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Abstract
Global gene expression analysis using microarrays and, more recently, RNA-seq, has al-

lowed investigators to understand biological processes at a system level. However, the

identification of differentially expressed genes in experiments with small sample size, high

dimensionality, and high variance remains challenging, limiting the usability of these tens of

thousands of publicly available, and possibly many more unpublished, gene expression

datasets. We propose a novel variable selection algorithm for ultra-low-nmicroarray studies

using generalized linear model-based variable selection with a penalized binomial regres-

sion algorithm called penalized Euclidean distance (PED). Our method uses PED to build a

classifier on the experimental data to rank genes by importance. In place of cross-validation,

which is required by most similar methods but not reliable for experiments with small sample

size, we use a simulation-based approach to additively build a list of differentially expressed

genes from the rank-ordered list. Our simulation-based approach maintains a low false dis-

covery rate while maximizing the number of differentially expressed genes identified, a fea-

ture critical for downstream pathway analysis. We apply our method to microarray data from

an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This

dataset was chosen because it showed very little differential expression according to

limma, a powerful and widely-used method for microarray analysis. Our method was able to

detect a significant number of differentially expressed genes in this dataset and suggest fu-

ture directions for investigation. Our method is easily adaptable for analysis of data from

RNA-seq and other global expression experiments with low sample size and

high dimensionality.
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Introduction
Gene expression analysis has led to profound advances in our understanding of a wide array of
biological processes ranging from ecology and evolution to molecular genetics and disease ther-
apeutics (reviewed in [1, 2], and references therein). Although improvements in sequencing
technologies have resulted in an increasing number of RNA-seq transcriptomic experiments,
the vast majority of global gene expression analyses studies in the literature have employed a
microarray approach.

However, while the technology required to conduct microarray experiments has become rel-
atively straightforward, data analysis remains challenging. Virtually every aspect of data analy-
sis, from normalization to analysis of differential expression, remains a topic of ongoing
discussion and often controversy in the literature [3] and [4]]. A particularly challenging data
analysis problem arises from the very aspect that makes this technology so powerful, namely
the large number of genes assayed on a chip, typically on the order of tens of thousands. The
necessity of correcting for multiple hypothesis testing [5] often results in the lack of statistical
significance for many experiments, particularly those with a few samples. This scenario, coined
the “p� n” dilemma in literature, complicates statistical analysis and potentially diminishes
the value of the experiment [6, 7].

There is a widespread and intense interest in developing new analytical strategies to address
the “p� n” problem, for the following reasons. Firstly, while early microarray experiments fo-
cused on samples with large differences in a few genes, more recent findings stress that it is not
large changes in a few genes, but rather small changes in many genes that will be important for
understanding both complex diseases and the subtleties of biological processes. While current
methodologies work well when the differences between experimental conditions are dramatic,
such methods are not appropriate for detecting subtle, more biologically relevant changes. Sec-
ondly, the number of genes queried (i.e. dimensionality) continues to rise with the inclusion of
splice variants and other forms of data provided by “next-generation” approaches such as
RNA-seq, a technology for which our approach will be applicable. Thirdly, in many instances,
sample size is inherently limiting. In many experiments, including those in conservation biolo-
gy (endangered species) and medical research (rare tumor subtypes), the investigator cannot
increase the n. Finally, thousands of microarray datasets are archived in publicly available data-
bases; novel analytical approaches may reveal new findings. In fact, at the time of this writing,
16.6% of the*40,000 NCBI GEO Datasets of the type “gene expression by array” have an n�
5 and 6.9% have n� 3. The fraction of GEO Datasets of unrestricted type is even higher
(24.1% have n� 5 and 12.7% have n� 3). Many more studies likely remain unpublished and
unavailable due to lack of differential expression detectable by widely-used analysis techniques.

Existing algorithms for differential expression detection in cases of ultra-low n (2 to 5) have
been compared and reviewed by Kooperberg et al. [8], Jeffery et al. [9], Murie et al. [10], Jean-
mougin et al. [11], and Tan et al. [12]. Kooperberg et al. [8], Murie et al. [10], and Tan et al.
[12] showed that differential expression detection using independent t-statistics has weak
power for small-sample-size analysis. In every review in which limma, a popular empirical
Bayes technique, was tested (only Tan et al. did not), limma performed better than or compara-
bly to every other method. However, limma is not sufficient to detect differential expression in
all cases.

In the last decade, penalized regression techniques (reviewed by Ma and Huang [13]), in-
cluding Lasso, elastic net, and SCAD have played a significant role in the “small n and large p”
quandary in the general statistics literature [14]. These techniques were first employed in bio-
statistics for classification problems [15]. Specifically, penalized regression approaches have

Effective Microarray Analysis with Ultra-Low N

PLOSONE | DOI:10.1371/journal.pone.0118198 March 4, 2015 2 / 17

Competing Interests: The authors have declared
that no competing interests exist.



been widely applied to cancer diagnosis [16–19] and patient outcome prediction [20–22], as
well as analysis of SNP data [23, 19].

One important feature of penalized regression methods is that they are variable selectors as
well as classifiers. Building a classifier with penalized regression involves assigning a weight to
each gene, which determines how strongly that gene contributes to the classifier. Differentially
expressed genes receive high weight, while genes that do not vary much between conditions are
assigned low weights. By separating genes with low weight from those with high weight, penal-
ized regression can identify differentially expressed genes. Unfortunately, although differential-
ly expressed genes are expected to have high weight and insignificant genes are expected to
have low weight after penalized regression, there is no a priori definition of how high a gene’s
weight must be to be differentially expressed. Most applications of penalized regression to vari-
able selection use some form of cross-validation to assess the impact of individual variables on
the accuracy of a classifier (see Du et al. [24] for an example as applied to arthritis and colon
cancer datasets, or [25] for an example using several cancer datasets). Cross-validation involves
splitting a dataset into a training set and a validation set. Regression is performed on the train-
ing set to produce a classifier. The classifier is then applied to the validation set to measure the
classifier’s accuracy. This process can be repeated for different values of critical parameters (for
example, the number of genes used by the classifier), and cross-validation measures the effect
of the change on classifier accuracy. Cross-validation works well when applied to cancer data-
sets, which typically involve between dozens and hundreds of samples. However, cross-valida-
tion is unstable or impossible with extremely small sample sizes, making it inappropriate for
microarray studies with low n [26].

Clearly novel approaches for analyzing p� n data would be useful for high-throughput
gene expression analysis. Here we propose to address this need by developing, applying and re-
fining a novel method for analysis of microarray data broadly usable by biologists. Our method
is based on penalized Euclidean distance (PED), a penalized binomial regression approach
which performs favorably compared to similar methods such as elastic net, Lasso, SIS, and ISIS
[27]. Our approach uses a simulation-based tuning procedure that eliminates the need for
cross-validation and maximizes the number of selections made while maintaining an arbitrari-
ly low false discovery rate (FDR). We apply this model to a microarray dataset that examined
how Xenopus laevis embryos respond over time to injection with constructs that alter the
Notch signaling pathway [28]. This was a particularly suitable dataset given that it showed
minimal statistical significance when analyzed with commonly used analysis packages, e.g.
limma, yet the most differentially expressed (but not significantly differentially expressed)
genes according to limma included a number of genes known from other research to be in-
volved in the Notch signaling pathway.

Materials and Methods

Microarray Experiment
A colony of Xenopus laevis was maintained as previously described [29] with all protocols ap-
proved by the College of William and Mary Institutional Animal Care and Use Committee
(IACUC-2013-11-21-9110-MSSAHA) in accordance with federal guidelines. Embryos were
obtained and raised using standard, published procedures [30].

Embryos were unilaterally injected into one blastomere at the two cell stage with 1.5 ng of
one of the following capped RNA constructs synthesized in vitro: a DNA Binding mutant of
Suppressor of Hairless (DBM), a construct that suppresses Notch signaling [31]; the Notch In-
tracellular Domain (NICD), which activates the Notch signaling pathway [32]; or Green Fluo-
rescent Protein (GFP) as a tracer and control for the injection procedure. The DBM and NICD

Effective Microarray Analysis with Ultra-Low N

PLOSONE | DOI:10.1371/journal.pone.0118198 March 4, 2015 3 / 17



constructs were kind gifts from Dr. Chris Kintner. Capped RNA was synthesized in vitro using
mMessage Machine (Ambion) following the manufacturer’s protocol and purified using the
Qiagen MinElute Cleanup Kit. Embryos were raised to either late neurula stage (st. 18), tailbud
stage (st. 28), or swimming tadpole stage (st. 38). All staging is according to Nieuwkoop and
Faber [33].

To obtain total RNA, 10 embryos from each stage and condition were homogenized in Tri
Reagent (Molecular Research Center) and extracted with 1-bromo-3-chloropropane phase sep-
aration reagent according to the manufacturer’s protocol. RNA from the aqueous phase was
purified using the Qiagen RNeasy Mini kit. Total RNA for each of the nine samples (embryos
injected with the three constructs NICD, DBM, GFP with each harvested at three different
stages) was sent to the Clemson University Genomics Institute for microarray analysis using
the Affymetrix Xenopus laevis 2.0 GeneChip. Affymetrix protocols were followed with the ex-
ception that the in vitro transcription reaction was carried out for 16 hours.

Initial Statistical Analysis
Raw microarray data was normalized and summarized using Robust Microarray Average
(RMA) [34] as implemented in the Bioconductor package [35] in R. For our initial statistical
analysis, we reviewed five studies testing multiple differential expression detection algorithms
at extremely low sample size [8–12]. All of the sources that reviewed limma recommended it
over other algorithms. We therefore determined differential expression using the limma pack-
age [36] for R by fitting a linear model to produce p-values based on a moderated t-statistic.
The following comparisons were employed: stage 18 DBM versus stage 18 GFP; stage 18 GFP
versus stage 18 NICD; stage 28 DBM versus stage 28 GFP; stage 28 GFP versus stage 28 NICD;
stage 38 DBM versus stage 38 GFP; and stage 38 GFP versus stage 38 NICD. Benjamini-Hoch-
berg (BH) correction [37] was set with a false discovery rate of 0.05 to correct for multiple hy-
pothesis testing. When the analysis was repeated using Benjamini-Yekutieli correction [38], no
genes were selected as differentially expressed. Benjamini-Yekutieli correction is more conser-
vative than BH correction, but is more suitable than BH correction or correlated data.

Overview of Variable Selection by PED
An overview of our selection method is shown in Fig. 1. First, we normalize the data by con-
verting it to z-scores, so that each gene’s expression has mean 0 and standard deviation 1 (Step
I). We then use PED regression, a form of penalized binomial regression, to rank the impor-
tance of each gene (Step II). PED regression produces a GLM-based classifier, which is a func-
tion that can identify the experimental condition of a microarray based on a linear
combination of that microarray’s expression data. The classifier is defined by a vector of pa-
rameters, or weights, which are assigned to the set of genes in the experiment by PED. These
weights determine the importance of each gene to the classifier—the higher the weight of a
gene, the more information it contributes towards making a correct classification. Ideally, non-
differentially expressed genes would have zero weight, and only differentially expressed genes
would have non-zero weight. Due to both computational and signal-recovery limitations, in
practice weights of non-differentially expressed genes can be quite small, but are rarely exactly
zero. Thus, a challenge when using penalized regression methods for variable selection is to de-
termine exactly which weights are large enough to indicate differential expression.

To determine a cutoff for significance, we generate simulations based on the experimental
data (Step III). Starting from the most highly-ranked genes, we consider increasingly more
genes to be provisionally differentially expressed, then use our simulations to estimate the false
discovery rate of that selection. We increase the number of differentially expressed genes until
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the false discovery rate rises above a user-set threshold, at which point we stop and the selection
is reported (Step IV). Finally, permutations of the original data, which contain the same data
but with experimental labels scrambled, are analyzed as a null-signal control to test for overall
presence of differential expression in the dataset (Step V).

Descriptions of each step of the method and several important implementation details are
presented below.

Step I: Normalization. The average expression level of two different genes can easily differ
by several orders of magnitude. Differences in the scales of gene expression can bias the results

Fig 1. A schematic overview of gene selection by PED.

doi:10.1371/journal.pone.0118198.g001
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of penalized regression, which we use to rank the importance of genes. To prevent this bias,
raw expression data are first centered and normalized by converting them into z-scores (so that
each gene has average expression 0 and standard deviation of expression 1).

Step II: PED Regression. Our algorithm ranks the estimated importance of genes using
PED, with a generalized linear model-based method. Generalized linear models are powerful
and flexible tools for binary classification that have been adapted for variable selection. A gen-
eralized linear model is broadly defined by

gðyiÞ ¼ xTi � b

where yi is the expected value of the random univariate variable yi, xi is a vector of regressor
variables for the ith observation, β is a vector of parameters or regression coefficients and
g:(a, b)! R is a link function (usually a sigmoid function such as g�1ðxÞ ¼ ex

1þex
for the logit

link or g−1(x) = arctan(x) for the cauchit link). In the example of microarray data, xi is a vector
of gene expression values for the ith microarray sample in an experiment, and yi is a numeric
value corresponding to the experimental condition of the microarray (for example, control
condition microarrays might be labeled with yi = 0, and treatment condition microarrays with
yi = 1). The variable β is a vector of free parameters βj, which ‘weights’ the contribution of each
gene j. The larger (the absolute value of) a component of β, the more strongly the correspond-

ing component of xi contributes to the overall sum xTi � b ¼ Pp
j¼1

xijbj, where p is the size of xi

(for microarrays, the number of genes on a chip).
Combining all of the samples in an experiment yields the expression

gðYÞ ¼ Xb

where X is a matrix of expression values xij such that xij is the expression value for the jth gene
from the ith sample, Y is a vector of classifications of each microarray, and g(Y) is g(�) applied
to each element of Y. The goal of a GLM-based penalized regression technique is to choose β
such that the above equation holds as closely as possible (i.e., kg(Y) − Xβk � 0) while minimiz-
ing the number of non-zero components of β. The result is a relatively sparse vector β whose
non-zero components correspond to genes whose expression values contribute meaningfully
to successful classification of a sample (in our case, a single microarray), which is taken to indi-
cate differential expression of that gene.

To satisfy the above constraints, our method uses an efficient signal recovery strategy based
on a pseudo-likelihood function shown to yield low false discovery rates and high signal recov-
ery relative to other penalized regression methods (for example, Lasso or elastic net) when the
number of replications is very small [27]. Our algorithm solves the following optimization
problem

ðb̂1; b̂2; :::b̂pÞ ¼ argmin
b¼ðb1 ;b2 ;:::bpÞ

fk ~Y � arctan ðXbÞ k þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k b k �jbj1

q
g; ð1Þ

where the components of ~Y are p
2
and� p

2
, and λ is a constant whose value is determined theo-

retically [27]. We retain the components of the solution β with the highest relative contribu-

tions, i.e. jbi jkbk. The particular choice of penalty term for the penalized Euclidean distance

regression enables a unique grouping effect that involves the relative contributions of the com-
ponents of the solution vector β, not just their absolute values. If the angle between columns
i and j (taken as vectors in R

p) of the data matrix X is θij, then the penalized Euclidean
distance regression method produces a vector of weights (rankings) β = (β1, β2. . .βp) such
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that j b̂ iðlÞ
kb̂ðlÞk �

b̂ jðlÞ
kb̂ðlÞk j�

2yij
l : Overall, the objective function used by the penalized Euclidean dis-

tance method facilitates reconstruction of weak signals in ill-defined situations without pre-es-
timates of the noise standard deviation. Notably, in numerical simulations with high
dimensionality and very weak signals, the false positive rate of PED-based selection was much
lower than that of either elastic net or Lasso [27].

Equation (1) can be substituted, and its solution well-approximated, with the computation-
ally simpler problem

ðb̂1; b̂2; :::b̂pÞ ¼ argmin
b¼ðb1 ;b2 ;:::bpÞ

fk ~Y � Xb k þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k b k �jbj1

q
g; ð2Þ

where here the components of ~Y have large absolute value (here ±105). To simplify computa-
tion, our algorithm performs PED regression in two passes. In the first pass, equation (2) is
used to select a number of differentially expressed genes as an approximation to the final solu-
tion. The genes remaining after the first pass are used to optimize again using equation (1), and
all genes with very low weight (jβij< 10−6) are removed.

Step III: Numerical Simulations. Once weights (the vector β) are assigned to genes, a
threshold is chosen to separate differentially expressed and potentially non-differentially ex-
pressed genes. Genes with (absolute value) weight larger than the threshold are considered dif-
ferentially expressed; genes with (absolute value) weight below the threshold are called as non-
differentially expressed. Simulations based on the experimental data using a design similar to
that of Singhal et al. [39] are used to determine an optimal number of selections. These simula-
tions serve three purposes. Firstly, it “tunes” the threshold parameter, which may need to be set
differently for different data sets. Secondly, it provides an estimate of the FDR of selections,
which allows for control of the FDR. Finally, it serves as validation of the procedure—in effect,
when run, our algorithm tests its own applicability on data resembling the researcher’s.

Simulations were designed with the following constraints:

1. Simulated data should mimic as closely as possible the intensity and differential expression
patterns of the real data.

2. Simulated data should share, as much as possible, the correlation structure structure of the
real data.

3. It must be known which genes are differentially expressed in simulation and which are not.

Simulations are based on an n × Pmatrix of real data X, where Xij is the intensity of ith repli-
cate of the jth gene. One experimental condition (typically the control condition), is chosen
without loss of generality to be represented by the first k rows ofM. The k × Pmatrix Xcond con-

sisting of only those replicates is used to generate a simulated data matrix ~X .

To preserve as much correlational structure as possible, the first k rows of ~X are set equal to
the first k rows of X, so that the first experimental condition in simulation is identical to that of
the real data. The mean μj and standard deviation σj of each gene j are then estimated from the
jth column of Xcond, and use those estimates to generate Gaussian-distributed data with the

same parameters for the second simulation condition. That is, ~Xij ¼ Nðmj; sjÞ when k< i� n.

Differential expression is simulated by multiplying the second condition simulation data by
a fold-difference if the fold-difference in the original data is large enough. First, the fold
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difference fj in the original data is measured. The fold-difference for a gene j is defined as

fj ¼

m2
j

m1
j

: m2
j � m1

j

� m1
j

m2
j

m2
j < m1

j

8>>>><
>>>>:

where m1
j is the mean expression value of gene j for the first condition and m1

j 2 is the mean ex-

pression value of gene j for the second condition. If jfjj is greater than or equal to some thresh-

old T, then each ~Xij is multiplied by fj (or by� 1
fj
if fj < 0) and that simulated gene is labeled as

differentially expressed. If jfjj< T, then the second condition is left unchanged and that simu-
lated gene is labeled as not differentially expressed.

In summary, each simulation data matrix ~X is defined as:

~Xij ¼

Xij : i � k

Nðmj; sjÞ : i > k; jfjj < T

fj � Nðmj; sjÞ : i > k; jfjj � T; fj > 0

� 1

fj
� Nðmj; sjÞ : i > k; jfjj � T; fj < 0

8>>>>>><
>>>>>>:

Step IV: FDR Estimation and Threshold Tuning. Once several simulations are generated
from the user’s data, these simulations are used to estimate the largest number of genes that
can be considered as differentially expressed while maintaining the FDR below a threshold
(supplied by the user) This is achieved by iteratively increasing the selection size and checking
the estimated FDR of the new selection until the FDR increases above the set FDR threshold.

Specifically, PED regression is first performed to rank the genes in each simulation. The
FDR is then calculated for a very small selection threshold ns0 by taking the top ns0 genes in
each simulation and calculating an empirical FDR, which is simply the number of genes cor-
rectly called as differentially expressed in the simulation divided by the selection size. Because
the simulations are generated to have similar distributions, levels of signal, and correlation
structure to the experimenter’s data, the FDR of selections in simulation is taken as an estimate
of the FDR of our real data using the same selection size threshold ns0. The algorithm then iter-
atively increases the selection size ns by some Δns until the FDR of any one simulation grows
beyond the user-specified threshold value. The last tested ns before the FDR rises above the
FDR threshold becomes the selection size used on the actual data set.

Because the selection of ns is based on themaximum FDR among simulations, we expect se-
lections by this method to be somewhat conservative. However, this choice of criteria for stop-
ping iteration may be sensitive to outliers in FDR. More robust but less conservative stopping
criteria could be employed—for instance, iteration could stop when the mean or 90% percentile
of FDR among simulations rises above the FDR threshold.

Step V: Differential Expression Validation. To additionally guard against false discovery
of differential expression when none is actually present, our method employs sample permuta-
tion to generate an estimate of the number of selections our method would make in the case of
data similar to the user’s, but with no true differential expression. For each data set, the classifi-
cation vector Y for that dataset is randomly permuted, theoretically removing any true differ-
ential expression from the data (null signal could also be generated by other methods, such as
rotation [40]). Differential expression detection is performed as described above on the per-
muted data, and the sizes of the selections made are reported.
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The result of the differential expression validation is a list of selection sizes made by the al-
gorithm for different permutations of the original data. If there is true differential expression in
the dataset, then there should be a strong difference between the number of genes selected by
our method in the real data and the number selected in null datasets. In practice, because of the
discreteness and limited number of permutations possible at small sample sizes, permutations
do not completely destroy correlation between sample label and signal, so that significant num-
bers of genes can be selected even for permutations. We suggest that if more selections are
made in the real data than in any of the permuted data cases, then there is a strong case for true
differential expression in the experimenter’s dataset. The farther apart the selection sizes on the
real data and permuted data, the greater the strength of evidence for differential expression in
the dataset.

An experimenter can quantify the significance of the differential expression validation using
Chebyshev’s theorem. Chebyshev’s theorem states that no more than 1

k2
of the values of any dis-

tribution can lie more than k standard deviations from the mean. By that rule, for example, a
selection size more than 4.5 standard deviations from the mean of the observed null data selec-
tion sizes corresponds to a p-value of p < 1� 1

4:52
¼ 0:05. Chebyshev’s theorem can be used to

estimate a highly conservative p-value for finding a selection size as extreme as that of the real
data given the empirical distribution of selection sizes in permuted (null) data. This p-value is
1
k2
, where k is the z-score of the original data selection size when grouped with the selection

sizes of the permuted data.

Method Overview
The following is an algorithmic summary of our selection method.

Input: The user provides a matrix of expression data, as described under “PED regression.”
The user also sets an FDR threshold T. For instance, for a threshold of T = 0.05, no less than
95% of genes selected by the algorithm will actually be differentially expressed.

1. Convert expression data for each gene to z-scores (such that each gene’s expression vector
has mean 0 and standard deviation 1) (Step I).

2. Real data first pass: using approximate PED regression according to equation (2), find
weights for each gene to define an optimal classifier using the data (Step II).

3. Sort genes by the magnitude of their weights.

4. Generate simulations with known signal based on the real data (Step III).

5. Find a maximum selection size ns that maintains FDR< T using simulations (Step IV):

(a) For each simulation, set a selection size ns = ns0.

(b) Simulation first pass: optimize weights of differentially expressed genes using PED re-
gression according to equation (2) on each simulation. Take the top ns variables in
each simulation as differentially expressed (Step II).

(c) Simulation second pass: optimize weights of differentially expressed genes using PED
regression according to equation (1), then filter out any genes i with weight jβij< 10−6

(Step II).

(d) Measure the FDR in the selection made in each simulation.

(e) If the FDR of any simulation’s selection is greater than T, stop.

(f) Otherwise, increment ns by Δns and go back to 5b.

Effective Microarray Analysis with Ultra-Low N

PLOSONE | DOI:10.1371/journal.pone.0118198 March 4, 2015 9 / 17



6. Take the top ns genes in the real data, sorted by weight according to PED regression.

7. Real data second pass: optimize weights of differentially expressed genes using PED regres-
sion according to equation (1), then filter out any genes i with jβij< 10−6 (Step II).

8. Generate permuted versions of the real data as “null signal” cases (9 permutations for n = 3;
more for larger datasets) (Step V).

9. For each permuted version of the data, perform steps 2–6. Report the number of selections
in each permutation and compare to the number of selections in the real data to assess the
presence of differential expression (Step V).

Implementation Details
Code and documentation for PED-based selection are available at https://github.com/
sclamons/PED. Gene selection by PED and differential expression validation were imple-
mented as MATLAB scripts, which are also compatible with the free and open-source
MATLAB-like environment Octave. The script PED_select_genes is used to run our algorithm
on a single data set. We also include a script PED_select_genes_batch to run our algorithm on
multiple datasets with a single command. Null-signal simulations were generated using the
script PED_generate_simulations with the parameterizationmin_fold_diff = inf. We use the
MATLAB package HANSO to solve the optimization problems given in equations (1) and (2).

To simplify computation of the objective function and achieve several theoretical properties
during PED regression, we employ the first-pass approximation shown in equation (2), which
produces a close approximation of the final solution [27]. Once most genes are filtered out by
the first regression and selection, we optimize again with equation (1) and filter out any genes
with extremely small weight (< 10−6). The results of this second pass are reported as the
final selections.

We observed that weighting of genes are somewhat sensitive to the choice of classification
vector Y, so that the set of genes with the highest weights are not the same when Y = [−1, −1, −1,
1, 1, 1]0 as they are when Y = [1, 1, 1, −1, −1, −1]0. Thus, for either choice of Y, some potentially
important genes are missed by PED regression. We therefore perform each optimization

twice, once for each version of Y, yielding two weights b1

j and b
2

j for each gene j. We then set

bj ¼ maxðj b1

j j; j b2

j jÞ. This way, our algorithm does not lose power due to arbitrary choice of Y.

In our implementation, size optimization is performed using 10 simulations per dataset and
permutation tests are performed using 9 distinct permutations. To optimize the selection size
ns, we first used ns0 ¼ Dns ¼ n

1000
to roughly estimate the correct choice of ns, then iterated

again from the first stopping point with Δns = 1 to more precisely determine optimal
selection size.

Validation
As a negative control experiment, we generated null-signal simulations using the same simula-
tion strategy used in the selection method, but with the fold-difference threshold for differen-
tial expression set to +1 so that no differential expression was introduced. We generated null-
signal simulations based on the structure of our Notch-experiment microarray data for each
comparison used in that experiment, then applied our selection method to these simulations.
This experiment tested the behavior of our method when no differential expression is present
in a dataset.
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Whole mount in situ hybridization was employed for empirical validation of selected genes.
In situ hybridization experiments were carried out using standard published protocols with
minor modifications as previously described [30, 41].

Since developmental expression profiles are already known and publicly available for most
annotated Xenopus genes on xenbase.org, validation was also performed bioinformatically. Ex-
pression information for genes selected as differentially expressed by PED between RNA from
GFP injected embryos extracted at st. 18 and RNA extracted from st. 38 was compared with ex-
pression profiles for the closely related species Xenopus tropicalis available on xenbase.org [42].
GFP injected embryos were selected for this validation because GFP served as a control for the
injection procedure and does not affect development.

ComparisonWith Other Methods
For comparison, we applied several common penalized regression algorithms to our Notch
perturbation dataset. Specifically, we used two implementations of Lasso and Iterative Sure In-
dependence Screening (ISIS) [43]. Lasso was performed with the R package “glmnet”. A fit was
calculated using the“cv.glmnet” function with binomial fit family, α = 1, and all other parame-
ters default. Bayesian lasso was performed with the R package “monomvn” [44] by using the
included function blasso with suggested default values. ISIS was performed with the R package
“SIS”, using the function “SIS” with binomial fit family and 3-fold cross validation.

Results

Differential Expression Testing With Limma
Microarray data was initially analyzed by the Clemson University Genomics Institute using the
limma package in Bioconductor R. We also performed this analysis to confirm the results. Test-
ing for differential expression with limma yielded very few differentially expressed genes (See
Table 1).

However, an examination of the list of genes with particularly low p-values showed that
many of the genes with particularly low p values were known through previous molecular stud-
ies to be regulated by the Notch signaling pathway. Even though these genes could not be re-
ported as differentially expressed using accepted statistical analysis methods, the presence of so
many known Notch regulated genes suggested that this list and the standard approach may be
under-representing differentially expressed genes, warranting an alternative method more ap-
propriate for data with low n and high dimensionality.

Differential Expression Testing Using PED
We applied the PED-regression-based method to our microarray data with an FDR threshold
of 0.01 in order to recover a more complete list of differentially expressed genes (S1 Table, S2
Table, S3 Table, S4 Table, S5 Table, S6 Table). The results are summarized in Table 2.

Notably, in every case, our selection method labeled many more genes as differentially ex-
pressed in the data than in permuted controls, indicating that these selections are unlikely to be

Table 1. Selection sizes for Notch data with Limma.

Stage DBM v GFP GFP v NICD

18 1 8

28 0 2

38 0 0

doi:10.1371/journal.pone.0118198.t001
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the product of spurious selection of truly random data. All genes that were labeled as differen-
tially expressed by limma (after BHY adjustment) were also selected as differentially expressed
by PED.

Selection sizes for our data were consistently greater than selection sizes for null-permuted
data. Using Chebyshev’s theorem, we obtained p-values for the observed difference in selection
sizes. Chebyshev-based p-values were only significant for four out of the six comparisons test-
ed. However, it should be noted that because Chebyshev’s theorem does not make any distribu-
tional assumptions about the data, it is extremely conservative—it effectively gives an upper
bound for p-values calculated for any assumed distribution.

As a negative control, we generated one simulation with no differential expression for each
contrast in our experiment, then applied our selection method to those simulations. The results
are summarized in Table 3.

As a positive control of differential gene expression discovery, we applied our method
(again with an FDR threshold set to 0.01) to the comparison: GFP-injected stage 18 versus
stage 38. Differential expression in that contrast is driven by transcriptional differences be-
tween stages, which are large relative to perturbations induced by DBM or NICD injection.
Under these conditions, 20,544 genes were detected as differentially expressed. We obtained
similar results by applying limma to the same contrasts with BHY correction at α = 0.05 (data
not shown).

Validation of Selection Results
Several different approaches were employed to validate our selection procedure. Firstly, we val-
idated a number of samples empirically. Since the fold differences in our experiments were vir-
tually all significantly less than 2, qRT-PCR was not an appropriate technique, since it reliably
detects differences that are more than twofold in magnitude. We therefore conducted in situ

Table 2. Selection sizes for Notch data and the permutations of the real data with 1% empirical FDR.

Real Data Permuted Data z-score Chebyshev p-value

18_DBM_18_GFP 781 326 31 36 229 33 34 197 199 322 4.99 0.04

18_GFP_18_NICD 2438 135 29 15 163 27 21 128 118 2149 3.07 0.11

28_DBM_28_GFP 1155 131 40 397 128 163 161 44 70 381 7.40 0.02

28_GFP_28_NICD 1595 56 10 57 60 97 60 17 54 95 52.49 3.6E-4

38_DBM_38_GFP 238 84 99 34 76 54 87 106 83 68 7.24 0.02

38_GFP_38_NICD 752 64 1 0 448 4 3 514 1 0 3.05 0.11

doi:10.1371/journal.pone.0118198.t002

Table 3. Selection sizes for simulated data with null signal and its permutations.

Null Signal Data Permuted Null Data z-score Chebyshev p-value

18_DBM_18_GFP 7 16 14 17 25 30 19 242 198 257 0.782 1

18_GFP_18_NICD 7 11 25 10 26 21 26 196 240 202 0.792 1

28_DBM_28_GFP 0 0 45 14 0 0 0 4 0 0 0.467 1

28_GFP_28_NICD 0 87 23 47 93 55 8 21 27 23 1.41 0.50

38_DBM_38_GFP 8 96 70 69 52 34 49 129 128 118 2.07 0.23

38_GFP_38_NICD 2 39 84 54 48 47 42 43 54 65 3.62 0.08

doi:10.1371/journal.pone.0118198.t003
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hybridization on selected genes and assayed for differences in expression. Of the five genes test-
ed—several of which were not previously known to be regulated by Notch signaling—all five
validated the PED selections (data now shown).

Secondly, we validated the selection procedure bioinformatically using existing expression
information from multiple databases available on xenbase.org. To do so we compared genes se-
lected as differentially expressed by PED for GFP injected embryos at stage 18 and stage 38
with known expression profiles. GFP was used as an injection control, and GFP embryos dis-
play normal development. Of the genes selected as differentially expressed, 200 genes were ran-
domly sampled. Of these 182 (91%) were validated by known expression data from Xenopus
tropicalis.

Finally, our selection procedure includes a simulation step designed to both validate and
tune the procedure for the user’s data set. These simulations use a fold-difference criteria to es-
timate the level of signal present in the user’s data, then add a random, normally-distributed
condition to one of the user’s condition data. Our procedure uses these simulations to tune the
selection size to maintain an estimated false discovery rate below a user-set threshold.

Comparison with Other Methods
A number of analysis methods exist for variable selection using penalized regression tech-
niques. For comparison with our method, we applied lasso, Bayesian lasso, and ISIS, to our
dataset. Selection sizes by each method are shown in Table 4. Both methods detected signifi-
cantly fewer genes as differentially expressed than our method, and in some comparisons de-
tected even less differential expression than Limma.

Discussion
Although many methods exist for analysis of microarray data, none are known to reliably func-
tion for single-channel microarray data with ultra-low sample size, for instance with n = 2 or 3.
Most statistical tests, such as the t-test or even limma, require substantial adjustment for multi-
ple hypothesis testing [5]. This adjustment can be too stringent, leading the investigator to
throw out the true positives with the false positives. A large enough sample size can compensate
for the low statistical power of adjusted tests, but sample sizes in microarray studies are often
limited by cost or sample availability.

Another approach to the analysis of microarray data comes from microarray classification
research, which considers the problem of automatically creating a set of rules that can identify
the sample type of a previously uncategorized microarray (see Ma and Huang [13] for an over-
view of classification methods and their application to selection). One challenge for classifica-
tion algorithms when applied to microarray experiments is the extremely high dimensionality
and small number of samples they typically employ. When data is “sparse” in this way, most

Table 4. Selection sizes for Notch data with other variable selection methods.

Comparison lasso Bayesian lasso ISIS

18_DBM_18_GFP 0 5 1

18_GFP_18_NICD 3 5 1

28_DBM_28_GFP 0 5 1

28_GFP_28_NICD 0 5 1

38_DBM_38_GFP 0 5 1

38_GFP_38_NICD 0 5 1

18_GFP_38_GFP 31 5 1

doi:10.1371/journal.pone.0118198.t004
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classification algorithms have no unique solution. Without sufficient constraint, classifiers pro-
duce rules describing the noise in the data as well as the underlying biological difference, called
“overfitting.”

One solution to the “p� n” problem is penalized regression, in which solutions to the classi-
fication problem are penalized for using additional information [13, 15]. This “soft” form of di-
mension reduction encourages solutions using a minimum amount of information (taken from
a minimum number of variables) over those that overfit, without requiring a priori knowledge
of the amount or degree of differential expression in the data. Since penalized regression natu-
rally separates significant variables from non-significant variables, the technique can also be
used for variable selection, and has been suggested as a means of detecting differentially express-
ed genes [19, 24]. Unfortunately, classification techniques usually try to extract theminimum
set of genes required to make a classification, whereas an investigator looking for differential ex-
pression in a microarray experiment typically seeks all of the differentially expressed genes. Fur-
thermore, the penalized regression methods so far employed for classification and variable
selection in microarray experiments typically require tuning using cross-validation [16–23],
which is not feasible for experiments with extremely limited sample size [26].

We present a GLM-based, penalized binomial regression approach for analyzing microarray
data that uses data-based simulations to tune selections, thus avoiding the need for cross-vali-
dation and maximizing the number of differentially expressed genes detected by the algorithm.
Because it does not require cross-validation, this method can be applied to experiments with
extremely low sample size (n> 1), and it can detect large numbers of differentially-expressed
genes in cases when exiting methodologies (including lasso, Bayesian lasso, and SIS/ISIS) can-
not. Our method has been implemented as a set of functions in MATLAB. As input, the code
requires a two-condition experimental matrix in a custom-format CSV file. For ease of use
with existing data, we provide a MATLAB script to generate such CSV files from DataMatrix
objects (which are produced by many components of MATLAB’s Bioinformatics Toolbox).
The code will run on any two-condition experiment with at least two samples per condition.
Our algorithm allows the user to choose an acceptable false discovery rate for differential gene
discovery. The FDR can be set higher for increased statistical power, or lower for more
accurate selections.

We also provide a permutation-based differential expression test, which can verify the pres-
ence of differential expression in an otherwise ambiguous dataset. The differential expression
test produces selection sizes for sample permutations of the data, which represents a null distri-
bution of selection size. Sets with differential expression will produce much larger selection
sizes in the actual data than in the permuted data, while sets with no differential expression will
produce similar selection sizes for all tests. We recommend either 1) considering the data dif-
ferentially expressed if the data show a larger selection size than any permutation or 2) using
Chebyshev’s theorem to estimate a highly conservative p-value for the selection size, as de-
scribed in Materials and Methods.

There is potential for expansion of our algorithm. With few modifications, it could be ap-
plied to RNA-seq expression data. Our algorithm’s performance is currently quite slow, despite
optimization—analysis of a single data set with n = 3 and 32,635 genes can take anywhere from
hours to a few days on a 4-core Intel machine. Much of the processing time to run our algo-
rithm is devoted to large matrix operations that could be optimized further, delegated to the
GPU or other SIMD hardware, or both. Finally, we hope to expand our algorithm to handle
complex experimental designs more naturally.

Our method meets an important need for analysis tools capable of analyzing ultra-low sam-
ple-size datasets with extremely high dimensionality with enough power to apply pathway
analysis and other forms of global expression analysis. Many such datasets exist, and we believe
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that applying our PED-based approach could yield a plethora of new insights from experiments
that have already been performed.
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