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A B S T R A C T   

Molecular docking of 234 unique compounds identified in the softwood bark (W set) is presented with a focus on 
their inhibition potential to the main protease of the SARS-CoV-2 virus 3CLpro (6WQF). The docking results are 
compared with the docking results of 866 COVID19-related compounds (S set). Furthermore, machine learning 
(ML) prediction of docking scores of the W set is presented using the S set trained TensorFlow, XGBoost, and 
SchNetPack ML approaches. Docking scores are evaluated with the Autodock 4.2.6 software. Four compounds in 
the W set achieve a docking score below − 13 kcal/mol, with (+)-lariciresinol 9′-p-coumarate (CID 11497085) 
achieving the best docking score (− 15 kcal/mol) within the W and S sets. In addition, 50% of W set docking 
scores are found below − 8 kcal/mol and 25% below − 10 kcal/mol. Therefore, the compounds identified in the 
softwood bark, show potential for antiviral activity upon extraction or further derivatization. The W set mo
lecular docking studies are validated by means of molecular dynamics (five best compounds). The solubility (Log 
S, ESOL) and druglikeness of the best docking compounds in S and W sets are compared to evaluate the phar
macological potential of compounds identified in softwood bark.   

1. Introduction 

The new coronavirus SARS-CoV-2, that belongs to the group of beta- 
coronaviruses, is the cause of the severe respiratory syndrome dubbed 
COVID-19 [1,2]. The virus spreads predominantly via respiratory 
droplets and general symptoms of COVID-19 in infected patients are as 
follows: fever resembling common influenza, mucus production, dys
pnea, headache, sore throat/pharyngalgia, diarrhea, etc. [3]. Eventu
ally, COVID-19 can lead to life-threatening symptoms of extraordinarily 
lethal pneumonia [4,5]. Patients infected with SARS-CoV-2, both 

symptomatic and asymptomatic, are reported to display a higher 
occurrence of the virus in their nasal cavity than in their throat [3,6,7]. 

SARS-CoV-2 itself is a positive-sense single stranded RNA virus, 
whose genome encodes four structural proteins that are responsible for 
the virion shape (envelope protein), pathogenesis (nucleocapsid pro
tein), virus's entry to host's cells (spike glycoprotein) and subsequent 
release of the virion particles (membrane protein). Furthermore, the 
genome encodes 16 non-structural proteins, including vital inhibitory 
targets such as the main protease Mpro (also known as 3CLpro from 3- 
chymotrypsin-like protease), the papain-like protease PLpro, the 
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Contents lists available at ScienceDirect 

Biophysical Chemistry 

journal homepage: www.elsevier.com/locate/biophyschem 

https://doi.org/10.1016/j.bpc.2022.106854 
Received 30 March 2022; Received in revised form 3 June 2022; Accepted 21 June 2022   

mailto:michal.jablonsky@stuba.sk
mailto:lukas.bucinsky@stuba.sk
www.sciencedirect.com/science/journal/03014622
https://www.elsevier.com/locate/biophyschem
https://doi.org/10.1016/j.bpc.2022.106854
https://doi.org/10.1016/j.bpc.2022.106854
https://doi.org/10.1016/j.bpc.2022.106854
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpc.2022.106854&domain=pdf


Biophysical Chemistry 288 (2022) 106854

2

helicase, the RNA-dependent RNA polymerase RdRp, which all play a 
crucial role in the transcription and replication of the virus's RNA 
[8–12]. 

3CLpro is a highly conserved three-domain protease that consists of 
ca. 306 amino acids. The domains I (residues 8–101) and II (residues 
102–184) form a beta-barrel secondary structure, while the domain III 
consists of alpha-helices (residues 201–303). The last two domains are 
connected by a long loop (residues 185–200). The catalytic dyad capable 
of hydrolyzing peptide bonds in enzymes, consisting of a nucleophilic 
Cys145 and a proton acceptor counterpart His41, is located in a gap 
between domains I and II [13]. These two residues are coupled with 
Thr25 to form the S2 subside of the substrate binding region. Together 
with the S1 subside, formed by residues His41, Phe140, Glu143, His163, 
Glu166, and His172, S2 can participate in hydrophobic and electrostatic 
interactions with the potential inhibitors. Furthermore, three additional 
shallow subsides S3-S5, comprised of His41, Met49, Met165, Glu166, 
and Gln189, are located nearby and offer additional modes of inhibitor- 
protease complex stabilization. The presence of residues that can 
tolerate different functionalities, its role in the replication of the virus, as 
well as structural similarity of 3CLpro with other species of coronavi
ruses, make it a prospective inhibitory target for drug design and/or 
refurbishment [14–16]. 

World-wide research shows that extractives found in natural re
sources play an important protective role in the fight against viruses. In 
general, plants can produce metabolites which display inhibitory effects 
on enzymes, proteins, and virus propagation [17]. Plant immunity is a 
complex system able to detect and deactivate attacking pathogens with 
various tools [18]. These compounds are produced as a reaction to both 
biotic and abiotic influences. Other options are the secondary plant 
metabolites which are not considered vital for the life of plant cells. 
Several projects focused on measuring the bonding energy between 
plant-based metabolites and SARS-CoV-2 proteins. According to Azim 
et al. [3], all the metabolites could serve as medicines against COVID-19 
and it is recommended that in vivo testing begins to confirm obtained 
results. Parvez et al. [19] studied five plant-based cures, namely azo
bechalcone, rifampin, isolophirachalcone, tetrandrine, and fangchino
line. Over 3600 unique ligand conformers of compounds from Iraqi 
medicinal plants were docked to the human Angiotensin Converting 
Enzyme-2 (ACE2) by Al-Shuhaib et al. [20] to study the inhibition po
tential of virus entry into human cells. Moreover, all the suggested 
medications display potential inhibitory effects on the main protease 
3CLpro, the RNA-dependent RNA polymerase, and the spike glycopro
tein. All results were obtained by virtual screening and point towards the 
fact that plant-based compounds could be promising in SARS group 
related disease treatments. Despite these results, more experiments will 
have to be conducted to confirm or disprove the efficiency of plant-based 
compounds and metabolites against COVID-19. Currently, it is very 
problematic to determine which of the aforementioned or previously 
untested substances could become the main components in the fight 
against SARS-CoV-2 [3,18,19,21,22]. 

More than 450 herbs-natural compounds displayed their antiviral 
activity against SARS-CoV-2 and similar viruses. Many displayed the 
ability to inhibit protein pathways of the coronavirus host and interfere 
in various phases of the viral life cycle, such as viral entry into a host cell, 
membrane fusion, transcription, translation and replication processes, 
viral assembly, and viral release [18]. Evidence proving the effects of 
these plants and natural compounds was obtained using the same or very 
similar methods to those utilized in conventional medical research. The 
plants and secondary metabolites offer a great potential in the fight 
against coronaviruses, especially SARS-CoV-2 [18]. This was explored in 
the work of da Silva Hage-Melim et al. [23], in which essential oils 
components have been evaluated by means of molecular docking against 
several SARS-CoV-2 units including the main protease. A similar 
approach was reported by Wu et al. [8] with respect to traditional 
Chinese medicine and natural products. Molecular docking became the 
standard approach to screen for possibly active substances for a further 

evaluation by means of more demanding molecular dynamics simula
tions or further in vitro tests in a targeted drug development. Molecular 
docking studies of large data sets of compounds were reported 
[13,24–27]. Nevertheless, even the molecular docking step is 
demanding when a quick tool for shrinking a database of thousands of 
compounds to a reasonable time is desirable [24,25,28]. This can be 
achieved by means of machine learning (ML) prediction of docking 
scores [24,25,28]. 

Polyphenols represent the most numerous and widespread group of 
natural substances in the world of plants. Waste from the processing of 
coniferous trees represents a huge potential in terms of recovering 
substances of high added value [29,30]. The work of Jablonsky et al. 
[29] focused the authors' attention on summarizing the properties of 237 
metabolites identified from various literature sources. It compiles 25 
cytotoxic, 26 antioxidant, 42 antibacterial, 22 anti-inflammatory, 5 
antimutagenic, 5 pharmacokinetic, and 50 substances with inhibition 
activity found in conifer bark extracts. 

Herein, we focus on the His41 – Cys145 catalytic dyad of SARS-CoV- 
2 3CLpro to evaluate the inhibition potential of compounds (metabolites) 
found in conifer bark extracts [29], denoted as the W set. The results are 
compared with the findings of 866 COVID-19 related compounds [31], 
denoted as the S set. In addition, solubility (Log S, ESOL) and drug
likeness of best docking compounds in S and W sets are considered. 
Docking scores of five best compounds are further validated by means of 
molecular dynamics. Subsequently, the performance of ML docking 
scores prediction is evaluated according to Bucinsky et al. [26]. The 
accuracy of the ML predicted docking scores of W set compounds is 
presented including the time scales (docking vs. ML). 

2. Methods & computational details 

The 3D structure of SARS-CoV-2 3CLpro determined at room tem
perature (PDB ID: 6WQF) [32] was downloaded from the RCSB protein 
data bank [33]. The protease was stripped of water molecules, retaining 
only a single water molecule near His41 and Asp187 residues facilitating 
charge stabilization interactions on nearby residues [32]. The pdbqt file 
format of the 6WQF protein structure for the W set docking study has 
been prepared with AutoDockTools-1.5.7 as given by Bucinsky et al. 
[26] (keeping only polar hydrogens and using Gasteiger charges). Semi- 
flexible molecular docking calculations were performed using Auto
dock4.2.6 [34,35] with compounds having assigned Gasteiger charges. 
Potential maps were calculated in a 90 × 90 × 90 grid box, with a 
resolution of 0.275 Å, centered at x, y, z = (− 20, − 5, 15) Å. Fifty runs of 
the Lamarckian genetic algorithm have been performed with the total 
number of individuals in generation, maximum populations, and energy 
evaluations set to 300, 27,000, and 30,000,000, respectively. The 
resulting poses were clustered with a 2.0 Å tolerance and the hydrogen 
bond pattern was analyzed with the AutodockTools scripts [34,35]. 
Schematic 2D diagrams of the predicted binding mode were prepared in 
LigPlot+ software [36]. 

To evaluate the docking scores reliability further, five compounds 
with the lowest 6WQF docking scores were selected for molecular dy
namics (MD) simulations in GROMACS2018.7 [37–40] according to the 
original S set study of Steklac et al. [31]. In addition, MD simulations 
accounted also for Hentriacontane (C31H64), which achieved the 11th 
best docking score (for reasons elucidated in further texts). MD simu
lations of each compound accounted for five distinguished (randomly 
initialized) trajectories, see Supplementary Materials for further details. 

Absorption, distribution, metabolism, excretion (ADME) parameters 
as well as other physicochemical descriptors, lipophilicity, solubility, 
pharmacokinetics, and druglikeness. of the studied W set compounds 
were computed from a list of SMILES codes using the SwissADME 
website [41], see the Supplementary Materials for the full SwissADME 
csv file output. 

Machine learning predictions of the docking scores were carried out 
using TensorFlow [42], XGBoost [43], and SchNetPack [44] utilizing the 
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S training set for the ML train process itself according to Bucinsky et al. 
[26]. All W set docking scores, and their ML predictions are accounted 
for in the Supplementary Materials. 

3. Results 

3.1. Docking scores 

Molecular docking approaches can be used to obtain structural in
formation about the ligand-protein complexes and the binding affinity of 
the particular ligand-protein pair [45]. Although the predicted binding 
affinities vary greatly depending on the various docking protocols, 
docking scores calculated with the same docking protocol allow for a 
certain degree of comparison between the studied compound sets. The 
docking results for the W set of Jablonsky et al. [29] (red crosses) are 
compared with the results of the S set presented by Steklac et al. [31] 
(blue solid circles), see Fig. 1a and S1a. The docking scores correlation 
with ESOL log S solubility prediction is shown in Fig. 1b. The complete 
results of the W set are given in the Supplementary Materials. Com
pounds with docking scores below − 13 kcal/mol are on par with anti
viral drug candidates specifically designed to target SARS-CoV-2 3CLpro, 
such as peptidomimetic aldehydes 11a/11b [16] (− 13.48/− 12.89 kcal/ 
mol [31]), and have been considered suitable candidates for further 
derivatization and possible drug repurposing. There are four compounds 
in the W set (lariciresinol-9-p-coumarate, β-sitosterol acetate, sesqui
pinsapol B, and Campesterol) that have achieved this score, see Table 1, 
while 11 compounds have achieved a docking score below − 11 kcal/ 
mol, see Table 1 and Supplementary Materials. In addition, ca. half of 
the studied compounds have achieved a docking score below − 8 kcal/ 
mol and a quarter below − 10 kcal/mol, see Supplementary Materials. It 
is worthwhile to highlight that the best compound of the W set, 
(+)-lariciresinol 9′-p-coumarate (CID 11497085), has achieved a better 
docking score than the best compounds compiled by Steklac et al. [31]. 
The docking pose of the best scoring compound from the W data set 
((+)-lariciresinol 9′-p-coumarate; CID 11497085) is presented in Fig. 2. 

Interestingly, the docking scores of the W set have a vertical structure 

which suggests that these compounds are metabolites of a similar size 
(molecular weight, MW), see Fig. 1a and S1a. Nevertheless, the docking 
scores are seen to differ, thus allowing one to study the structure – 
functionality relation in these sets. For instance, 18 compounds are 
identified with MW of 136.23 Da (1,5-cyclodecadiene, 3-vinylcy
cloocten, tricyclene, α-thujene, α-pinene, α-fenchene, camphene, sabi
nene, β-pinene, myrcene, α-phellandrene, 3-carene, terpinolene, 
α-terpinene, (+)-β-phellandrene, limonene, Z-β-ocimine, γ-terpinene), 7 
compounds have MW 154.25 Da, 38 compounds have MW 204.35 Da, 
10 compounds have MW 222.37 Da, 6 compounds have MW 290.5 Da, 
and 6 compounds have MW 316.5 Da, see Supplementary Materials. The 
compounds studied in the W set form a well-defined set with respect to 
their MW, ranging from 100 to 550 Da, with only one exception, the 
tannic acid (CID 16129778) with MW of 1701.20 Da (see Fig. S1b). The 

Fig. 1. Docking scores of the W (red crosses) and S (blue dots) sets with respect, to the number of atoms (a), and ESOL log S solubility (b). Tannic acid is not shown in 
these figures, as it is outside of the displayed range. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
Top 10 scoring compounds from the W data set identified by their CID in Pub
Chem database and trivial name, together with achieved docking score and list 
of predicted interacting amino acids.  

CID Compound name Score 
[kcal/mol] 

Predicted interacting 
amino acids 

11497085 (+)-Lariciresinol 9′-p- 
coumarate 

− 15.12 Thr25, Ser144, His163, 
Glu166, Thr190 

5354503 β-sitosterol acetate − 14.14 Thr26 
101767126 Sesquipinsapol B − 13.39 Thr24, Asn142, Gly143, 

Glu166, Thr190 
173183 Campesterol − 13.25 Thr26 
101928787 Ehletianol C − 12.93 Ser144, His163, Glu166, 

Gln189 
13783149 Stigmastan-3,5-diene − 12.38 – 
5281712 Astringin − 12.01 Phe140, Asn142, Ser144, 

His163, Thr190, Gln192 
70698172 Vladinol D − 11.77 Ser144, His163, Glu166, 

Gln189, Thr190 
38347252 Junicedric acid − 11.47 Asn142, Gly143, Thr190, 

Gln192 
5281716 Isorhapontin − 11.39 Gly143, Ser144, His163, 

Glu166, Thr190, Gln189  
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Fig. 2. The putative docking poses of the best scoring compound of the W data set (CID 11497085) in (a) 3D and (b) 2D representation. The amino acids participating in the formation of hydrogen bonds are fully drawn 
and the predicted hydrogen bonds are represented by dashed green lines (a). Amino acids that lie in proximity of the docked compound, thus participating in non-covalent pair-wise interactions, are depicted by red 
arches (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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docking score (− 6.15 kcal/mol) of this compound was calculated with a 
restricted number of torsional degrees of freedom, as its maximum 
number exceeded the limits of the docking software. Therefore, the 
rotation around the bonds to alcohol moieties on terminal benzenes, as 
well as around the bonds to terminal carbonyl groups, had been 
restricted, thus fixing the geometry of 3,4,5-trihydroxybenzoates. 

The number of predicted hydrogen bonds between the docked 
compound and 3CLpro ranges from 0 to 8, with as much as 95 compounds 
not having any predicted bonding pattern, while 48 compounds have 
only one predicted hydrogen bond predicted. It should be noted that up 
to 164 W compounds do not have polar hydrogens, suggesting a strong 
aliphatic character within this set. The ability of such compounds to 
form hydrogen bonds is thus severely limited, i.e., such compounds can 
act only as a hydrogen bond acceptor if, e.g., a keto moiety is present. In 
this case, the hydrogen bonding pattern is linked to predicted inhibitory 
activity, as there is a visible decrease in the docking score with respect to 
the number of predicted hydrogen bonds, see Fig. 3a. The commonly 
predicted hydrogen bonds are formed with the amino acids from S3-S5 
subsides (Glu166, Gln189, Thr190) that can tolerate various function
alities. Direct interactions with the amino acids that form the catalytic 
dyad (His41, Cys145) have been predicted in two cases (CID 445154 and 
CID 638034). Hence, the W set compounds would in the vast majority 
act as steric inhibitors, rather than direct inhibitors of the catalytic 
center of 3CLpro. 

Furthermore, it should be noted that compounds from this data set 
have achieved excellent values of ligand efficacy (the docking score 
divided by the number of non‑hydrogen atoms in the compound) 
compared to compounds from the S set with corresponding molecular 
weights (number of atoms), see Fig. 3b. This suggests that their in
teractions with cavity atoms are rather strong, and the docking score is 
not driven by the number of the hydrogen interactions themselves. Such 
compounds offer a potential target for further structure derivatization to 
increase the inhibitory activity and/or improve other physicochemical 
properties. 

3.2. Solubility and druglikeness 

Although the S set compounds show better solubility predictions 
compared to W, the best docking compound ranks at the solubility limit 
of − 6, see Fig. 1b. In addition, several W set compounds have the ESOL 
log S value better (larger) than − 4 and docking scores below − 10 kcal/ 
mol (astringin, vladinol D, isorhapontin, piceid, lariciresinol, hydrox
ymatairesinol, retinol acetate, isolariciresonol), see Fig. 1b. It should be 
noted that even compounds from the S set that are considered suitable 
therapeutics show solubility predictions with pure ESOL log S rankings 
of − 8. The druglikeness (SwissADME radar plots) potential of the best 
compounds from the S and W set is shown in Figs. S2 and S3 for brevity. 
The W set compounds β-sitosterol acetate, Campesterol, and Stigmastan- 
3,5-diene, show a considerably different pattern with respect to INSATU, 
POLAR criteria, and solubility criteria. The radar plots of the remaining 
W set compounds in Fig. S3 show a behavior similar to the best docking 
compound radar plots of the S set in Fig. S2. Interestingly, the 11th best 
docking score in the W set achieved the aliphatic hydrocarbon com
pound, Hentriacontane (C31H64) which has the most negative (− 11.0) 
ESOL log S value. 

Although several compounds contained in the W set did not reach the 
top docking scores, their antiviral effects and inhibitory potential 
against the main protease of the SARS-CoV-2 virus, 3CLpro, have been 
demonstrated in several studies. Bahun et al. [46] dealt with an appli
cation of molecular docking as well as molecular dynamics supported by 
in vitro assays to determine the inhibitory potential of various plant 
polyphenols against the 3CLpro protease. Resveratrol (CID 445154) and 
quercetin (CID 5280343) were among the five compounds that showed 
>50% 3CLpro inhibition. These substances have obtained docking scores 
below − 8 kcal/mol in our study, namely resveratrol − 8.58 kcal/mol and 
quercetin − 9.43 kcal/mol, see Supplementary Materials. There is a 
growing number of publications that have reported that resveratrol has 
promising therapeutic effects against lung diseases by inhibiting 
oxidative stress, inflammation, aging, fibrosis, and cancer [47]. It was 
suggested that it can act as an inhibitor of the ACE2 receptor and prevent 
the spike glycoprotein:ACE2 complex formation and hence the entry of 

Fig. 3. (a) Average docking score according to the number of predicted hydrogen bonds between the protein target and the docked compound; (b) ligand efficacy of 
the W (red dots) and S (blue dots) sets. Tannic acid is not shown in this figure as it is outside of the displayed range. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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the virion into host cells [48]. Quercetin can protect against SARS-CoV-2 
infection by impeding virion entry into host cells by modifying spike 
glycoprotein and/or ACE2, or repressing replication inside the cells by 
inhibiting 3CLpro [49–51]. Based on the results of a randomized 
controlled study presented by Shohan et al. [52], it can be stated that 
quercetin may be therapeutically effective in reducing the time to clin
ical improvement in combination with antiviral drugs. Among all 
compounds, epicatechin (CID 72276) and kempferol (CID 5280863) 
were predicted to exert the highest druglikeness and lowest toxicity 
potentials in the work of Al-Shuhaib et al. [20]. Epicatechin and cate
chin (with a docking score against 3CLpro of − 9.85 and − 9.42 kcal/mol, 
respectively) could also act as potential inhibitory agents to prevent 
binding of ACE2 with the SARS-CoV-2 spike glycoprotein [20,53]. 

3.3. Molecular dynamics 

Molecular dynamics simulations have been employed to overcome 
the rigid protein picture and to verify the conformational stability of a 
compound-protein complex in water solvent. Five MD runs of the top 
scoring compound, (+)-Lariciresinol 9′-p-coumarate (CID: 11497085), 
have been carried out and validated by RMSD of compounds' heavy 
atoms with respect to the protein backbone and the number of hydrogen 
bonds; see Fig. 4. 

Two runs achieve equilibrium at the start of the MD simulation with 
averaged RMSD value ca. 0.3 nm, indicating only minor conformational 
changes that can be attributed to small drifts in the trajectory, see 
Fig. 2a. Three additional MD runs manifest non-negligible motion of the 
compound in the protein cavity. Two runs exhibit RMSD values oscil
lating around 0.6 nm, whereas the highest observed RMSD of the final 
simulation is ca. 1.0 nm. Upon visualization of MD trajectories, it is 
revealed that an increase in RMSD values up to 0.6 nm is associated with 
an elevation of the methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate moi
ety from the protein surface. A further increase to 1.0 nm originates from 
its rotation around the bond with the central furan group. However, 
both 4-hydroxy-3-methoxyphenyl moieties remain firmly attached to 
the amino acid residues in the protein cavity, as illustrated by the time 
evolution of the number of hydrogen bonds; see Fig. 4b. The number of 
hydrogen bonds/interactions within the MD simulation is ranging from 
2 (for runs exhibiting higher RMSD) to 8 (for runs with a higher 
conformational stability). One hydrogen bond, between hydroxyl 
hydrogen on methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate moiety and 
Thr25, is consistently broken during all MD simulations. This indicates a 

favoring conformational stability of the compound in the protein cavity 
and proves its potential to inhibit the active site of the SARS-CoV-2 
3CLpro unit. 

A similar approach has been applied to the remaining four best 
scoring compounds (CIDs: 5354503, 101767126, 173183, 10192877), 
as well as to Hentriacontane (CID: 12410), with the graphical repre
sentations found in the Supplementary Materials; see Fig. S4. Inclusion 
of Hentriacontane (11th best docking score) serves as an illustration of 
the time evolution of the monitored parameters for a compound with no 
conformational stability in the cavity pocket. The absence of potential 
hydrogen bond donor/acceptor groups does not allow the formation of 
hydrogen bonds, and its high rotational flexibility leads to a gradual 
increase in RMSD value that does not reach equilibrium during the MD 
simulations, see Fig. S4. 

3.4. Machine learning 

ML prediction of docking scores is presented in Fig. 5 and Table 2. It 
was found that the S set trained ML approaches can predict the W set 
docking scores with a reasonable accuracy. SchNetPack yields the best 
slope (k) value and the worst mean square error (MSE), and R2. The 
standard error of the docking calculations is assumed to be between 2 
and 3 kcal/mol [34]. Five, five, and nine compounds have the docking 
score deviation, expected vs. predicted, larger than 2 kcal/mol for 
TensorFlow, XGBoost and SchNetPack (one, two, and one compound 
larger than 3 kcal/mol), respectively. Predictions of the docking score of 
tannic acid are the most deviated. The absolute error for this compound 
is 8.683, 5.084 and 14.397 kcal/mol for TensorFlow, XGBoost and 
SchNetPack, respectively. The prediction of docking scores of com
pounds with more than 120 atoms was found problematic in the original 
work of Bucinsky et al. [26], which is confirmed herein for the case of 
the tannic acid. The agreement between the AutoDock calculated (ex
pected) and ML predicted docking scores improves after leaving this 
compound out of the linear correlation, see Table 2. 

Aside from the achieved accuracy of the docking scores prediction, 
main ML advantage is the timing. The AutoDock calculation of W set 
docking scores took 28 days and 4 h of CPU time (average CPU time per 
compound was ca. 3 h). On the contrary, the ML prediction of the W set 
docking scores is at least five orders of magnitude faster than the mo
lecular docking. The process of submitting the W set .xyz file into the 
descriptor and prediction protocol of TensorFlow took 14.6 s, i.e., 14.3 s 
for descriptor generation and 0.3 s for the actual prediction of docking 

Fig. 4. MD time plot evolution of: RMSD values of compounds' heavy atoms with respect to the protein backbone (a); the number of hydrogen bonds to SARS-CoV-2 
3CLpro (b); of (+)-Lariciresinol 9′-p-coumarate (CID: 11497085). 
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scores, see Table 2. In the case of XGBoost, the prediction took 11.2 s, i.e. 
11.1 s for descriptor generation and 0.1 s for the actual prediction of 
docking scores, see Table 2. Finally, the total prediction time for 
SchNetPack docking scores was 10.5 s, see Table 2. 

4. Conclusions 

The SARS-CoV-2 pandemic shows the danger of zoonotic viruses for 
humankind and illustrates the need for the treatment of such diseases. 
Moreover, the rate of virus mutation indicates the necessity for quick 
drug search and discovery, which can be facilitated by fast and cost- 
efficient computational methods. Virtual screening can lead to discov
ery of potential virus inhibitors or their precursors, either from sets of 
commonly used therapeutic agents or from naturally occurring 
compounds. 

Herein, we have employed in silico molecular docking methods and 
machine learning prediction protocols to determine the binding affinity 
pattern to SARS-CoV-2 main protease 3CLpro of 234 naturally occurring 
compounds from softwood bark and to identify their potential inhibition 
activity. Compounds such as (+)-lariciresinol 9′-p-coumarate, β-sitos
terol acetate, sesquipinsapol B and campesterol all exhibit an excellent 
docking score and their predicted free energies of binding (docking 
scores) are comparable with those of the known 3CLpro inhibitors, 
indicating their promise as potential drug candidates against COVID-19. 
In addition, 50% of the compounds can be identified as suitable for a 
further derivatization. However, it is important to consider the limita
tions of the molecular docking approach, and thus further validation of 
the predicted affinity by experimental means is highly warranted for the 
best scoring compounds. The semi-flexible molecular docking results 
have been verified for the five best scoring compounds using MD sim
ulations. The MD results show a favoring conformational stability of 
these compounds in the SARS-CoV-2 3CLpro protein cavity. 

Machine learning prediction of the docking score is found to be fast 
and reliable for a quick pick-up of suitable compounds which number 
can be further reduced by means of more accurate, but time-consuming 
methods (such as molecular docking or molecular dynamics), prior to 
the in vitro trials. 
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Fig. 5. ML docking score prediction comparing to the expected AutoDock 
reference: blue circles TensorFlow (blue dotted line), red triangles XGBoost (red 
dashed line), and green squares SchNetPack (green dash-dotted line). Ideal y =
x line is black solid and black ‘loosely dotted’ lines define the y = x ± 2 kcal/ 
mol interval range. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 2 
Correlation between ML docking score prediction and the expected AutoDock 
reference: linear fit (y = k.x + q), including standard deviations and R2, and 
MSE. Timings (in CPU seconds) for the W set prediction are amended and split 
into descriptor generation and score prediction, where appropriate.  

W set 

Approach k q σk σq R2 MSE 

TensorFlow 0.731 − 1.917 0.026 0.221 0.772 1.002 
XGBoost 0.731 − 2.314 0.021 0.182 0.833 0.715 
SchNetPack 0.935 − 0.555 0.041 0.350 0.689 1.570   

W set without the Tannic acid (CID 16129778) 

Approach k q se ie R2 MSE 
TensorFlow 0.750 − 1.721 0.019 0.159 0.875 0.683 
XGBoost 0.741 − 2.211 0.019 0.164 0.865 0.607 
SchNetPack 0.967 − 0.222 0.027 0.232 0.844 0.687   

Timings 

Approach Descriptor generation Score prediction 

TensorFlow 14.3 0.322 
XGBoost 11.1 0.085 
SchNetPack – 10.5a  

a This is the total prediction time, as SchNetPack does not separate descriptor 
generation and score prediction times. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
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