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A methodology for predicting 
tissue‑specific metabolic 
roles of receptors applied 
to subcutaneous adipose
Judith Somekh

The human biological system uses ‘inter‑organ’ communication to achieve a state of homeostasis. 
This communication occurs through the response of receptors, located on target organs, to the 
binding of secreted ligands from source organs. Albeit years of research, the roles these receptors 
play in tissues is only partially understood. This work presents a new methodology based on the 
enrichment analysis scores of co‑expression networks fed into support vector machines (SVMs) and 
k‑NN classifiers to predict the tissue‑specific metabolic roles of receptors. The approach is primarily 
based on the detection of coordination patterns of receptors expression. These patterns and the 
enrichment analysis scores of their co‑expression networks were used to analyse ~ 700 receptors and 
predict metabolic roles of receptors in subcutaneous adipose. To facilitate supervised learning, a list 
of known metabolic and non‑metabolic receptors was constructed using a semi‑supervised approach 
following literature‑based verification. Our approach confirms that pathway enrichment scores are 
good signatures for correctly classifying the metabolic receptors in adipose. We also show that the 
k‑NN method outperforms the SVM method in classifying metabolic receptors. Finally, we predict 
novel metabolic roles of receptors. These predictions can enhance biological understanding and the 
development of new receptor‑targeting metabolic drugs.

The human system, as any other biological system, always aiming to achieve a state of homeostasis, responds 
to different conditions through activating feedback control loops between its sub-systems, organs and tissues. 
For example, to ensure whole organism survival, the endocrine system preserves long feedback loops of ligands 
secretion and receptors binding to maintain glucose or energetic balance. Ligand–receptor secretion and binding 
are accomplished by molecules, i.e., ligands, secreted into the blood stream from source organs that bind to recep-
tors located on both the cell surface and within the cells of target organs. This complex network of whole-body 
ligand–receptor interactions serves as the information transducer of these feedback loops. Understanding these 
receptor roles is pivotal in the field of modern medicine. Receptor dysregulation underlies the etiology of many 
human diseases (e.g.,  diabetes1) and prescription drugs are designed to affect the regulation of receptors, e.g., by 
distrupting the interaction to the ligand, and produce therapeutic changes in the function of related biological 
 systems1,2. Moreover, receptors serve as targets for virus invasion of cells, e.g., the ACE-2 receptor is responsible 
for the entrance of the COVID-19 virus into the  lungs3. Albeit years of research, our present-day understand-
ing of the tissue-specific functions of many receptors and their ligand intercellular signalling networks is still 
incomplete. Developing drugs continues to be a challenge, as advances in scientific knowledge of receptors has 
been relatively slow, being based on laborious experimentation that typically precedes testing one or two recep-
tors at a time in one or two tissues.

The advent of ultrahigh-throughput sequencing technologies and algorithmic advancements now enable 
us to investigate systematically and simultaneously hundreds of genes coded to receptors. A recent computa-
tional  work4 defined cross-tissue expression of ligand–receptor pairs by merely measuring the expression levels 
of ligands and receptors across 144 cell types. A common task of analysis of gene expression data is to detect 
gene–gene co-expression networks. These gene co-expression networks are based on the “guilt by association” 
concept that is related to the fact that functionally related genes are co-expressed5. Such networks are used to 
identify the functional roles of genes whose function is unknown by relating their co-expression networks 
to known biological processes. For example, Horan et al. annotated genes of known and unknown function 
by large-scale coexpression  analysis6. The Weighted Gene Co-expression Network Analysis (WGCNA)7 is the 
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most popular algorithm for specifying co-expression networks. The algorithm groups related genes into gene 
modules (clusters) based on their co-expression patterns and topological similarity to neighbour genes in the 
network. Machine learning approaches are gaining popularity for gene expression  analysis8,9 and the support 
vector machines (SVMs) are one of the most widely used type of machine learning algorithm for solving binary 
classification  problems10. SVMs have successfully classified functional modules and protein interaction networks 
from gene expression  data8,9. The binary SVM classifier is based on defining a hyperplane that distinguishes 
between the positive labeled data (e.g., metabolic receptors) and the negative labeled data (e.g., non-metabolic 
receptors) based on the feature space, the properties of the data. The k-NN (k-nearest neighbours) algorithm is 
a distance-based approach that classifies the data points based on the known classification of their  neighbours11.

The GTEx  project20 includes a unique collection of thousands of samples of RNA-seq gene expression data 
across multiple tissues collected from hundreds of donors. Using this data and focusing on metabolic receptors 
and adipose tissue, we ask several questions: (1) Is expression of genes coded to receptors widely correlated 
within tissues? And in adipose in specific? (2) How can we use this data to infer the metabolic roles of recep-
tors in tissues and to detect new metabolic receptors, not thought of as being members of a specific classically 
defined metabolic system? Together, answers to these questions can begin to delineate a comprehensive view of 
the metabolic network signalling.

Here we present a new computational methodology to predict tissue-specific receptor metabolic functionality, 
which we applied to subcutaneous adipose. The methodology incorporates three steps A, B and C (see Fig. 1) 
and is based on our new finding that metabolic receptors are co-expressed, among themselves and with other 
genes. In Step A an annotated list of metabolic and non-metabolic receptors in adipose was constructed using 
a semi-supervised approach and literature-based validation. In Step B we used the (WGCNA)  algorithm7 for 
co-expression network analysis to generate gene modules (clusters) in subcutaneous adipose followed by their 
pathways enrichment analysis. We used the enrichment scores to train SVMs and k-nearest neighbour (k-NN) 
classifiers and compared their performance, in Step C. Finally, we used the classifiers to predict new metabolic 
receptors, having previously unknown metabolic functions, in adipose. We used an extensive list of ~ 700 recep-
tors for the full analyses and predictions.

Results
The new computational methodology predicts tissue-specific roles of metabolic receptors in subcutaneous adi-
pose and comprises the following steps.

Step A: Subcutaneous adipose receptor labeled list. Supervised learning requires an initial labeled 
list of known metabolic (positive examples) and non-metabolic (negative examples) receptors in a tissue for the 
training, performance evaluation and construction of the classifier.

We chose to study adipose  tissue13 since it is a highly active endocrine and metabolically important organ, 
with the ability to modulate glucose homeostasis, energy expenditure, lipid metabolism, and peripheral inflam-
mation. In addition, the existing knowledge about its metabolic receptors roles is extensive and, experimentally, 
it was robustly tested in comparison to other tissues.

One main challenge for us was to detect the receptors that exhibit metabolic roles in adipose and those that do 
not. We note that we use the term metabolic receptors to include receptors related to the metabolic/endocytosis/
growth regulation  system14–16. This knowledge is not easily available since public databases, such as KEGG, do 
not include a metabolic receptor classification in general or a tissue-specific metabolic receptors classification 
in particular. For example, the KEGG database includes the “Neuroactive ligand-receptor interaction” pathway 
that consists of a combination of metabolic and non-metabolic receptors. The insulin receptor is included in its 
own pathway, the KEGG insulin signalling pathway. In addition to the "pure" metabolic receptors a receptor may 
exhibit ubiquitous roles across the whole body, e.g., a known inflammation-related cytokine receptor which we 

Figure 1.  Schematic view of the new computational methodology.
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possibly label as a non-metabolic negative example, may exhibit metabolic roles in adipose. An example is the 
cytokine receptor TNFRSF21, a tumor necrosis factor receptor superfamily member 21, that is include in the 
KEGG “Cytokine-cytokine receptor interaction” but is also related to the “regulation of lipid metabolic process” 
in GO (Gene Ontology)17,18.

To construct the initial positively labeled receptors list, we gathered a list of 33 metabolic receptors known 
from the literature to be related to the regulation of growth, endocytosis and  metabolism14–16. The reader is 
directed to Supplemental Table S1 for this list and additional references for the metabolic regulation roles of these 
receptors. After filtering for the receptors not available in adipose (e.g., not included in any module in subcutane-
ous adipose; see the “Methods” section), we received a total of 17 receptors as our initial positive example set. To 
enrich the positive and negative examples set, we used the SVM PU (positive unlabeled) bagging  algorithm9,19, 
that is suitable in using a limited number of known positive examples to successfully discriminate between the 
positive and negative examples in an unlabeled data set (see “Methods” section). This way, we added an additional 
35 metabolic receptors as positive examples, which we verified manually as being metabolic using the GO (Gene 
Ontology)17,18 database and a thorough literature review (see “Methods” section and supplemental Table S2 for 
their list and references to experimental evidence).

As the negative examples two distinct groups were used: (1) cytokine receptors from the KEGG “Cytokine-
cytokine receptor interaction” pathway that were not included in the positively labeled examples (total of 61 
receptors) and (2) a total of 55 receptors inferred to be strongly negative (negative rate > 0.8 out of 100 experi-
ments, see “Methods” section) by the PU bagging algorithm. Pathway enrichment analysis on the second group’s 
receptors shows that they were significantly enriched (adjusted p value < 10−16) with 17 cytokine receptors from 
the “Cytokine–cytokine receptor interaction” and nine different neuroactive receptors from the KEGG “Neuro-
active ligand–receptor interaction” pathway (see supplementary Table S3).

Step B1: Data preparation. The GTEx subcutaneous adipose gene expression data was filtered, pre-pro-
cessed and corrected for batch effects as described in the “Methods” section.

Steps B2–3: Co‑expression modules and pathway enrichment analysis. A total of 17 modules, 
co-expression networks, were generated by the WGCNA algorithm (see “Methods” section) for subcutaneous 
adipose tissue. Following modules construction, we conducted pathway enrichment analysis using KEGG path-
ways. A heatmap of the pathway enrichment scores of the metabolically annotated receptors in subcutaneous 
adipose (positive examples) and negative examples (group 2), which we used in our analysis, is presented in 
Fig. 2. The presented enrichment scores are the − log10 transformation of the adjusted p value enrichment scores 
(see “Methods” section). Rows and columns with zero enrichments were removed from the representation. Fig-
ure  2a shows that the positive metabolically annotated receptors (highlighted in the column’s annotation in 
green) form a strong cluster annotated by KEGG hierarchies to constitute the metabolic process (highlighted 
on the row’s annotation to the right in turquois) and to include various metabolic pathways. Figure 2b focuses 
on the positive metabolic examples to show their enriched metabolic pathways. These include, among others, 
“Glycolysis”, “Fatty acid degradation”, “Pyruvate metabolism” and “Glycine, serine and threonine metabolism”. 
Most metabolic receptors are co-expressed and included in Module 1 of subcutaneous adipose (the left cluster 
in Fig. 2b), e.g., insulin receptor (INSR), adiponectin receptor 1 (ADIPOR1), and growth hormone receptor 
(GHR). Module 1 receptors network is presented in supplemental Figure S1 to highlight the receptors’ connec-
tivity and correlation with the module eigengene.

Step C: Validation and prediction.. C.1. Classifier construction and validation. We used supervised 
approaches, linear SVM and k-NN, to solve the problem of binary classification of receptors to be “metabolic” 
and “non-metabolic” in subcutaneous adipose tissue (further elaboration will be found in the “Methods” sec-
tion). We used tenfold cross-validation to evaluate the performance of our classifiers. We used each of the two 
negative groups (cytokines and the inferred group) separately. The performance of the classifiers for the positive 
labels and each of the negative labels is presented in Table 1. Columns 4–7 are the false positive (FP), false nega-
tive (FN), true positive (TP), and true negative (TN). Columns 8–11 are the sensitivity, specificity and accuracy 
measure of overall performance and the MCC (see “Methods” section). The accuracy of all calculations is > 0.9. 
k-NN outperforms SVM with an accuracy of 0.98 and a Matthews Correlation Coefficient (MCC) measure of 
0.96 for the inferred negative group. k-NN classified 50 positive examples (TP) correctly as opposed to 44 for the 
SVM linear classifier. For the cytokines receptors as the negative group, the classifiers produced similar results 
with 42 TPs. There were few FPs (≤ 1), which means that our approach will not label a non-metabolic receptor as 
a metabolic one. We repeated the experiment with SVM and k-NN ten more times with different random splits 
of the data. The variance introduced by the random splitting of the data was very small (< 10−5) relative to the 
mean.

TNFRSF21 receptor (Tumor necrosis factor receptor superfamily member 21) is a cytokine receptor that is 
misclassified as a non-metabolic receptor by both k-NN and SVM. TNFRSF21 is related to the “regulation of 
lipid metabolic process” in  GO17,18 and predicted by our analysis to exhibit a metabolic role in adipose. When 
excluding TNFRSF21, no FPs are detected. TFR2 and TFRC are both misclassified as metabolic receptors by 
both classifiers.

C.2 Metabolic role predictions for unlabeled receptors. In addition to validating the classification accuracy of the 
classifiers using the labeled receptor list, we used the classifiers to classify unlabeled receptors. We trained linear 
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SVM and k-NN models on all the labeled data (for the two negative groups separately resulting in 4 classifiers) 
and then used the four models to predict the unlabeled receptors. A total of 387 receptors were included in the 
analysis, i.e., were incorporated in a co-expressed module in subcutaneous adipose. Of these, 21 receptors were 
predicted by all the four classifiers to exhibit metabolic roles in subcutaneous adipose. These predictions may 
merit experimental testing. Table 2 presents the predicted metabolic receptors. We further discuss the support-
ing literature of their metabolic roles in the discussion section.

Discussion
We present a new methodology to predict tissue-specific metabolic roles of receptors. We used linear SVM and 
k-NN classifiers on a feature space of pathway enrichment analysis scores of receptor-co-expressed modules. 
We applied our method on subcutaneous adipose expression RNA-seq data derived from the GTEx  project20. 
As an initial required step, we combined semi-supervised learning and a manual literature review to construct 
a knowledge base of receptors that exhibit metabolic roles in subcutaneous adipose. We evaluated the perfor-
mance of the classifiers (accuracy ≥ 0.9) to show that metabolic receptors can be recognized successfully using 
this new feature space. The k-NN method provides superior performance when compared to the linear SVM 
method, using our data. Additionally, we predict 21 new metabolic roles for receptors in adipose when analysing 
hundreds of unlabeled receptors.

Our approach is based on our recognition that known metabolic receptors are co-expressed. Although stud-
ies show that gene expression is affected by metabolic stimuli such as glucose intake e.g., the work of Vaulont 
et al.21 showed of gene transcription regulation by glucose, the mechanism that explains the co-regulation of 
metabolic receptors and gene expression in general is still poorly understood. A recent breakthrough  study22 
which discovered that insulin receptor stimulation drives genome-wide expression of metabolic genes, may 
explain part of this mechanistic rationale of the metabolic co-expression of receptors and genes. The study’s 
 authors22 showed that upon binding of the insulin receptor to insulin, it is translocated into the nucleus and 
associates with a promoter in a genome-wide manner to regulate gene expression of multiple metabolic and 
insulin signalling pathway-related genes.

Figure 2.  Pathway enrichment analysis of the labeled metabolic receptors related modules in subcutaneous 
adipose. A heatmap of log-transformed p-values (adjusted for multiple correction) of the KEGG pathways 
enrichment analysis is presented. (a) Enriched pathways for the metabolic and non-metabolic receptors used 
for training. It can be seen that the metabolic receptors (highlighted in green in the annotated columns) form a 
metabolic cluster (highlighted in the annotation rows to the right in turquois and corresponding to the KEGG 
metabolism hierarchical classification). (b). Focusing on the metabolic receptors related modules shows that 
they are highly enriched with various metabolic pathways. The rows represent the KEGG pathways, and the 
columns, the receptors [e.g., insulin receptor (INSR)]. Multiple metabolic receptors are included in Module 1 in 
subcutaneous adipose, which is enriched with metabolic pathways.
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Machine learning approaches were used on gene expression data (the feature space) for classification of 
functional classes of genes and to infer protein interaction  networks8,9. Our approach uses further computation 
on gene expression data to construct a higher-level feature space and classify the metabolic roles of receptors. 
Our enrichment scores that rate the gene’s co-expression network go beyond relating to a single gene, which 
makes our system more robust to gene–gene network perturbations and noise, and also reduces the number of 

Table 1.  Comparison of performance evaluation of linear SVM and k-NN classifiers (using the 
Euclidian distance) for metabolic receptors classification in subcutaneous adipose tissue. The labeled 
examples include 52 positive examples and 55 negative examples (rows 1 and 2) and 61 cytokines receptors as 
negative examples (row 3).

Method Negative group TP TN FP FN Sensitivity Specificity Accuracy MCC FP receptors
FN 
receptors

1 k-NN Inferred receptors 50 55 0 2 0.96 0.96 0.98 0.96 NA
TFRC

TFR2

2 SVM Inferred receptors 44 55 0 8 0.85 0.87 0.93 0.86 NA

ADIPOR2

DRD4

EGFR

FGFR2

LDLR

LEPR

TFR2

TFRC

3 SVM/k-NN Cytokines recep-
tors 42 60 1 10 0.81 0.86 0.9 0.81 TNFRSF21

ADIPOR2

ADRA2B

DRD4

EGFR

FGFR2

FGFR4

LDLR

LEPR

TFR2

TFRC

Table 2.  Predicted metabolic roles of unlabeled receptors by four classification models in subcutaneous 
adipose.

Predicted metabolic receptor

1 CD151

2 CD46

3 CD63

4 FZD9

5 GPR56

6 IL27RA

7 ITGA2B

8 ITGA7

9 ITGAE

10 ITGB1

11 LPHN1

12 P2RY12

13 PLGRKT

14 PLXNA2

15 PTH1R

16 RHBDL2

17 RTN4RL1

18 SCN4A

19 SDC1

20 SLC16A2/MCT8

21 TACR2
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features, from thousands of features (genes), into several hundreds of features (pathways), which may decrease 
overfitting and improves the classification accuracy.

Co-expressed module 1 in subcutaneous adipose is a metabolic module, enriched with multiple metabolic 
pathways (see Fig. 2) and includes 42 of the labeled metabolic receptors. One can say that metabolic receptors 
can be detected in an unsupervised manner, just by intuitively extracting the receptors from the metabolically 
annotated modules, e.g., module 1. So it is reasonable that the classifiers classify correctly these 42 receptors that 
are included in module 1. An additional 10 labeled metabolic receptors are included in separate modules (see 
Fig. 2b). Both classifiers classify correctly (rows 1–2 in Table 1) two additional receptors, ADRA2B and FGFR4, 
which are included in other modules. Our approach detects as metabolic these two additional receptors derived 
from other modules, which is less than intuitive to detect. Moreover, the k-NN classifier detects 8 out of these 10 
as being metabolic. Our approach is highly accurate in detecting the negative examples as well. When excluding 
the misclassified negative example, the TNFRSF21 cytokine receptor (which may be metabolic in adipose), no 
FPs are detected.

Our network-based approach is generalizable and can be used on other tissues. The main obstacle is the 
unlabeled data in general and per each tissue specifically. For subcutaneous adipose we used a thorough litera-
ture review directed by a semi-supervised approach, PU SVM bagging, based on multiple classifiers starting 
from small initial positively annotated examples. The semi-supervised learning defined the negative labels and 
extended the positive labels, which we further verified manually using the literature. We also showed indepen-
dently that our approach successfully classifies metabolic receptors against KEGG cytokine receptors list used 
as negative examples.

A powerful feature of our method is its ability to generate detailed testable hypotheses concerning the meta-
bolic roles of specific receptors in specific tissue, i.e., adipose. For example, NPR1 and NPR3, reciprocal regulation 
of natriuretic peptide receptors, are predicted to be metabolic in adipose by our approach and got a positive rate 
of 98% out of 100 tests using the PU bagging algorithm while NPR-2 is predicted to be non-metabolic in adipose. 
Interestingly, NPR1 and NPR3 expression was found to be induced by insulin in adipose cells as opposed to 
NPR-2 whose expression levels were not  changed23. Nevertheless, we note that our method is based on mRNA 
levels and may miss some of the metabolic receptors that are regulated at the protein level.

Our approach predicts a list of 21 receptors to regulate metabolic response in adipose. We predict that 
PLGRKT, a novel plasminogen (PLG) receptor whose roles in humans are poorly understood, is a metabolic 
regulator in subcutaneous adipose.  PLGRKT24–26 (named Plg-RKT in mouse) is a plasmin receptor that is highly 
conserved across mammalian species and broadly expressed in human  tissues27. PLGRKT is theorized to be part 
of a local catecholaminergic cell plasminogen activation system that regulates neuroendocrine prohormone 
 processing28. It significantly enhances the conversion of its ligand, plasminogen into plasmin, by supporting 
binding of plasminogen activators that have a role in macrophage recruitment during inflammatory  response24. 
 Plasmin26 the ligand, exhibits a broad-spectrum proteolysis activity with cell surfaces that promotes cell migration 
during inflammation, wound healing and muscle regeneration. Plasmin has several receptors and the interplay 
between plasminogen and its receptors is known to regulate inflammation. Plasminogen activator inhibitor-1 
(PAI-1) inhibits the generation of the key enzyme, plasmin, by inactivating both the tissue-type plasminogen 
activator (tPA) and the urokinase-type plasminogen activator (uPA)29. Interestingly PAI-1 production by adi-
pose tissue is increased in obesity, and its circulating levels are high in type 2  diabetes29,30. Mice lacking PAI-1 
were completely prevented from developing obesity and insulin resistance in comparison to WT mice on an 
HF  diet30. Our results predict that PLGRKT is a regulator of cell metabolism in adipose. Just recently the meta-
bolic roles of PLGRKT are started to be elucidated. The Plg-RKT receptor was shown to regulate the uptake of 
Lipoprotein(a), Lp(a), by liver  cells31,32 and Plg-RKT deficiency significantly affected the growth rates of female 
 mice33. In genome-wide association studies (GWAS), genetic susceptibility in PLGRKT was found to be related 
to obesity in 815  children34 and in 1965  cohorts35 as related to metabolic traits. Recent finding by Milles et al.36 
support our prediction and propose that Plg-RKT regulates metabolic homeostasis in a mouse model and pro-
motes healthy adipose function. They showed that Plg-RKT−/− mice gained significantly more weight, their total 
fat mass was significantly greater, and insulin signalling in their adipose tissue was significantly (80%) lower. 
Another receptor we predict to be metabolic is CD63, a cell surface receptor for TIMP1, which was shown to 
be highly differentially expressed between obese high fat diet mice and low fat diet mice in macrophage cells 
(CD9 cells) derived from adipose  tissue37. An additional predicted receptor CD46 co-stimulates optimal human 
CD8+ T cell effector function via fatty acid  metabolism38. Finally the GPR56 predicted metabolic receptor has 
a mechanistic link to pancreatic cells  function39. We note that our method may detect pure, classically known, 
metabolic receptor but also non-pure metabolic receptors that may mediate metabolic-inflammatory responses 
in adipose, e.g., the predicted PLGRKT receptor that exhibits inflammatory and metabolic roles is conjectured 
to mediate metabolic-inflammatory responses in adipose.

In summary, our methodology established the first step in using gene expression data to predict the roles 
of receptors in tissues. In future work we plan to extend this work to multiple tissues. This understanding of 
receptor roles in tissues would be tremendously significant in many areas of systems biology, drug discovery 
and modern medicine.

Methods
Data pre‑processing. GTEx RNA-Seq data of 53 human tissues and 8555 RNA-seq samples from 544 
donors was downloaded from the GTEx database (40, v6), and their reads per kilobase per million (RPKM) 
values were log2-transformed. 19,814 protein-coding genes were retained. Outlier samples were filtered and all 
genes within each tissue were quantile normalized (to remove background and sample effects). Outliers removal 
included standardizing sample distances and flagging as outliers the samples with high negative standardized 
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distance (SD <  −3), meaning more than three standard deviations from the mean. Genes with zero variance or 
missing samples were excluded from the calculation (e.g., for Adipose–Subcutaneous 262 genes were excluded). 
Genes having at least 0.1 RPKM in 80% or more of the samples were retained.

Confounding factors adjustment. The type of death classification of the samples (DTHHRDY = death 
circumstances) is based on a four-point Hardy Scale. The ventilator death group samples were analysed since 
it had significantly shorter ischemic times, which preserve sample  quality41. Our previous  work41 showed that 
using some common methods for adjusting the heterogenous GTEx expression data for hidden confounding 
factors (e.g., using principle components) filters out many of the biological signals—which is relevant here. Thus 
ComBat42 from the R/Bioconductor package sva42 was used to adjust for known confounding factors, which has 
been shown to outperform other  methods41. ComBat was applied to adjust for experimental batch, ischemic time 
(time that elapsed between actual death and sample extraction), gender and age. Due to the discrete nature of 
ComBat, the continuous ischemic time values were discretized into five bins, labeled 1–5, by partitioning them 
into 300 min intervals. Age includes the 20–80 year range and is partitioned into 10 year intervals (embedded 
in the GTEx dataset). Genes with zero variance per each batch group and type were removed. Batches with one 
sample within a batch were removed. Each batch was adjusted iteratively, accounting for the yet unadjusted 
batches in each iteration. ComBat successfully corrected the Adipose Subcutaneous gene expression profiles.

Ligand–receptor pair list. A list of 692 known receptors was imported from an external referenc 4 which 
established a most comprehensive collection of ligands-receptors pairs by merging (1) multiple dedicated 
databases, the Ligand − Receptor Partners (DLRP)43,  IUPHAR44 and Human Plasma Membrane Receptome 
(HPMR)45 databases, another (2) 2117 experimentally supported interactions in the  HPRD46 and  STRING47 
databases, which included 1288 ligand–receptor pairs absent from (1) that was manually curated from the 
 literature4. They finally curated a set of 2422 Ligand−Receptor interactions, of 692 distinct receptors.

Co‑expression module detection. The Weighted Gene Co-Expression Network Analysis (WGCNA) 
algorithm and relevant R  package7 were used to identify co-expression networks. The algorithm calculated a 
similarity co-expression matrix using correlation cor(i,j) for all genes (the biweight midcorrelation measure 
that accounts for outliers, by assigning larger weights to values closer to medians, was used). The co-expression 
matrix is transformed into an adjacency matrix by using the soft thresholding power beta β, to which co-expres-
sion similarity is raised.

where aij represents the resulting adjacency that measures the connection strengths.
The power β = 12 was defined based on the criterion of approximating the scale-free topology of the network, 

as recommended in the original  publication7. Then, a topological overlap matrix (TOM)7 was computed and 
converted into a dissimilarity TOM. The TOM calculated the topological similarity between every two neigh-
bours in the network, i.e., evaluated the similarity of the neighbours for every two nodes. Finally, hierarchical 
clustering was used to produce a tree (dendrogram) from the dissimilarity TOM. By using dynamic tree cutting, 
different numbers of clusters (modules) were obtained from the tree. The resulting modules contained genes 
that are densely interconnected, to construct co-expression networks, names also modules, per each tissue. To 
define, in each module, the positively or negatively correlated genes the “signed” networks were used— meaning 
that the co-expressed modules include positive correlations between the nodes. Eigengenes are defined as the 
first principal component of the expression matrix for each module and represent the weighted average of the 
expression profile for each module. The eigengenes can be used to merge clusters and to screen for suitable gene 
targets by calculating module membership (kME) measures, also known as eigengene-based connectivity. This 
way the key driver genes were detected in each module.

KEGG enrichment analysis of modules. The R package ‘clusterProfiler’48 generated enrichment analysis 
of the modules using KEGG pathways. All 294 KEGG pathways were used in the analysis and filtered for sig-
nificant pathways with adjusted p values < 0.05 (adjusted for multiple corrections using the BH (Benjamini and 
Hochberg)  method49).

Support vector machines (SVMs)
Binary classification is the process of labeling the members of a given data set to be included in one of two groups 
on the basis of whether they have some set of similar properties or not. Two sets of examples, one set from each 
group, usually named as positive and negative examples, should be defined to train a binary classifier. SVM is a 
binary classification approach that was shown to perform well in a verity of  settings10. A linear SVM constructs 
a hyperplane that separates the positive examples and the negative examples, based on their properties, of 
belonging to some class. Linear SVM is suited for a small number of samples to avoid  overfitting10. We used the 
R package e1071 for the SVM  computation50.

Positive unlabeled (PU) SVM bagging. As supervised learning requires the definition of positive and 
negative examples for training. In most of the domains acquiring negative examples is more costly than the posi-
tive ones and sometimes even not possible. An example where we do not know whether it is positive or negative 
are called unlabeled examples. For example, if a receptor was shown experimentally to be metabolic, we label/
annotate it as a positive metabolic, but we are uncertain and do not have the full knowledge to annotate the non-

(1)aij =
(

0.5 ∗
(

1+ cor
(

i, j
)))β
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metabolic receptors, which are the unlabeled receptors. A set of methods called Positive Unlabeled (PU) learning 
 algorithms9 are designed to achieve the task of learning from a limited set of positive examples and a large set of 
unlabeled examples, i.e., in the absence of negative examples. Most such methods use classical supervised classi-
fication methods such as a support vector machine (SVM) classifier. For example Kiliç and  Tan9, compared eight 
PU learning algorithms to successfully reveal protein–protein interaction (PPI) networks from gene expression 
data using only positive prior knowledge of known protein–protein interactions. A successful algorithm for this 
aim is the PU bagging SVM  algorithm19 where a random subsets from the unlabeled set is created and defined 
as the negative examples, and a classifier is trained from each of the subsets and the known positive examples. 
Finally, these multiple classifiers are merged to generate a negative and positive rate for each example. More spe-
cifically, the algorithm (1) creates a training set by combining all positive data points with a random sample from 
the unlabeled points, with replacement, (2) builds a classifier from this “bootstrap” sample, treating positive and 
unlabeled data points as positives and negatives, respectively, (3) apply the SVM classifier for prediction to what-
ever unlabeled data points were not included in the trained random sample – hereafter called OOB (“out of bag”) 
points – and record their scores, (4) repeat the three steps above many times and finally assign to each point the 
average of the OOB scores it has received, i.e., the rate of classifying negative/positive from all predictions of the 
gene. Only little improvement was seen in simulated and real data above 100 iterations of the  algorithm9,19. The 
bagging SVM algorithm outperforms the state-of-the-art methods for PU  learning9,19 and successfully discrimi-
nate between unlabeled positive and negative examples even when the number of known positives is limited. 
Our initial data consists of a limited positive set of known literature-reviewed metabolic receptors in adipose and 
unlabeled receptors set and we used the PU SVM bagging algorithm to extend the positive examples (which we 
verified to be positive) and define the negative examples.

k‑nearest neighbours algorithm (k‑NN). The k-nearest neighbours algorithm (k-NN) is a distance-
based learning used for  classification11,51, and is appropriate for binary classification of two classes. The algo-
rithm uses as input the k closest labeled examples in the feature space. The most common distance measure is 
the Euclidean distance. A data point is classified by a plurality vote of its neighbours, with the data point being 
assigned to the class most common among its k nearest neighbours (k is a positive integer, typically small). The 
performance of k-NNs is very sensitive to the choice of k and an optimal k can be selected by various heuristic 
 techniques52. A common way of choosing the empirically optimal k is by testing the error rate under a set of 
possible k values.

Cross validation. Cross-validation53 is a method to evaluate the performance of a prediction model on data 
points that are not used to train the model. A popular method of cross-validations is sub-sampling (k-fold cross-
validation). In k-fold cross–validation, as the name suggests, the dataset is randomly divided into k number of 
non-overlapping sets. During each iteration, one set is used as a test dataset and the rest are used for training the 
model. The test dataset is predicted by the trained model. This iteration is repeated k times, each time with a dif-
ferent train and test groups, and generates k different classification models. The performance statistics are calcu-
lated by summing in each distinct test group the true positives, true negatives, false positives and false negatives.

Performance evaluation. We used sensitivity, specificity, accuracy and MCC  (Matthews Correlation 
Coefficient)54,55  to evaluate the performance of the cross-validation analysis. The mathematical equations to 
calculate these parameters are as follows:

where TP, TN, FP, FN and MCC represents true positive, true negative, false positive, false negative and MCC, 
respectively. Sensitivity and specificity correspond to the proportion of correct predictions of positive and nega-
tive examples. The overall correctly predicted examples were calculated by using accuracy, which was the arith-
metic mean of sensitivity and specificity. The MCC is used as a measure of the quality of binary (two-class) 
classifications and is suitable for imbalanced  datasets54,55. The MCC evaluates the balance between specificity 
and  sensitivity54,55. The MCC value is equivalent to the Pearson’s phi correlation coefficient to represent the cor-
relation coefficient between the trained and predicted values of binary classifications and lies between − 1 and 
1. A highly successful predictor will have MCC value near to 1, while opposite and random predictions have 
MCC value − 1 and 0, respectively.

Experimental design. We used linear SVM and k-NN classifiers on the features space to classify receptors 
to be “metabolic” and “non-metabolic” in subcutaneous adipose. The features space included 295 KEGG path-
way enrichment analysis scores per each receptor, i.e., per each module that includes the receptor.

To construct the receptors labeled list we used a directing semi-supervised approach, PU SVM bagging to 
enrich our initial positive examples and generate the negative ones. We started with an initial data set of 17 

sensitivity =
TP

TP + FP

Specificty =
TN

TN + FN

Accuracy =
TP + TN

TP + FP + TN + FN

MCC =
(TP ∗ TN)− (FP ∗ FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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positive examples (see supplemental Table S1) of known literature-based metabolic receptors in  adipose14–16. 
We used the PU SVM bagging method, with number of iterations t = 100 and number of unlabeled samples k 
in each iteration as the number of the positive labeled examples k = 17, as suggested  in9. We manually verified 
each receptor (with predicted positive rate > 0.7 gathered from the 100 iterations/classifiers) to be involved in 
metabolic/growth regulation (see supplemental Table S2 with related references). More specifically a receptor 
was annotated as metabolic if (1) the receptor or its ligand is related to metabolic/growth regulation GO func-
tions or/and  process17,18 or (2) an independent experimental evidence validates the receptor to regulate insulin/
glucose/metabolism/growth (see supplemental Table S2 for all relevant references). This way we added 35 veri-
fied metabolic receptors to the initial 17 metabolic receptors. To evaluate the performance of our approach we 
used two groups as the negative examples, (1) cytokine receptors derived from the independent KEGG pathway 
"cytokine-cytokine receptor interaction", and (2) negative examples generated by the PU SVM bagging algorithm. 
We evaluated the pathway enrichment of the 55 strongest negative receptors (rate > 0.8) using the Enrichr web 
 tool56 of group 2 (see supplemental Table S3).

For SVM classification, we used the optimized "cost" measure to yield the smallest error rate, using the tune() 
function. We used the R package e1071 for the SVM  computation50.

For k-NN classifier we executed the knn() function from the R “class”  library57 using Euclidian distance. 
The optimal k value (the number of nearest neighbours) was chosen by evaluating the error rate under each 
k = 1,2,...,10 and setting the maximal k with the lowest error rate.

The performance of the classifiers was tested by using a tenfold cross-validation. The labeled receptor list 
was randomly divided into 10 groups. Classifiers were trained by using 9/10 of the data and were tested on the 
remaining 1/10. This procedure was then repeated 9 more times, each time using a different 1/10 of the genes as 
a test group. The performance of the classifier was measured by examining how well the classifier identified the 
positive and negative examples in the test sets. Each receptor in the test set can be categorized as true positive 
that is a metabolic receptor in the tested tissue; true negative as a non-metabolic; A false positive that is classified 
by the classifier as a metabolic receptor but is a non-metabolic; false negatives receptor is placed as being non-
metabolic by the classifier but is a metabolic receptor. We reported the performance measures and the number 
of receptors in each of these categories for the learning methods we tested and for both negative groups.

Metabolic receptors prediction. The classification of metabolic function of unknown receptors was per-
formed by first training the classifiers on the labeled receptors. The unlabeled receptors were then classified 4 
times, each using SVM or k-NN with the two possible negative groups described earlier. The receptors that were 
predicted to be metabolic was classified as positive by each of the 4 models.

Visualization tool. Module visualization (see supplemental figure S1) was performed using the Cytoscape 
 tool58, which allows visualization and analysis of networks of biological associations and interactions.

Data availability
The GTEx data is available for download from (https ://www.gtexp ortal .org/home/datas ets).
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