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Insulin resistance plays a key role in the development of type 2 diabetes. It arises from a combination of genetic predisposition
and environmental and lifestyle factors including lack of physical exercise and poor nutrition habits. The increased risk of type
2 diabetes is molecularly based on defects in insulin signaling, insulin secretion, and inflammation. The present review aims to
give an overview on the molecular mechanisms underlying the uptake of glucose and related signaling pathways after acute and
chronic exercise. Physical exercise, as crucial part in the prevention and treatment of diabetes, has marked acute and chronic
effects on glucose disposal and related inflammatory signaling pathways. Exercise can stimulate molecular signaling pathways
leading to glucose transport into the cell. Furthermore, physical exercise has the potential to modulate inflammatory processes by
affecting specific inflammatory signaling pathways which can interfere with signaling pathways of the glucose uptake. The intensity
of physical training appears to be the primary determinant of the degree of metabolic improvement modulating the molecular

signaling pathways in a dose-response pattern, whereas training modality seems to have a secondary role.

1. Introduction

Insulin resistance plays a key role in the development of
type 2 diabetes and is caused by genetic predisposition
and environmental and lifestyle factors including physical
inactivity and poor nutrition habits [1]. These risk fac-
tors also contribute to obesity, which is a major determi-
nant of glucometabolic impairment and systemic subclinical
inflammation [2]. Physical activity, as cornerstone in the
prevention and treatment of diabetes, has marked acute
and chronic effects on the regulation of glucose uptake
and on inflammatory processes [3, 4]. The glucometabolic
impairment in type 2 diabetes results from alterations of
different signaling pathways modulating glucose uptake com-
prising insulin- and exercise-induced signaling pathways.
However, during exercise, glucose uptake is normal or near
normal [5], pointing to an insulin-independent activation
of relevant signaling pathways mediating exercise-induced
glucose uptake. An insulin-resistant state is also associated
with changes in immunological and hormonal cross talk

involving interleukin 6 (IL-6), tumor necrosis factor alpha
(TNF-«a), or adiponectin. These cytokines and adipokines
are part of inflammatory processes and immune defense
and can also affect molecular signaling pathways modu-
lating glucose uptake. Behavioral interventions as well as
unstructured physical activity have been shown to positively
influence inflammatory processes, which was accompanied
by improvements in glucose uptake [6, 7].

Physical exercise is distinguished primarily in resistance
training and endurance training. Endurance training imposes
a high-frequency (repetition), low-power output demand on
muscular contraction, whereas resistance exercise imposes
a low-frequency, high-resistance demand [8]. These two
traditional modalities can also be performed as high-intensity
training (HIT). This training form comprises alternating
cycles of intensive and extensive phases involving endurance
training, also known as high-intensity interval training
(HIIT), and resistance training or the supramaximal exercise
form of sprint interval training (SIT) [9, 10].
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The overarching aim of this review is to summarize the
mechanisms and molecular signaling pathways mediating
glucose uptake as well as related changes in the release of
immune mediators upon acute and chronic exercise expo-
sure. Furthermore, we aim to assess the role of training
intensity and training modality for the modulation of the
aforementioned processes.

2. Search Strategy and Evaluation of Data

We searched PubMed/MEDLINE without language restric-
tion from database inception until January 20, 2016, using
the following search terms: “signaling OR pathway OR
GLUT4 OR glucose OR inflammation OR inflammatory
OR cytokine” AND “exercise OR training OR endurance
exercise OR resistance exercise OR contraction”. Reference
lists of review articles and all included articles identified
by the search were also examined for other potentially
eligible studies. The search was limited to human and animal
studies. Duplicates were removed. Search results for relevant
intervention studies are summarized in Table 1 and shown in
detail in Tables 2, 3, 4, and 5.

The current literature does not provide a clear definition
for acute or chronic effects of training [11]. The training effect
is influenced by the time period between termination of the
last bout of exercise and measurement as well as by training
intensity [4]. Measurements of training effects within a time
period of 0-72h after exercise termination can show acute
effects, even in a chronic training process, which makes it
difficult to distinguish between acute and chronic training
effects. In this review, we define the effect of chronic training
as the sum of all training sessions, according to previous work

[4].

3. Effect of Exercise on Molecular
Signaling Cascades

3.1. Insulin Receptor Substrate 1 (IRS-1)/Phosphatidylinositol
3-Kinase (PI3-K) and Akt/Protein Kinase B (Akt/PKB) Path-
ways. In conditions of rest, insulin regulates glucose trans-
port into the muscle due to activation of a protein signaling
cascade. After binding of insulin to its receptor, the insulin
receptor is autophosphorylated. Insulin receptor substrate
1 (IRS-1) binds to the phosphorylated tyrosine residues of
the insulin receptor and is subsequently phosphorylated
by the tyrosine kinase of the insulin receptor. Binding of
IRS-1 to the p85 subunit of phosphatidylinositol 3-kinase
(PI3-K) results in activation of a PI3-K-dependent pathway
comprising phosphoinositide-dependent kinase (PDK) and
atypical protein kinase C (a«PKC) [110]. Key downstream
molecules modulating translocation of glucose transporter
type 4 (GLUT4) to the plasma membrane comprise, besides
Akt/protein kinase B (Akt/PKB), Ras-related C3 botulinum
toxin substrate 1 (Racl), the TBC1 domain family member 1
(TBCID1), or the Akt substrate of 160 kDa (AS160) [32, 110,
111] (Figure 1).

In type 2 diabetes patients, despite a normal amount of
GLUT4 transporters [112], insulin fails, in general, to induce
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adequate insulin signaling as assessed by IRS-1 tyrosine phos-
phorylation, Akt/PKB activity, and translocation of GLUT4
to the cell membrane [113-116].

Exercise activates the insulin-signaling pathways, facili-
tating GLUT4 expression and translocation to the cell mem-
brane. The effects of acute and chronic exercise on glucose
uptake and insulin signaling are shown in Table 1.

Acute continuous endurance exercise with 45-60 min
of training at 65-75% of maximum oxygen consumption
(VO,may) leads to higher rates of tyrosine phosphorylation of
insulin receptor and IRS-1/2 and to increased activity of PI3-
K in muscle of untrained healthy as well as insulin-resistant
individuals [12-15]. In contrast, short and light resistance
with 5 sets of 8 repetitions of isokinetic leg extension
shows no effect in endurance trained athletes [16] (Table 2).
Furthermore, acute muscle contraction activates molecules of
the distal insulin signaling which are known to be involved
in GLUT4 translocation such as Racl, AS160, and TBCID1
[16, 47, 48] which will be described in more detail below.
Recent animal studies have shown that only very intense
muscle contraction in situ via sciatic nerve stimulation of
multiple muscle types with 2-5V as well as one bout of
intense swimming for 120 min or 60 min of running with a
speed of 22 m/min and incline 0f 10% led to an acute increase
in phosphorylation and activity of key molecules like the
different AKT isoforms (AKT-1, AKT-2, and AKT-3) and
AS160 [49-51] (Table 3).

In contrast to these studies, some human as well as animal
studies reported no effect of acute exercise on proximal
insulin signaling like changes in insulin receptor amount,
IRS-1 phosphorylation, or PI3-K activity [16-21]. In the study
of Wojaszewski et al. [21], one-legged cycling exercise for
60 min at intensity of 18-23% of VO,,,,., was not sufficient to
induce changes in proximal insulin signaling in young trained
individuals. Furthermore, 60 min of cycling at 75% VO,
did not lead to changes in proximal signaling in untrained
and obese individuals [19, 20]. In line with this, some animal
studies found that a running speed of 18 m/min for 45 min
as well as electrical stimulation with 1-3V were also not
sufficient to induce insulin signaling in skeletal muscle [17,
18].

The reason for these discrepant results in human and
animal studies might lie in the differences in the intensity
of training conditions in acute exercise. Moderate endurance
exercise seems to acutely increase proximal signaling in
untrained individuals [12, 13, 15], whereas short and light
resistance and endurance training in trained individuals
shows no effect [16, 21] (Tables 2 and 3). In addition, the
time point after exercise when the effect of exercise is studied
appears to be highly important. A recent review from Frosig
and Richter identified a critical time point of 3 to 4 h after
exercise for exercise-induced increase in glucose uptake indi-
cating a time-dependent course in the activation of exercise
induced molecular signaling [22], which may be the reason
for the unaltered signaling in measurements 16 and 24 h after
exercise termination [19, 20]. Though training intensity and
the time point of investigation appear to be important for
exercise-induced activation of insulin signaling, there is still
a lack of knowledge about the underlying mechanisms of
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TaBLE 1: Effect of acute and chronic exercise on molecular signaling pathways.
Metabolic factor A_cu.te Ch.ro.mc Exercise characterl.stlcs (intensity, References
training training modality)
Moderate-to-intensive exercise for
Proximal insulin signaling 1 1 untrained and high-intensity exercise [12-22]
(IRS-1, PI3-K, PDK, «PKC) for trained individuals, independent of
modality
AMPK 1 1 Dose-response patterp, independent of (8, 23-31]
modality
Ca®*-calmodulin axis 1 1 Dose-response pattern, independent of [8, 27, 31-35]
modality
mTOR/S6K 1 1 Dose-response pattern, independent of [29, 36-46]
modality
Downstream targets: 1 1 Dose-response pattern for AS160 and (16, 47-60]
AS160, TBCID], Racl Racl, independent of modality ’

i s Dose-response pattern, independent of 2 6177
IKK/NF-«B pathway 11 1 modality (2, ]
Inflammasome pathway . m Dose-response patter1.1, independent of [2, 78-80]

modality
Dose-response pattern, independent of
67-69, 81-85
JNK/MAPK pathway M i modality [ ]
Adiponectin 1 1 Intense exercise, 1r.1dependent of [3, 5,53, 86-94]
modality
11711, consistent findings in animal models and humans; 1/, preliminary evidence from animal models and/or humans; —, no impact; “animal studies

showed no effects; *increase in skeletal muscle and increase/decrease in adipose tissue; aPKC, atypical PKC; AMPK, AMP-activated protein kinase; AS160, Akt
substrate of 160 kDa; Ca, calcium; CaMKII, Ca**/calmodulin-dependent protein kinase 2; IRS-1, insulin receptor substrate 1; IKK/NF-xB, IxB kinase/nuclear
factor kappa B; JNK, C-Jun N-terminal kinase; MAPK, mitogen-activated protein kinases; mTOR/S6K, mammalian target of rapamycin/ribosomal S6 kinase;
PDK, phosphoinositide-dependent kinase; PI3-K, phosphoinositide 3-kinase; Racl, ras-related C3 botulinum toxin substrate I; TBC1D1, TBCI domain family

member 1.

acute exercise and effects of different training factors, such
as modality and intensity, on insulin signaling.

Chronic exercise can also lead to higher rates of tyrosine
phosphorylation of key molecules in the insulin signaling
cascade in muscle of healthy as well as insulin-resistant
individuals [52, 95, 96]. A recent exercise study observed
enhanced whole-body insulin action and increased Akt and
AS160 phosphorylation after 10 weeks of chronic resis-
tance training with exercises for upper and lower body
and running endurance training in untrained individuals
[52] indicating an independence of exercise modality. Com-
pared to untrained controls, trained humans show increased
insulin-stimulated PI3-kinase activation. The positive associ-
ation between PI3-kinase activation and endurance capacity
(VO,max) indicates that regular exercise leads to greater
insulin-stimulated IRS-1-associated PI3-kinase activation in
human skeletal muscle [14]. This is in line with recent animal
studies showing that intense chronic endurance training in
mice with a running speed of 20-32 m/min on a treadmill
increases total AS160 phosphorylation [53].

3.2. AMPK Signaling Pathway. AMPK is a metabolic master
switch regulating several intracellular systems and consists
of two catalytic alpha-isoforms: a2- and «-AMPK. AMPK is
activated by phosphorylation by kinases such as liver kinase
B1 (LKBI) [117] and is regulated by cellular energy demand.

Increasing adenosine monophosphate/adenosine triphos-
phate (AMP/ATP) and creatine/phosphocreatine (Cr/PCr)
ratios, reflecting for instance the glucose deprivation state
[118], are important stimuli for AMPK activity. In line with
this, activation of AMPK is positively associated with an
increased skeletal muscle glucose uptake [23].

In obese diabetic and nondiabetic humans, exercise-
induced stimulation of the AMPK activity is attenuated but
can be fully activated by exercise with higher intensities of
training as compared to healthy lean controls [24, 25]. Acute
cycling endurance exercise at a moderate intensity of 50-70%
of VO,,,.x increased AMPK activity and resulted in a 2.7-
fold increase in mRNA expression of AMPK«l and AMPKa2
[24, 25].

Activation of AMPK by acute cycling exercise led to an
enhanced glucose uptake in human skeletal muscle [26].
AMPK phosphorylation and activity showed an intensity-
dependent response pattern. More intense (80% of VO,,,...)
acute cycling endurance exercise with the same amount of
energy expenditure (400 kcal) resulted in a higher activation
of signal transduction compared to less intense (40% VO,,,...)
endurance exercise [27]. High-intensity interval training con-
sisting of repeated sessions of intense work like all-out sprints
for 30 sec (SIT) induces, with a minimum of effort (<80 kJ
total), an increased phosphorylation of AMPK. Though this
kind of training appears to mimic resistance exercise because
of the intense, short-term muscle work, phosphorylation and
activity of downstream targets linked to hypertrophy like
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FIGURE 1: Interaction of important key players in exercise mediated glucose uptake of human muscle cells. A proposed model for the key
players in glucose transport after physical exercise. «PKC, atypical PKC; AMP, adenosine monophosphate; AMPK, AMP-activated protein
kinase; AS160, Akt substrate of 160 kDa; Ca, calcium; CaMKII, Ca**/calmodulin-dependent protein kinase 2; Cr, creatine; GLUT-4, glucose
transporter 4; HDAC4/5, histone deacetylase 4/5; IL-6, interleukin 6; IRS-1, insulin receptor substrate I; LKB-1, liver kinase Bl; MEF2, myocyte
enhancer factor-2; MAPK, mitogen-activated protein kinases; mTOR, mammalian target of rapamycin (C1 complex 1 and C2 complex 2);
PDK, phosphoinositide-dependent kinase; PI3-K, phosphoinositide 3-kinase; PKB, protein kinase B; Racl, ras-related C3 botulinum toxin
substrate I; TBC1D1, TBCI domain family member 1; TNF-«, tumor necrosis factor alpha; WAT, white adipose tissue.

p70 ribosomal S6 kinase and 4E binding protein 1 were
unchanged [28] (Table 2).

While some acute exercise studies in animals showed
that AMPK-deficient mice and LKB-deficient mice had
a normal contraction-induced glucose uptake, which was
independent of the knockout of the catalytic alpha-isoforms
of AMPK [97, 98], other studies found that pharmacological
inhibition of AMPK and LKB activity blunted contraction-
induced glucose disposal in animal models by electrical
stimulation [99, 100]. LKBI1 knock-out in muscle provoked
a reduced activity of the AMPKa2 isoform, and transgenic
mice expressing a kinase-dead, dominant negative form of
the AMPKa2 showed also a reduced AMPK activity and
blunted glucose uptake. The authors assumed that either the
maximal force production was reduced in this muscle, raising
the possibility that the defect in glucose transport was due to
a secondary decrease in force production and not impaired

AMPKa2 activity, or the kinase-dead, dominant negative
form of the AMPKa2 had a negative influence on glucose
uptake [99, 100].

Chronic endurance as well as resistance exercise also
induces AMPK activation and leads, furthermore, to changes
in gene expression favoring GLUT4 translocation. AMPK
phosphorylation is more strongly increased after 10 weeks
of cycling at 65%-90% of maximum performance (W,,,,)
exercise than after 10 weeks of leg-focused resistance training
with an intensity of a 4-5-repetition maximum (RM) [8,
29]. In animal studies, chronic treadmill running as well
as resistance training in the form of ladder climbing with
weights activated AMPK phosphorylation and up-regulated
expression of AMPK in rat pancreatic islets and skeletal
muscle [30, 31] indicating that AMPK upregulation is inde-
pendent of exercise modality in different tissues (Tables 2 and
3).
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In light of the animal studies showing that AMPK-
deficient mice have a normal contraction-induced glucose
uptake [97, 98] other molecular pathways, comprising the
Ca’*/calmodulin signaling pathway, appear to modulate
exercise-induced glucose uptake and will be described in the
following subsections.

3.3. Ca**/Calmodulin Signaling Pathway. Changes of the
calcium concentration in skeletal muscle cells lead to activa-
tion of signaling cascades that influence cellular metabolism
including glucose uptake [119]. In diabetes, the calcium-
(Ca®*-) dependent signaling pathway and subsequently glu-
cose uptake are impaired [120]. Genome-wide studies for
DNA methylation have shown that first-degree relatives of
patients with diabetes have already altered DNA methylation
of genes encoding proteins involved in calcium-dependent
signaling compared to healthy individuals without positive
family history. However, DNA methylation decreased after 6
months of cycling and aerobic exercise [33].

As result of skeletal muscle contraction, cytosolic
Ca?* concentration and consequently the number of
Ca**/calmodulin complexes increase. Further important
key players in the Ca®'/calmodulin signaling pathway
are the Ca**/calmodulin-dependent protein kinases
(CaMKs). These components are critical for exercise-
induced glucose uptake [32]. Downstream components of
the Ca**/calmodulin signaling pathway are members of
the histone deacetylase (HDAC) family and proteins of the
myocyte enhancer factor 2 (MEF2) family leading to an
enhanced expression rate of GLUT4 [8].

Ca®" release and phosphorylation of CaMKII after acute
endurance cycling exercise depend on training intensity. A
matched amount of work with different intensities of 40%
and 80% of VO, . led to an increase in CaMKII phosphory-
lation by 84% immediately after high-intensity but not low-
intensity cycling endurance exercise indicating that greater
force outputs result in enhanced Ca**/calmodulin signaling
[27]. Furthermore, also the duration of endurance exercise
affects the Ca**/calmodulin signaling pathway activity, with
higher activity after longer duration. A 90-min acute cycling
endurance exercise resulted in a progressive increase of
CaMKII activity during exercise peaking at 90 min of training
[34]. In line with this, a recent study comparing acute HIT
cycling with traditional continuous cycling exercise showed a
marked increase of CaMKII activity by HIT despite the same
amount of total work after 30 min of 70% W, [35] (Table 2).

In accordance with the acute exercise studies, a recent
animal study showed that chronic endurance training on
a treadmill increased the phosphorylation of CAMKII in
pancreatic islets of rats in a dose-response manner [31].

In experimental mouse studies, incubation with the
Ca?*/calmodulin inhibitor KN-93 decreased skeletal muscle
glucose transport [121] and inhibited electrical contraction-
induced CaMKII phosphorylation [102]. In addition to the
decrease of contraction-induced glucose uptake via electrical
stimulation, inhibition of CaMKII resulted in an increase
of AMPK activity in a recent mice study, pointing to
overlapping mechanisms between these two key signaling
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pathways: the Ca®*/calmodulin signaling pathway and the
AMPK-signaling pathway [103]. Another key player in the
context of glucose uptake-related signaling is the protein
kinase mammalian target of rapamycin (mTOR) that will be
addressed in the following section.

3.4. Mammalian Target of Rapamycin/Serine Kinase 6
(mTOR/p70°%®) Pathway. MTOR is a serine/threonine pro-
tein kinase that integrates diverse environmental cues by
translating them into appropriate cellular responses. Dis-
rupting the mTOR signaling pathway causes a decrease in
glucose uptake in multiple cell types such as brain, muscle,
and adipose tissue [122-124] and can lead to insulin resistance
[125].

High-force stimuli like resistance training lead to muscle
adaptation preparing skeletal muscle for more intensive
stress. This muscle adaptation which appears to be dysregu-
lated in an insulin-resistant and diabetic state is initiated by
the activation of the mTOR/p70°* pathway [36, 126, 127].
This protein complex activates signaling cascades including
binding proteins (elF4E), initiation factors (4E-BP1), and
elongation factors (eEF2) leading to protein synthesis and
subsequently to cellular hypertrophy [128]. MTOR also
stimulates focal adhesion kinases (FAK) and increases FAK-
phosphotransferase activity in order to activate muscle pro-
tein synthesis [129]. This adaptation is related to the intensity
of the muscle contraction, increasing with higher training
load. Acute cycling exercise of 70% of VO, as well as leg-
specific strength exercises of 70% of 1-RM increased mTOR
phosphorylation. In particular, resistance training leads to
higher activation of mTOR signaling compared to traditional
endurance exercise despite a huge difference in workload
(660 versus 130 kcal) [29, 37-39].

Protein synthesis is regulated, in particular, by
contraction-induced activation of the multiprotein complex
mTORCIL. This protein complex functions as a sensor or
control unit which regulates the translation of proteins by
assessing the cellular environment for optimal conditions
and initiating translation of mRNA. Besides physical
activity, potent stimulators of the mT'OR/S6K pathway are
insulin, insulin-like growth factor (IGF-1), cytokines like
1L-6, sufficient amino acid levels in skeletal muscle, and
full-energy depots [130].

During acute endurance as well as resistance exercise,
mTOR signaling is inhibited via AMPK phosphorylation and
signaling to suppress high-energy demanding procedures
such as protein synthesis [40-42]. However, after exercise,
muscle protein synthesis increases in parallel to the activation
of Akt/PKB (protein kinase B), mTOR, S6K, and eEF2.

One bout of intense treadmill walking at 70% of HR .,
for 45 min in untrained old men as well as 70% of VO,
of one leg exercise for 60 min in untrained healthy young
men led to significant activation of the insulin signaling
as well as of the mTOR/SK6 pathway [43, 44]. In line
with this, recent exercise studies showed that acute cycling-
based HIT or intense leg-specific strength training [40]
activates the mTOR signaling pathway in human muscle
[39, 45]. Exercise-induced activation of mTOR signaling in



24

leg-specific endurance and resistance training appears to be
time-dependent with a continuous increase after termination
of physical activity [40, 43]. In line with the human studies,
mTOR signaling was upregulated in acute exercise studies in
animals comprising treadmill running and electrical stimula-
tion, with a time-dependent answer after exercise termination
[46] (Tables 2 and 3).

Chronic exercise studies also demonstrate that long-term
leg-specific resistance training with 4-5-RM in sedentary
individuals and high intensity cycling with 70-85% of HR ,,
in untrained controls can activate the mTOR signaling
pathway in human muscle [29, 38]. These results underline
that the activation of mTOR signaling may be independent of
exercise type as well as training history. Besides mTOR, there
are other important downstream targets modulating glucose
uptake that will be addressed in the following section.

3.5. Ras-Related C3 Botulinum Toxin Substrate 1 (Racl), TBCI
Domain Family Members 1 and 2 (TBCIDI1/2), and Akt
Substrate of 160 kDa (AS160). The proteins AS160, TBCID1/2,
and Racl are involved in insulin- as well as contraction-
induced glucose uptake [131, 132] and are, therefore, points
of convergence of these two pathways. These downstream
targets are altered in an insulin-resistant or diabetic state
showing a reduced signaling activity [101, 133-136].

Acute endurance exercise studies in untrained and
trained humans showed an increase in phosphorylation of
TDCID1/4 and ASI60 in skeletal muscle in the first 4 hours
after cycling and specific one-leg endurance exercise, espe-
cially under long-term training conditions with a training
duration of at least 60 min at 65% VO, ,, [16, 54-56]. In
line with these human studies, animal studies found that
contraction-induced glucose uptake by electrical stimulation
was also modulated by an increase in phosphorylation of
AS160 and TBCID1 proteins [57] (Tables 2 and 3).

Racl, a key downstream target in the regulation of
glucose uptake, was shown to modulate exercise- and insulin-
stimulated GLUT4 translocation in human muscle, with an
intensity-dependent response pattern, as shown in murine
muscle [58, 59]. Animals were exercised at their 50% and 70%
maximum running speed over 30 min on a treadmill, and
the higher intensity program resulted in an larger increase
of Racl activation. Given that the total amount of work
differed between both measurements, the results are hard
to interpret. The larger improvement may result from the
higher intensity or from the greater amount of exercise. A
future study comprising an alternative training protocol with
identical energy expenditure but different intensities would
help to clarify the role of exercise intensity in this context.
Furthermore, in RACl-deficient mice, GLUT4 translocation
as well as glucose uptake decreased after acute electrical
stimulated muscle contraction and insulin infusion as a sign
of an inhibited signaling capacity [59, 60].

Glucose uptake and insulin signaling are influenced
by inflammatory processes and specific cytokines [2]. The
following section aims at shedding some light on the impact
of inflammatory signaling on exercise-stimulated glucose
uptake and insulin signaling.
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4. Inflammation-Associated Signaling
Pathways and Key Players

4.1. IxB Kinase/Nuclear Factor Kappa B Pathway (IKK/NF-
kB). Different environmental influences, for example,
certain pathogens, can activate molecular signaling
cascades leading to an inflammatory response mediated
by the IKK/NF-xB pathway. Recognizing receptors are,
in particular, Toll-like receptors (TLRs). TLR4 plays a
key role in the activation of the pro-inflammatory NF-xB
pathway. TLRs interact with pathogen-associated molecules,
resulting in an activation of downstream signaling proteins,
for example, MyD88 [137], and subsequently an immune
reaction via cytokine release, for example, of IL-6 and
TNF-« from adipose tissue. The adapter protein MyD88
also activates other inflammation-associated signaling
pathways like MAPK signaling as described below in more
detail [138]. TLRs are expressed on macrophages, which
can be subdivided into pro-inflammatory Ml and anti-
inflammatory M2 macrophages. Exercise studies have shown
that physical activity modulates TLR-dependent pathways
[2]. As a result, acute as well as chronic exercise can lead to
reduced TLR expression [61] and phenotypic switching from
M1 to M2 macrophages in adipose tissue of obese mice [62].

Cytokines like IL-6 or agents comprising microbial com-
ponents trigger signaling cascades that converge in the acti-
vation of IxB kinase (IKK) enzyme complex and subsequently
in a translocation of the protein complex NF-xB into the
nucleus. This results in transcription of target genes for
inflammatory immune reaction including cytokines like IL-
6, TNF-a, and IL-15 [139]. Chronic activation of the NF-xB
pathway contributes to insulin resistance and muscle wasting.
Especially in type 2 diabetes, human muscle is characterized
by an increased activity of this pathway [63].

Human and animal exercise studies have shown that acute
as well as chronic exercise can reduce the activation of the
IKK/NF-xB pathway. This attenuation of the inflammatory
signaling was independent of the exercise modality, age, and
training status [63-69] (Tables 4 and 5).

During acute physical activity with a sufficient load,
muscle contraction induces a marked increase of IL-6 expres-
sion in skeletal muscle but also suppresses IL-6 production
in adipose tissue [70]. Increasing energy demands due to
prolonged or intense acute training like marathon running
or cycling at 88% of VO, [71-73] as well as shrinking
depots of muscle glycogen [104] accelerate the increase of IL-
6 plasma levels. Interestingly, a recent work from Castellani
et al. showed that exercise induces also a specific increase
of IL-6 in adipose tissue which occurred more rapidly in
adipose tissue from trained mice in comparison to untrained
mice when exercised at the same relative running speed on
a treadmill. The authors speculated that the increase of IL-
6 would be needed for the provision of lipids to the muscle
and liver [74]. In line with this, Macpherson et al. showed
an increasing IL-6 and decreasing M1 macrophages content
in inguinal adipose tissue and an improved insulin action
after an acute bout of treadmill running exercise in obese
mice [75]. In line with the results of the acute exercises
studies, chronic exercise also led to decreased activity of
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the IKK/NF-«xB pathway after 8 weeks of cycling exercise
at 70% of VO,, .. and intense whole-body strength exercise
with 50-80% of 1-RM [63, 66] (Tables 4 and 5). Accordingly,
a decreased plasma IL-6 concentration at rest as well as in
response to chronic exercise appears to characterize a normal
training adaptation [71].

The transient rise in IL-6 also appears to be responsible
for the production of anti-inflammatory mediators like IL-
10 or IL-1 receptor antagonist (IL-1RA). In particular IL-
IRA prevents inflammatory processes by blocking signal
transduction of the proinflammatory IL-1 and creates also an
anti-inflammatory balance to the proinflammatory cytokine
IL-18 [76, 77, 140]. Furthermore, elevated levels of IL-6 from
skeletal muscle stimulate an anti-inflammatory signaling cas-
cade that inhibits the secretion of proinflammatory cytokines
like TNF-a or IL-13, suppress the secretion of the acute-
phase reactant C-reactive protein (CRP) from the liver, a
general and unspecific marker for systemic inflammation
[76, 77], downregulate monocyte TLR expression at both
mRNA and cell surface protein levels, and finally inhibit the
IKK/NF-«B pathway [64-66]. Besides the TLR family, there
are other receptor proteins like NOD-like receptors initiating
inflammatory processes and subsequently modulating glu-
cose uptake-related signaling which will be discussed in the
following section.

4.2. Inflammasome Pathway. The NOD-like receptor (NLR)
family is of key importance in the innate immune system.
NLRs are responsible for recognizing pathogen and danger-
associated molecular patterns. In response to stress signals,
NLRs activate the inflammasome pathway which forms
a multi-protein complex [2]. Participating components of
inflammasome complexes are NLRs, neutrophilic alkaline
phosphatases (NALPs), apoptosis-associated speck-like pro-
tein (ASC) and caspase-1. After its formation, this oligomer
converts proinflammatory cytokines into active forms such
as IL-1B. Increasing IL-1-f levels have been hypothesized
to play a role in the progression of type 2 diabetes and its
complications because its activity stimulates inflammatory
processes leading to cell damage and apoptosis, in particular
in pancreatic f3-cells. Furthermore, IL-1f3 inhibits proximal
and distal insulin signaling and mediates interorgan cross talk
between adipocytes and the liver, contributing to systemic
inflammation [2, 141-143].

A recent review reported that chronic endurance and
resistance training in mice decrease NLR family pyrin
domain containing 3 (NLRP3) mRNA levels accompanied
by reduced IL-18 levels, reflecting diminished activity of the
NLR/inflammasome pathway [2]. IL-18 expression decreases
under chronic intense endurance exercise conditions with
sports like rowing, running, or cycling with an intensity
which is at 70% of VO,,,.,, in humans [78, 79]. Only chronic
training conditions, but not acute exercise, appear to reduce
IL-18 mRNA expression [79]. In line with this, a recently
published animal study with chronic treadmill running
as endurance exercise and isometric strength training as
resistance training showed a decrease of IL-18 expression in
adipose tissue and plasma levels [80] (Table 5).
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So far, there are no human exercise studies which
measured acute or chronic effects of physical activity on
the upstream elements of the inflammasome pathway. Fur-
ther mechanistic studies are, therefore, needed to better
understand the role of the inflammasome in the anti-
inflammatory response to exercise. In contrast, the role of the
C-Jun N-terminal kinase (JNK)/mitogen-activated protein
kinase (MAPK) pathway in the modulation of exercise-
dependent effects on glucose uptake and inflammatory
response has been investigated by several animal as well as
human studies.

4.3.  C-Jun N-Terminal Kinase (JNK)/Mitogen-Activated
Protein Kinase (MAPK) Pathway. Lipid accumulation in
adipocytes and endoplasmic reticulum (ER) stress as well as a
NF-xB dependent cytokine releases activate the INK/MAPK
pathway [139, 144]. This activation results in the serine
phosphorylation of IRS-1 and the phosphorylation of the
c-Jun component of activator protein-1 (AP-1). The phos-
phorylation of serine residues in insulin receptor substrate-
1 leads to an impairment in the ability of IRS-1 to activate
downstream phosphatidylinositol 3-kinase-dependent path-
ways which may cause insulin resistance [145-147]. AP-1 is
a transcription factor that mediates the gene expression of
many cytokines. Subsequently, the JNK pathway leads to an
inflammatory reaction, especially to TNF-« and IL-6 release
[139]. JNKs are divided into 3 isoforms and belong to the
MAPK family. The MAPK family comprises extracellular
regulated kinases (ERKs), JNKs and p38, and mediates cell
growth, differentiation, hypertrophy, apoptosis, and inflam-
mation [144]. Furthermore, oxidative stress following reactive
oxygen species (ROS) production induces JNKs and p38
MAPK activation reflecting an important immune defense
mechanism [148]. JNK activation by skeletal muscle contrac-
tion is also associated with an increase in muscle IL-6 mRNA
expression in mice acutely after endurance exercise in form
of treadmill running [81].

Exercise studies in human and animal models showed
that the JNK/MAPK pathway is activated in a dose-
response pattern. In particular very intense acute exercise like
marathon running or cycling at 70% of VO,, .. and intense
dynamic pull exercise as resistance training with an one-
repetition maximum (1-RM) of 85% stimulate JNK signaling
in skeletal muscle [82-84], independently of training modal-
ity. JNK activation results, as a physiological mechanism, in
DNA repair and muscle regeneration [149]. In contrast, a
recent animal study has shown that acute long-term exercise
by swimming for 180 min reduces JNK phosphorylation and
improves insulin signaling and sensitivity in adipose tissue
from obese rat [69]. In particular, chronic endurance exercise
in form of swimming and treadmill running contributes to
a reduction in JNK phosphorylation and improves insulin
signaling and sensitivity in adipose and hepatic tissue from
obese rats [67-69, 85].

Inflammatory signaling pathways are associated with
insulin resistance and impaired glucose uptake, whereas
adiponectin is an important, though controversially dis-
cussed, counterpart being positively associated with insulin
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sensitivity. This adipokine will be discussed in the following
section.

4.4. Adiponectin. Adiponectin, an adipokine which is pri-
marily released by white adipose tissue (WAT), appears to
be a key player in glucose metabolism at least in rodents,
whereas its relevance in humans is somewhat less clear [6].
The secreted adiponectin binds to its receptors AdipoR1 and
AdipoR2 and activates AMPK, p38 MAPK, and peroxisome
proliferator-activated receptor o (PPAR-«) following adap-
tor protein 1 (APPL1) release in skeletal muscle and liver
[150]. As a result, adiponectin positively affects metabolism
by increasing fatty acid oxidation and glucose uptake in
muscle. Furthermore, it plays a critical role in the cross
talk between different insulin-sensitive tissues [151, 152].
Adiponectin levels are decreased in patients with diabetes
and low adiponectin levels are associated with insulin resis-
tance and obesity [153, 154]. Recent mouse studies showed
that pharmacological adiponectin agonists improve insulin
sensitivity and other health-related parameters [155].

Only a limited number of acute exercise intervention
studies focused on changes of adiponectin levels. In one
study, circulating adiponectin levels increased 30 min after
endurance exercise in the recovery phase [5]. The currently
available data indicate that adiponectin levels change in
dependence of exercise intensity, showing an increasing level
by enhanced training intensity of 76% VO, in trained
rowing athletes [86], whereas moderate and long-lasting
cycling at 50% of VO,,,. for 120 min did not acutely increase
adiponectin levels in trained individuals immediately after
exercise [87] (Table 4).

Conflicting results were also observed under chronic
exercise conditions. More intense endurance exercise in form
of cycling and brisk walking at 70% of VO, resulted
in increases of adiponectin levels [88, 89]. Overweight and
age seem to reduce the response of adiponectin to exercise
[90]. In line with this, Simpson and Singh reported in their
review that adiponectin expression levels are increased under
high-intensity exercise conditions [91], regardless of training
modality in untrained young lean or obese individuals, after
chronic whole-body strength training or jogging [92, 93]. In
line with this, Cho et al. showed that 40 minutes of HIT
exercise on treadmill prevent the downregulation of AdipoR1
which was caused by a high fat diet in sedentary control
animals [94] indicating the importance of intense training for
the potential role of adiponectin.

In contrast, untrained and trained adiponectin knockout
mice (AdKO) significantly increased glucose tolerance and
insulin sensitivity after 8 weeks of treadmill running suggest-
ing the presence of an unknown compensatory mechanism
[53].

A recent meta-analysis found that chronic exercise did
not significantly increase adiponectin levels. However, in sub-
group analyses, all modalities tended to increase adiponectin.
The lack of statistical power due to small group sizes may
have contributed to the overall null-finding [3]. In contrast,
lifestyle interventions with unstructured exercise alone or
in combination with weight-reducing diet can positively
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influence adiponectin plasma levels [156]. Weight loss is an
important factor contributing to increases in plasma levels of
adiponectin [157-159]. In conclusion, the impact of exercise
on adiponectin levels needs further clarification. With respect
to chronic effects it is important to investigate to what extent
exercise effects on adiponectin may be mediated by weight
loss.

4.5. Exercise, Inflammation, and Insulin Signaling. Circulat-
ing serum or plasma levels of cytokines are strongly linked
with the onset of type 2 diabetes [160-162]. The stimulation
of inflammatory signaling cascades can lead to interference
with the insulin signaling pathway [2]. During exercise, acute
effects on cytokine regulation comprise an upregulation of
both (i) proinflammatory cytokines (e.g., TNF-a, IL-1f3, and
IL-6) and (ii) anti-inflammatory cytokines (IL-1RA, IL-10)
[106].

Long-term effects of physical exercise are known to
reduce markers of inflammation by decreasing adipocy-
tokine production and cytokine release from skeletal muscle
[163-165]. The relationship between glucose uptake and
adiponectin, IL-6, and TNF-« is shown in Figure 1.

The mechanistic impact of inflammation on insulin
signaling has been studied for several cytokines. Currently
available data suggest that TNF-«a plays a direct role in
the development of insulin resistance by decreasing glucose
uptake into adipocytes via suppression of insulin receptor
activity, AMPK activation, and downregulation of GLUT4
expression [165-168]. Acute exercise did not change the
expression pattern of TNF-« [169], whereas the increase of
TNF-« during high intense physical activity like marathon
running appears to be a response to muscle damage [104,
107,108, 170]. Large cohort studies show that physical activity
or chronic endurance exercise in form of walking reduces
systemic subclinical inflammation [92] and the impact of
exercise rises in a dose-response pattern regulated by fre-
quency and intensity, but inflammation remains unchanged
when exercise intensity was only moderate [66, 109, 171, 172].
A moderate community-based walking program with 3000
steps more per day did not change TNF-« plasma levels [109]
and a chronic resistance training with only 2 units per week
of only 3 sets of 3 exercises had also no impact on TNF-«
protein content. In line with this, TNF-« plasma levels were
reduced by high-intensity chronic resistance training, even
though fat mass has not changed [173]. Also animal studies
show that chronic exercise training, in particular endurance
training like treadmill running, can reduce TNF-« levels [62].

IL-6 is another important protein in this context and is
expressed by several tissues. As a myokine, muscle-derived
IL-6 is acutely upregulated during exercise exposure [106]
and mediates a physiological cross talk with WAT and liver
in order to regulate glucose metabolism [160]. However,
long-term effects of regular exercise show marked decreases
of IL-6 levels [77]. The role of IL-6 is complex, as also
evident by its diverse effects on molecular signaling. In
adipose tissue, IL-6 mediates inflammatory processes and
causes insulin resistance by downregulating GLUT4 and IRS-
1 expression [139]. Furthermore, increasing IL-6 levels block
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PI3-K, another key player in insulin signaling, and induce
TLR4 gene expression leading to enhanced inflammatory
processes [174,175]. In addition, IL-6 induces the downstream
NF-«B signaling pathway which impairs insulin signaling and
subsequently induces insulin resistance in insulin-dependent
tissues of obese humans and animals [2]. In particular, IL-6
and liver interact in the context of exercise. A human exercise
study with long-term cycling has shown that contraction-
induced IL-6 release increased endogenous glucose produc-
tion (EGP), thus underlining the importance of IL-6 for
glucose homeostasis [105].

Experimental studies using mouse models yielded con-
troversial findings. IL-6-deficient mice can develop a glucose-
intolerant and insulin-resistant state indicating that balanced
IL-6 levels have a positive effect on glucose uptake. Fur-
thermore, mouse studies showed that circulating IL-6 levels
increase glucose uptake and improve insulin sensitivity in
skeletal muscle via AMPK activation [176].

Besides, the inflammasome pathway downregulates
insulin signaling. The inflammasome pathway which is part
of the innate immune system converts proinflammatory
cytokines into active forms such as IL-13 or IL-18 which
are decreased in their levels after chronic exercise [2].
Important proinflammatory chemokines which are
influenced by exercise are interleukin 8 (IL-8) and monocyte
chemoattractant protein-1 (MCP-1). Both cytokines slightly
increase after acute exercise; however, their circulating
levels decrease after chronic exercise in human as well as
animal model exhibiting an improved inflammation status
[75, 77,139, 160], as shown in Table 1.

5. Summary

Exercise is an important cornerstone in the prevention and
treatment of metabolic disorders. Acute and chronic exercise
activates different molecular signaling pathways that can
counteract defects in signaling and associated metabolic
processes (Table 1). Exercise interventions have shown that
physical activity can increase GLUT4 protein expression
and translation by activation of different molecular signaling
pathways irrespective of the exercise modality. AMPK and
Ca**/calmodulin signaling pathways show a dose-response
pattern and increase their activity with increasing intensity
despite equal work rate in kcal when compared to less intense
exercise.

The key players mTOR, AS160, TBC1D1/4, and Racl can
be activated by exercise. Human exercise studies have demon-
strated that acute and chronic physical activity, regardless
of training modality, leads to increases in their activity and
finally to improved glucose uptake. The change in activity
reflects a dose-response pattern. MTOR and AS160 also
exhibit a continuous time-dependent increase.

Metabolic disorders are accompanied by activated
inflammation-related signaling pathways which result
in elevated cytokine release. Proinflammatory immune
mediators, like IL-1, IL-6, or TNF-«, are important factors
in the development of insulin resistance. Their expression
is modulated by physical activity. In particular, chronic
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endurance and resistance training and high training intensity
improve glucose uptake which is associated in the long term
with decreased secretion of proinflammatory cytokines and
increased release of anti-inflammatory proteins such as
adiponectin.

In summary, the current literature points to a higher
efficiency of more intense exercise because of a dose-response
relationship regulating metabolic improvements. However,
more high-quality exercise interventions as well as mecha-
nistic studies have to be performed to fully understand the
molecular mechanisms contributing to metabolic improve-
ments.

6. Open Questions

Despite the high number of studies on exercise interventions
and underlying mechanisms that have been conducted, we
are far from understanding the details mediating the effects
of exercise on glucose uptake. Single key players in this field
were identified over time and confirmed with mechanistic
human and animalstudies. So far, there is still a lack of knowl-
edge about the underlying mechanisms of exercise-induced
glucose uptake in regard to training factors, such as point
of termination or intensity, especially in proximal insulin
signaling. When interpreting the responses to training, it
is important to know, in particular when dealing with the
issue of glucose uptake and related signaling pathways, when
relative to the last bout, and preferably the last two bouts,
the samples were collected to distinguish between acute and
chronic training effects. Furthermore, exercise exposure can
be considered the combined responses to intensity, bout
duration, and bout frequency, where the product is usually
considered to be total amount like total energy expenditure,
but only a small number of intervention studies controlled for
total work.

In regard to the key players of molecular signal-
ing, the interplay of interacting pathways, such as the
Ca®*/calmodulin signaling pathway and the AMPK path-
way, is still elusive. The inflammatory signaling pathways
involving IKK/NF-«B and the inflammasomes have not been
sufficiently characterized in the context of the influence of
acute as well as chronic exercise. The controversial results of
the adiponectin exercise studies highlight potential species
differences between men and mice and merit more mecha-
nistic studies.

Furthermore, there is an intense need to detect to what
extent the effects of physical exercise are independent of or
explained by weight loss or change in body composition.
Some of these questions require larger sample sizes and
higher statistical power to quantify effects but also standard-
ized methods for molecular measurements and high-quality
study plans considering potential confounders.
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