant with the
addition of Lipofectamine 2000 (Invitrogen, 1:1000) and mouse cyto-
kines. Plates were spin infected for 2h at 815g, and cultured for 24h,
before being spin infected again with new, fresh, TCR retroviral super-
natant. The cell culture medium was changed 24h after the last trans-
duction and the cells cultured for another 4–6 days with medium changes
(cRPMI and cytokines) every 2–3 days before transplantation. On the day
of the transplantation, TCR.DR4þ mice were irradiated with 900 rads,
and 4–5h later injected i.v. into the tail vein with the TCR transduced
RAG.DR4 BM cells together with fresh BM cells from TCR.DR4 cells at a
1:1 ratio (6–8x105 cells of each). Engraftment was assessed 6–7 weeks
later by analyzing peripheral blood for the presence of TCRβþ T cells
which are not formed unless the retrogenic TCR is expressed, allowing for
T cell development.

2.11. Statistics

Statistical tests were performed as indicated in the respective figure
legend using GraphPad Prism 8.

3. Results

3.1. CD4 and TCR expression levels are important for HLA tetramer
binding to HEK293T cells transiently transfected with the TCR complex

To establish a broad experimental pipeline studying HLA-
DRB1*04:01 restricted TCRs, we first aimed to develop a system to study
tetramer binding to cloned TCRs. To this end, we used a GAD65 reactive
hTCR (GAD), isolated from a type 1 diabetes patient [29], as well as the
“HA1.7” influenza (subtype A/H3N2) hemagglutinin (HA) reactive hTCR
[30] that we cloned into the retroviral hTCR-pMSCVII-Ametrine (pMIA)
plasmid [29]. The generated expression plasmids have the cloned human
variable domains (TRAV/TRBV) fused to the mouse constant domains
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Fig. 1. CD4 and TCR expression levels are important for HLA tetramer binding
to HEK293T cells transiently transfected with a TCR complex. (A) Schematic
representation of transient transfection of HEK293T cells with combinations of
different plasmids. (B) HEK293T cells were transiently transfected with mouse
CD3-GFP and TCR-Ametrine. 24h later cells were analyzed for GFP and Ame-
trine signal by flow cytometry. (C) Cells in B were also stained for surface
expression of CD3 and TCRb and analyzed by flow cytometry. Data shows cells
gated on viable, GFPþ, Ametrine þ singlets. (D-E) HEK293T cells were trans-
fected with GAD (D), or HA (E) TCR plasmid together with CD3 � hCD4 plas-
mids and stained simultaneously with both GAD-specific and HA-specific
tetramers (TMR). Flow cytometry data shows cells gated on viable, GFPþ,
Ametrineþ, CD3þ singlets. (F-G) Flow cytometry plots of CD4þ GAD (F), and
CD4þ HA (G) TCR expressing HEK 293T cells, gated on viable, GFPþ,
Ametrineþ, CD3þ singlets, comparing tetramer binding to surface expression of
the TCR complex (CD3e). **P < 0.01 by Mann-Whitney test (n ¼ 5/group). Data
is representative of three independent experiments.
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(TRAC/TRBC). This plasmid, thus, encodes a chimeric TCR with speci-
ficity defined by the human sequence, yet functional interaction with the
mouse TCR signaling interactome via the constant domain, as described
in Sprouse et al. [29]. As overviewed in Fig. 1A, the TCR plasmids were
transiently transfected into HEK293T cells, together with a plasmid
encoding the mouse CD3 complex (CD3ε, CD3γ, CD3δ, CD3ζ, as well as
GFP), and a plasmid encoding for human CD4, in different combinations.
As expected, a robust but variable uptake of the CD3-GFP and
TCR-Ametrine plasmids can be seen 24h post-transfection based on GFP
and Ametrine signal (Fig. 1B), and the cells showed proportional surface
expression of both TCR and CD3 proteins (Fig. 1C). Next, the TCR (HA
and GAD) expressing cells, transfected with the hCD4 plasmid or control,
were simultaneously stained with human HLA-DRB1*04:01 tetramers
(TMRs) loaded with either the HA peptide or the GAD peptide. We found
that the HA and GAD hTCR cells were positively stained specifically by
the anticipated TMRs, and importantly that simultaneous expression of
hCD4, expected to stabilize the HLA-TCR interaction, resulted in
increased TMR binding (Fig. 1D and E, and Supplementary Fig. 1). This
4

was especially obvious for the GAD TCR, where the hCD4 negative
version of the cells was essentially not recognized by the TMR, while the
hCD4þ version of the cells, showed clear staining. We also observed that
the TMR staining was predominately seen in cells with the highest sur-
face expression of the TCR complex, as indicated by surface CD3ε
expression. Efficient transfection can, thus, be a limiting factor for robust
tetramer staining (Fig. 1F and G). In conclusion, we show the feasibility
of transient transfection of cloned hTCRs in HEK293T cells for TMR
binding studies and identify that CD4 and TCR expression levels are
important parameters for the sensitivity of the assay.

3.2. Overexpression of hCD4 in hTCR 58 cell lines enhances sensitivity to
peptide stimulation

Next, we set out to generate an in vitro experimental model system
where we could assay T cell activation following crosslinking of the
cloned hTCRs. This allows for testing the ability of different peptides,
protein preparations, and HLA alleles to trigger the specific TCR. To this
end, we tested different TCR-deficient T cell lines and had the greatest
success transducing the 58 cell line [26] with the chimeric TCR expres-
sion construct (Fig. 2A). Initially, we used IL-2 secretion by ELISA as a
readout and found that TCR crosslinking with anti-CD3/28 (Fig. 2B and
C), as well as by cognate peptides (Fig. 2D and E) resulted in robust IL-2
secretion. We also wanted to develop complementary readouts for TCR
crosslinking. Therefore, we generated an NFAT-GFP reporter version of
the 58 cell line, which enables a rapid flow cytometry-based readout for
TCR cross-linking (Fig. 2F and G). Based on the increased binding of
tetramer to cells in the presence of CD4, as described in Fig. 1, we also
generated a stable CD4 expressing version of the 58 cell line. This
allowed us to compare how CD4 expression affected the activation of
TCR expressing 58 cells. Incubating CD4þ and CD4 negative versions of
HA and GAD TCR 58 cells with the cognate peptide presented by sple-
nocytes from TCR.DR4 (TCR-deficient HLA-DRB1*04:01þ) mice identi-
fied that CD4 expressing versions of the cells show a strong activation
while CD4 negative versions showed a significantly lower response
(Fig. 2D–G). In line with the role of CD4 stabilizing TCR-HLA in-
teractions, we did not observe any difference in the response comparing
CD4þ and CD4-versions of TCR expressing 58 cells with anti-CD3/28
stimulation, since it does not require CD4 interactions (Fig. 2B and C).
Based on the important role of calcium ions (Ca2þ) in the cellular acti-
vation mediated by TCR crosslinking [37,38], we tested if increased
levels of Ca2þ, beyond the levels found in the medium, could further
increase the sensitivity of the 58 cell assays. While we noted a slightly
increased peak response in both the NFAT-GFP and IL-2 readout when
increasing the Ca2þ concentration, we did not observe an increased
sensitivity in these assays, as defined by the lowest concentration of
peptide where a significant activation is seen (Supplementary Fig. 2).
Furthermore, we noted that the NFAT-GFP and the IL-2 readouts often
correlate, as expected by the direct role of the NFAT transcription factor
in the transcription of IL-2 [39]. Still, the correlation was not always
perfect, likely influenced by several factors, including the kinetics of the
NFAT-GFP signal and the IL-2 secretion. In line with this, we observed a
significant suppression of the IL-2 secretion but minor effects on the
NFAT-GFP signal by the addition of the JAK inhibitor Tofacitinib [40] to
the culture, suggesting that the IL-2 secretion and the NFAT-GFP signal
have partial differences in their regulation (Supplementary Fig. 3). We
concluded that IL-2 secretion and NFAT-GFP signal are robust comple-
mentary readouts that can be used with the 58.NFAT-GFP cells to assess
the crosslinking of cloned hTCRs. We also found that CD4 expression is
critical to increase the sensitivity of the assay.

3.3. Peptide and HLA specific activation of hTCR expressing 58 cells

The induction of antigen-specific tolerance in patients with autoim-
mune disease could be a curative treatment for the patient, similar to
what can be achieved by specific immunotherapy (SIT) performed in
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allergic patients [41,42]. In this regard, assays, where antigen prepara-
tions can be tested in diverse HLA context, could be instrumental for the
design of novel tolerance-inducing therapeutic preparations. To this end,
we wanted to confirm the peptide- and HLA-specificity of our experi-
mental setup. First, we compared the activation of HA or GAD TCR
expressing 58.NFAT-GFP.CD4 cells by cognate peptide or control pep-
tide, presented by DR4þ or DR4-antigen-presenting cells (APCs). Similar
to the data presented in Fig. 2, we noted a robust activation (both
NFAT-GFP signal and IL-2 secretion) of hTCR 58.NFAT-GFP.CD4 cells
when co-cultured with DR4þ APCs in the presence of their cognate
peptide antigen. Importantly, neither DR4- APCs with cognate peptide,
nor DR4þ APCs with control peptide were able to activate the hTCR 58
cells, thus supporting the specificity of the experimental system
(Fig. 3A–E). Next, we tested whether an experimental setup that did not
depend on using the DR4 transgenic animals as a source for DR4þ APCs
could be developed. To this end, we tested if the monomer version of the
HLA-DRB1*04:01 protein preparation, used to assemble the HLA tetra-
mers in Fig. 1, could also be used to present peptides to the hTCR
expressing 58 cells in culture. We found that both the HA and GAD TCR
5

expressing 58 cells were readily activated by the specific peptide/HLA
combinations, but not by an irrelevant control peptide (GAD peptide for
HA TCR, and HA peptide for the GAD TCR) (Fig. 4A–D). We included an
anti-CD28 antibody in the monomer stimulations but noticed that the
anti-CD28 stimulation was not needed to activate these specific cells,
instead, TCR crosslinking is sufficient for activation with the used read-
outs (Fig. 4A–D, and Supplementary Fig. 4A). In Figs. 2–4, we typically
observed that the highest concentration of peptide gave less activation
compared to stimulations with slightly lower peptide concentrations,
suggesting that too strong stimulation is not optimal for the used read-
outs. Supporting this observation, adding an anti-CD3 antibody to the
hTCR 58 HLA/peptide cultures, thus specifically increasing the TCR
signaling, lowered the activation of the hTCR 58 cells (Supplementary
Fig. 4B). This could potentially be explained by activation-induced cell
death (AICD) [43], where excessive TCR signaling results in cell death
[44]. However, including Fas-Ig protein, to block Fas-FasL interactions
involved in AICD, did not increase the activation (Supplementary Fig. 4C
and D). We concluded that the experimental setup showed good char-
acteristics allowing for assessing specific peptide-HLA-TCR interactions
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and that HLAmonomers could be used to generate an animal-free version
of the assay.
3.4. Splenocytes from HA TCR retrogenic mice activated by cognate
protein and peptide

Finally, we wanted to confirm whether we could use the same TCR
construct to generate retrogenic mice, thus supporting broad applications
of the same TCR expression construct. To this end, we used a similar but
partially modified protocol as used by Sprouse et al. [29]. In this, we
transduced bone marrow cells from RAG.DR4 (Rag1�/�HLA-
DRB1*04:01þ) mice with the retroviral construct, cultured the cells for
5–6 days to remove any residual viral particles and grafted the cells
together with TCR.DR4 BM cells into lethally irradiated TCR.DR4
recipient mice (Fig. 5A). 8 weeks after the transplantation we collected
6

splenocytes from the mice and incubated them ex vivo with different
concentrations of full-length HA protein (of the relevant H3 or irrelevant
H1 subtype, Fig. 5B and C) or peptide (cognate HA peptide, or control
peptide, Fig. 5D and E). We found robust IL-2 secretion, as well as
upregulation of activation markers (CD44 and CD25) on CD4þ T cells as
assessed by flow cytometry (Fig. 5B–E). Importantly, we noted that the
cells exclusively responded to the H3 subtype of the HA protein, but not
to the H1 subtype (Fig. 5B and C), in line with the fact that the TCR
recognizes a peptide in the H3 subtype, not found in the H1 version. We
concluded that we could generate retrogenic mice with the modified
protocol and that traditional T cell activation markers (CD44 and CD25
upregulation, as well as IL-2 secretion) could be used as readouts for TCR
specificity. We also concluded that the retroviral chimeric TCR construct
used can be applied seamlessly in all three different assays: Tetramer
staining, in vitro activation, and to generate retrogenic mice (Fig. 6).
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4. Discussion

The development of therapeutic modalities that induce antigen-
specific T cell tolerance in patients with autoimmune disease would
represent a major medical breakthrough. The concept of specifically
suppressing the response to a limited set of autoantigens, while leaving
the rest of the immune system intact, should be compared to the current
long-term, non-curative, broadly immunosuppressive treatments used for
these patients. Multiple tolerance strategies have been suggested and
proven in various pre-clinical model systems [41,42,45–48]. Often such
strategies are based on providing the autoantigen in a context that in-
duces tolerance (anergy, cell death, or T-reg induction of autoreactive
clones), or modify the response in order to cause less tissue damage (e.g.
polarization of T helper cells, or modification of antibody subclass or
glycoform) [41,42,49–51]. However, no approved drug for
antigen-specific tolerance for autoimmune patients exists on the market,
despite the positive results from pre-clinical models. In contrast, toler-
ance induction for patients with allergic diseases has proven to be much
more feasible [52,53]. In fact, this therapeutic concept was demonstrated
more than 100 years ago [54]. Several explanations for the discrepancy
between the allergic and autoimmune tolerance induction can be
envisaged. Nevertheless, the absence of relevant preclinical model sys-
tems serves as a major bottleneck for developing antigen-specific toler-
ance inducing strategies.
7

It is well described that specific HLA alleles are associated with the
development of many autoimmune diseases, providing a foundation for
peptide-HLA-TCR based therapeutic interventions. Recent technical de-
velopments enabling high throughput identification of paired α/β TCR
sequences in patients will likely resolve part of the challenges hampering
discovery in the field of peptide-HLA-TCR based therapies. Still, this
emerging field suffers from the same difficulties as other fields generating
large scale data sets, namely how to transition from arguably descriptive
OMICS data sets to fundamental functional understanding. Here we set
out to solve this disconnect by developing quick assays to functionally
test TCR sequences cloned from HLA-DRB1*04:01 individuals. For these
studies, we used a retroviral TCR expression construct where human
variable TCRα and TCRβ domains were cloned into a plasmid backbone
containing mouse TCR constant domains [29]. This results in a chimeric
expression construct that retains the binding specificity of the human
TCR but can interact with the mouse CD3 signaling complex, allowing for
the subsequent generation of retrogenic mouse models following initial
characterization and prioritization assays [55,56]. Compared to tradi-
tional transgenic TCR animal models, the retrogenic approach is faster,
cheaper, and more versatile [57]. When performed with mice expressing
human HLA, it has the potential of generating a novel class of highly
relevant humanized animal models [58].

In summary, we here describe an optimized human TCR discovery
platform, using the same TCR expression construct in multiple assays
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allowing for initial screening experiments, all the way to humanized
animal models where patient TCRs can be combined with HLA alleles and
antigens linked to disease. We see major potential in integrating these
assays as part of a high throughput TCR discovery setup, to validate and
prioritize patient TCRs from repertoire sequencing experiments. In this
context, pooled TCR expression libraries could, for example, be gener-
ated from repertoire sequence data, and cells expressing TCRs that are
activated by specific stimuli could be rapidly isolated from the pool and
prioritized. The development of tolerizing treatments for patients is
8

hampered by the absence of relevant model systems that include patient-
derived TCRs, disease-relevant HLA alleles, and antigens. The combina-
tion of explorative studies in patient material to identify and prioritize
TCRs with making humanized TCR retrogenic mice have good potential
to generate such models. Importantly, the retrogenic mice can also easily
be generated to carry multiple different TCRs, both autoreactive and
control TCRs. This allows for more complex immune interactions, as well
as the generation of a heterogenous T cell pool better mimicking a true
biological setting [59].
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