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Anatomic mapping of molecular subtypes
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Abstract

Background: Tumor location served as an important prognostic factor in glioma patients was considered to postulate
molecular features according to cell origin theory. However, anatomic distribution of unique molecular subtypes was
not widely investigated. The relationship between molecular phenotype and histological subgroup were also vague
based on tumor location. Our group focuses on the study of glioma anatomic location of distinctive molecular
subgroups and histology subtypes, and explores the possibility of their consistency based on clinical background.

Methods: We retrospectively reviewed 143 cases with both molecular information (IDH1/TERT/1p19q) and MRI images
diagnosed as cerebral diffuse gliomas. The anatomic distribution was analyzed between distinctive molecular
subgroups and its relationship with histological subtypes. The influence of tumor location, molecular stratification and
histology diagnosis on survival outcome was investigated as well.

Results: Anatomic locations of cerebral diffuse glioma indicate varied clinical outcome. Based on that, it can be
stratified into five principal molecular subgroups according to IDH1/TERT/1p19q status. Triple-positive (IDH1 and TERT
mutation with 1p19q codeletion) glioma tended to be oligodendroglioma present with much better clinical outcome
compared to TERT mutation only group who is glioblastoma inclined (median overall survival 39 months VS
18 months). Five molecular subgroups were demonstrated with distinctive locational distribution. This kind of anatomic
feature is consistent with its corresponding histological subtypes.

Discussion: Each molecular subgroup in glioma has unique anatomic location which indicates distinctive clinical
outcome. Molecular diagnosis can be served as perfect complementary tool for the precise diagnosis. Integration of
histomolecular diagnosis will be much more helpful in routine clinical practice in the future.
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Background
Glioma is the most common malignant brain tumor with
heterogeneous growth pattern which can be found in differ-
ent cerebral lobes [1, 2]. This kind of locational variety has
been demonstrated to be of great importance in patient
diagnosis and prognosis which can reflect the tumor cells
origin as well [3]. Many studies have been performed to
prove relationship between molecular biomarkers and
tumor location. [2, 4–6]. Recently, new WHO classification
of cerebral diffuse gliomas was revised with complementary
of three molecular biomarkers (IDH1/1p19q/H3F3A) inte-
grated into comprehensive pathological diagnosis [7]. It

demonstrated that glioma-related biomarkers have been
playing much more important role in precise medicine.
Robert B.Jenkins et al. has successfully used three major
biomarkers to classify glioma into five principal molecular
subsets represent distinctive clinical significance and
germline variants. This finding hallmarked the development
of molecular pathology in glioma which was published on
New England Journal of Medicine [8]. In our study, we
plan to use same stratification system in our patients co-
hort and delineate tumor locational tendency within dif-
ferent molecular subtypes. Furthermore, we will explore
the consistency of tumor location between histological
subtypes and their molecular counterparts to identify the
complementary effect of molecular diagnosis in cerebral
diffuse glioma, especially in outcome prediction.
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Methods
Patients and tissue samples
We searched for Molecular Database and Image Bank in
Department of Neurosurgery, Huashan Hospital and
retrospectively selected 143 glioma samples for further
study. H&E slides of all cases were reviewed by 2 indi-
vidual neuropathologists to confirm the diagnosis of gli-
oma according to WHO 2016 brain tumor guideline.
Every patient has molecular diagnostic information. 140
out of 143 patients got complete follow-up. This re-
search work was approved by Ethic Committee of Hua-
shan Hospital and informed consents signed. Patients
characteristic are listed in Table 1.

Molecular profiles of IDH1/TERT/1p19q
Paraffin blocks of each case were prepared. Four 4um
slides and six 10um slides were sectioned. DNA extrac-
tion was performed by commercial DNA extraction kit
(Qiagen, Shanghai) using 10um slides. IDH1 and TERT
mutational analysis were done by Sanger Sequencing
with method reported previously [9]. The status of
1p19q was determined by FISH (fluorescence in situ
hybridization). A case of 50% tumor cells present with
reference probe signal ratio to target probe signal more
than 2:1 was considered 1p19q codeletion, otherwise we
called 1p19q intact [10]. Molecular information will be
integrated into regular pathological diagnosis.

Tumor location analysis
Image segmentation is an important pre-processing step
for location analysis. Convolutional neural network
(CNN) was proved to be an effective method for medical

image segmentation [11]. In our research, an approach
based on CNN was adopted to extract brain tumors on
MR images, which got satisfactory performance in the
Brain Tumor Segmentation Challenge 2013 and 2015.
(http://www.braintumorsegmentation.org/).
In order to study the location features in same coord-

inate system, the segmentation results were registered to
MNI152 (Montreal Neurological Institute (MNI)) brain
atlas [12]. A research platform also provided by MNI,
SPM12, was used to accomplish this procedure. Both
MNI152 and SPM12 were widely used in brain tumor
registration [13].

Statistical analysis
Correlation coefficient was calculated to figure out
the location relation between specific histology strati-
fication and molecular phenotype. IBM SPSS statistic
20.0 software (SPSS, Chicago, IL, USA) was chosen as
the analysis tool. A strong association would be found
out with r value closed to 1. Median overall survival
time (OS) was defined as the duration from the diag-
nosis and death or the last follow-up. Kaplan-Meier
method was used to draw survival curve and analyzed
by Log-rank test.

Results
The molecular combination of IDH1/TERT/1p19q has
unique distribution among distinctive histological
subtypes in glioma
The information of histology diagnosis and WHO grade
among 143 glioma patients can been found in Table 1. Ac-
cordance with WHO 2016 instruction, oligoastrocytoma

Table 1 Characteristics of all patients

Characteristic Total number Sex Age

143 Male Female 0–35 36–60 >60

Molecular subtype

Triple-positive 41 (29%) 23 18 9 32 0

TERT and IDH mutation 7 (5%) 3 4 4 3 0

IDH mutation only 37 (26%) 25 12 19 18 0

Triple-negative 27 (19%) 14 13 7 17 3

TERT mutation only 30 (21%) 21 9 5 13 12

Other 1 (1%) 1 0 1 0 0

WHO grade

Grade II 82 (57%) 45 37 34 45 3

Grade III 27 (19%) 17 10 6 21 0

Grade IV 34 (24%) 25 9 5 17 12

Pathological Diagnosis

Astrocytoma 69 (48%) 43 26 29 37 3

Oligodendroglioma 40 (28%) 19 21 11 29 0

Glioblastoma 34 (24%) 25 9 5 17 12
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was subdivided into oligodendroglioma or astrocytoma ac-
cording to 1p19q status [7]. By using panel of IDH1/
TERT/1p19q, we divided the whole case cohort into 5
molecular subgroups according to NEJM paper [8]. There
are 41 Triple-positive and 27 triple-negative tumors. Pro-
portion of TERT and IDH1 mutation, IDH1 mutation only
and TERT mutation only subgroup accounts for 26%, 19%
and 21% respectively. Similar to previous studies, IDH1
mutation only tumors were more likely to be seen in
astrocytoma with the ratio of 49.3%, while 82.5% triple-
positive gliomas belong to oligodendroglioma. 64.7%
glioblastomas have TERT mutation only. (Fig. 1).

Different survival outcomes among distinctive molecular
subgroups based on IDH1/TERT/1p19q classification
system
We have completely follow-up in 140 patients, among
whom 43 patients were dead and the other patients were
still alive. Patients diagnosed as oligodendroglioma have
the best clinical outcome with median overall survival
37.9 months (P < 0.01). Median overall survival are
33 months for astrocytoma and 20.5 months for glioblast-
oma (Fig. 2a). Regarding to molecular stratification, pa-
tients in triple-positive subgroup have the best survival
outcome with 39 months of median overall survival com-
pared to IDH1/TERT mutation subgroup (36.9 months),
IDH1 mutation only subgroup (34 months), triple-

negative subgroup (27.6 months) and TERT mutation
only subgroup (19.9 months) (P < 0.0001) (Fig. 2b).

Patients with different anatomic position have unique
survival outcome
Previous to studying anatomic preference to special mo-
lecular subgroups, we analyzed survival outcome between
different tumor location. Herein, we found tumor located
in frontal lobe indicated longer overall survival time of
66.1 months compared to tumors located in other cerebral
regions (P < 0.01). Tumors located in hemisphere demon-
strate better clinical outcome than those in central region
even though no significance exists (Fig. 3).

Locational pattern is different among distinctive
molecular subgroups
For triple-positive gliomas, tumor location tends to ag-
gregate in bilateral frontal lobes. On the contrary, triple-
negative tumors were more likely to locate in bilateral
basal ganglia regions. In spite of that, IDH1/TERT muta-
tion subgroup inclined to grow in left frontal lobe close
to midline region. IDH1 mutation only subgroup was
commonly seen in left frontal lobe and bilateral insular
lobes. TERT mutation glioma apparently present with
non-midline distribution while sitting in right frontal-
insular lobe and left basal ganglia region. Meanwhile,
TERT mutation only glioma has deep-seated location
than triple-positive cases (Fig. 4).
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Fig. 1 Distribution of IDH1/TERT/1p19q among distinctive histological subtypes. a astrocytoma, (b)oligodendroglioma, (c)glioblastoma
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Tumor location remains consistently between histological
subtype and its corresponding molecular subgroup
Thus glioma histology stratification strongly associated
with molecular phenotype, we investigate whether ana-
tomic distribution remains consistent within these two
classification systems. We compared triple-positive sam-
ples with oligodendroglioma, IDH1 mutation only sub-
group with astrocytoma and TERT mutation only tumors
with glioblastoma since these genetic events highly repre-
sent histological diagnosis. It’s interested to find out that
the tumor location and growth pattern is quite similar to

each other based on MR images. The location correlation
coefficients are 0.97, 0.94 and 0.85 accordingly (Fig. 5a–c).

Dissimilarity in molecular background results in different
tumor location within mixed diffuse glioma
In 2016 revised WHO diffuse glioma classification, the
diagnosis of oligoastrocytoma was gone due to 1p19q
can help clearly subdivide tumor into oligo-lineage or
astroglial family. We have 14 oligoastrocytoma cases,
10 of them showed 1p19q codeletion with tumor likely
to locate in bilateral frontal lobe which is similar to

Fig. 2 Median overall survival time for different histological subtypes (a) and molecular subgroups (b)

Fig. 3 Survival outcome among different location subpopulations
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Fig. 4 Distribution of tumor location according to IDH1/TERT/1p19q stratification regimen. a Triple-positive, (b) TERT and IDH mutation, (c) IDH
mutation only, (d)Triple-negative, (e)TERT mutation only

Fig. 5 Tumor location correlation analysis between histological subtype and its corresponding molecular subgroup with (a) triple-positive group
vs. oligodendroglioma, (b) IDH1 mutation only vs. astrocytoma, (c) TERT mutation only vs. glioblastoma
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oligodendroglioma. On the other hand, tumor with
1p19q intact tends to grow in left insular lobe where is
commonly seated by astrocytoma (Fig. 6).

Discussion
Cerebral diffuse glioma is a biological heterogeneous
tumor [1]. Patient clinical outcome was affected by many
factors including age, anatomic location, tumor size, ex-
tent of resection, genetic alteration [14]. Among them,
anatomic location plays a crucial role not only for prog-
nosis prediction but also for treatment strategy. It was
widely acknowledged that prognosis is poor in midline
glioma than non-midline tumor [10]. Regarding to hemi-
spheric glioma, patient with tumor located in frontal
lobe tends to be younger, IDH1 mutation and longer
survival time [15]. This conclusion is accordance with
our result. Furthermore, in our cohort, occipital lobe gli-
oma implied negative impact on clinical outcome which
is similar to Liu et al. [16]. The reason might be larger
tumor size commonly seen in this area. Meanwhile, ana-
tomic location somehow determines the extent of resec-
tion, for example, midline or deep-seated glioma is hard
to get gross total resection due to preservation of func-
tional structure or complex surgical corridor [17]. On
the contrary, non-eloquent area tumor, especially super-
ficial to the cortex is amendable to completely remove.
For the same reason, longer survival time is strongly as-
sociated with gross total resection [18]. On the other
hand, based on huge amounts of exploration of glioma
genetic alteration in the recent years, a panel of classic
biomarkers begins to exert great impact on glioma pre-
cise diagnosis and prognostic assessment [1]. IDH1/
1p19q/H3F3A are the representatives introduced into
newly revised 2016 WHO glioma guideline [7]. In our
previous study, 4 biomarkers were used to stratify lower
grade glioma into 4 subgroups predicting better clinical
outcome than the roles of histological diagnosis and
WHO grade [19]. The current findings firmly validate the
great prognostic value of biomarkers in glioma. Similar to
our findings, Jenkins et al. used a genetic combination of

IDH1/1p19q/TERT to classify glioma into 5 subpopulations
with unique clinical features and germline variants respect-
ively which is highly recognized in the world [8]. We re-
ferred to this 3-biomarkers scheme in our study, and drew
the same conclusion Triple-positive and IDH1/TERT
double-mutation cases are more likely to be oligo-lineage.
IDH1 mutation only cases are astrocytoma with maximal
possibility. IDH1 wild type and TERT mutation tumors are
commonly seen in glioblastoma. According to this scheme,
survival outcome in our patient cohort is distinctive among
all the subgroups. All these data demonstrate integration of
molecular and histology diagnosis being helpful in prognos-
tic and predictive value for glioma patients. Nevertheless,
the perfect integration of these two systems still calls for
huge efforts like large cohort clinical validation on many as-
pects, such as image features. Thus, we hypothesized ana-
tomic location, genetic biomarkers and histology diagnosis
are highly correlated and intertwined.
In order to verify our hypothesis, we tried to study the

interconnection between anatomic location and genetic
biomarkers in our patient cohort. Beforehand, many pa-
pers published have put forward the cell origin theory
underlying possible relationship between these two fac-
tors [20, 21]. Many groups have successfully developed
computational methods to predict glioma genetic alter-
ations based on location features [18, 22, 23]. For ex-
ample, IDH1 mutation was commonly seen in left
frontal lobe, where TERT mutation only exists as well[2,
5, 23]. Such investigations were performed in the con-
text of MGMT and TP53[24, 25]. In our study, we used
a panel composed of IDH1/1p19q/TERT which is world-
wide recognized in the precise diagnosis of glioma to
demonstrate the anatomic distribution of different mo-
lecular subsets. Our data showed similar results to previ-
ous research works such as IDH1 mutation prefers to
localize in left frontal lobe[2, 15]. Interestingly, we also
found that triple-positive tumor located more superficial
to cortex than TERT mutation only tumor. This finding
may explain the differences in survival outcome and ex-
tent of resection. In spite of that,. highly consistency of

Fig. 6 1p19q status of oligoastrocytoma decide tumor location, (a) Oligoastrocytoma with1p19q codeletion, (b) Oligoastrocytoma with
1p19q retain
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location feature was observed between histological sub-
populations and its corresponding molecular counter-
parts. For example, triple-positive tumor appears to have
similar anatomic location with oligodendrogliomas. That
means the axis of molecule-cell-tissue depicts the growth
pattern of glioma which is additional evidence supporting
the cell origin theory. Another interesting finding is that
1p19q codeletion oligoastrocytoma possessing different
anatomic location with 1p19q intact oligoastrocytoma
which is supportive to new 2016 WHO classification that
the diagnosis of oligoastrocytoma is eliminated [7]. Since
now, the diagnosis of oligoastrocytoma converts to either
oligodendroglioma or astrocytoma according to molecular
biomarkers [26]. These findings demonstrate definite mo-
lecular feature restricted to precise histological diagnosis.
It strongly proved that molecular diagnosis can help clini-
cians make exactly right diagnostic decision facilitating to
tailor personalized treatment.
On the other aspect, methods by using MR images to

predict molecular biomarkers are popular recently, which
was so-called Radiomics study. Ellingson et al. compared
tumor volume ratio of T2 hyperintensity to contrast
enhancement and central necrosis to differentiate mese-
chymal and non-mesenchymal molecular subtype in glio-
blastoma [27]. His research team also used perfusion and
diffusion MRI signatures to successfully stratify lower
grade glioma into three subpopulations as IDH1 mut/
1p19q codel, IDH1 mut/1p19q non-condel and IDH1 wt
[28]. MRS is another popular detectable technology to
realize Radiomics study due to unique metabolic features
inside glioma. It has been widely applied to predict IDH1
mutational status and medulloblastoma subgrouping [29,
30]. Compared to these methods, our team used anatomic
location as basic tumor feature to predict biomarkers like
IDH1/1p19q/TERT, which is more simple, cost effective
and visualized. The raw materials we need are only T2
flair and T1 contrast MR images without sophisticated
computation process. However, our method has its own
limitations, like rough estimation accuracy. In general, our
team illustrated a simple method to predict molecular bio-
markers and reveal anatomic location among different
molecular subgroups which offered an alternative in
Radiomics study.

Conclusion
Although molecular biomarkers are getting involved in rou-
tine pathological diagnosis of cerebral diffuse gliomas, more
evidence should be provided to validate perfect match be-
tween molecular subtypes and classic histological diagnosis.
Our study showed distinct anatomic distribution among
different molecular phenotypes which is consistent with
corresponding histological subtypes. Integration of molecu-
lar biomarkers with histology diagnosis will not only con-
tribute to precise diagnosis but also predict patient clinical

outcome. This kind of pathological diagnosis system was
highly recommended in future clinical practice. Moreover,
we developed a simple and cost-effective method to predict
biomarkers which was supposed to be widely used in
Radiomics study in glioma.
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