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ARTICLE INFO ABSTRACT

Keywords: Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by providing 3D density maps of
Cryo-EM biomolecules at near-atomic resolution. However, map validation is still an open issue. Despite several efforts
Validation from the community, it is possible to overfit 3D maps to noisy data. Here, we develop a novel methodology that
Reconstruction uses a small independent particle set (not used during the 3D refinement) to validate the maps. The main idea is
fr?d;;S:j:;m to monitor how the map probability evolves over the control set during the 3D refinement. The method is
Raw data complementary to the gold-standard procedure, which generates two reconstructions at each iteration. We low-
BioEM pass filter the two reconstructions for different frequency cutoffs, and we calculate the probability of each
filtered map given the control set. For high-quality maps, the probability should increase as a function of the
frequency cutoff and the refinement iteration. We also compute the similarity between the densities of prob-
ability distributions of the two reconstructions. As higher frequencies are included, the distributions become
more dissimilar. We optimized the BioEM package to perform these calculations, and tested it over systems
ranging from quality data to pure noise. Our results show that with our methodology, it possible to discriminate
datasets that are constructed from noise particles. We conclude that validation against a control particle set
provides a powerful tool to assess the quality of cryo-EM maps.
Introduction are generated. The reconstructions are refined iteratively using max-

Cryo-electron microscopy (cryo-EM) has revolutionized structural
biology by providing electron density maps of biomolecules that were
difficult to resolve with X-ray crystallography or nuclear magnetic re-
sonance (Kiihlbrandt, 2014; Cheng, 2015; Murata and Wolf, 2018). The
introduction of direct electron detection cameras (Wu et al., 2016;
McMullan et al., 2016) and novel computational algorithms (Kervrann
et al., 2016; Cossio and Hummer, 2018) has enabled the reconstruction
of density maps with near-atomic details. To date, an exponential-
growing number of maps, and their corresponding atomic models
(Afonine et al., 2018), are being deposited in the electron microscopy
(Lawson et al., 2011) and protein data banks (Berman et al., 2000)
(EMDB and PDB, respectively).

Typically, cryo-EM maps are reconstructed using the gold-standard
procedure (Henderson et al., 2012; Scheres and Chen, 2012). The
particles are divided into two sets, and two independent reconstructions
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imum-likelihood (Sorzano et al., 2004; Tang et al., 2007) or Bayesian
techniques (Scheres, 2012; Punjani et al., 2017). At each iteration, the
Fourier Shell Correlation (FSC) (Saxton and Baumeister, 1982; Harauz
and van Heel, 1986) between the independent reconstructions is com-
puted. Fixed FSC threshold criteria at 0.143 (Rosenthal and Rubinstein,
2015) or 0.5 (Harauz and van Heel, 1986) are used to determine the
resolution of the reconstructions (i.e., the size of the smallest reliable
detail). The refinement process is halted when the resolution of the
reconstructions stops improving. In the end, the maps are masked,
sharpened, and a final resolution is determined.

However, despite several efforts from the cryo-EM community, map
validation is still problematic. In the recent Map Challenge, it has been
shown that there is no absolute ‘gold standard’ (Heymann, 2018). The
protocols are user-dependent, and there can be biases due to processing
workflows. For instance, in the FSC calculation, the resolution estimate
is dependent on the radius of the shell in Fourier space, and on the point
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symmetry of the biomolecule (Van Heel and Schatz, 2005; Sorzano
et al., 2017). The use of a fixed threshold for the FSC is restricted by the
assumption that the noise and the signal are orthogonal (Van Heel and
Schatz, 2005). In addition, the mask can be a source for overestimating
the resolution (Penczek, 2010; Pintilie et al., 2016; Rosenthal and
Rubinstein, 2015). Therefore, the best criteria to estimate the map re-
solution are still debated in the cryo-EM community (Sorzano et al.,
2017). For example, inconsistencies when reporting the resolution have
been highlighted in Ref. (Afonine et al., 2018), where the values of the
resolution reported in the model (from the PDB) and in the map (from
the EMDB) were different for nearly one-third of the deposited data.
Moreover, it has been found that more than 70% of the maps in the
EMDB have moderate to low agreement with the model, mostly because
of the limited resolvable features of the maps (Neumann et al., 2018). In
extreme cases, maps can be reconstructed from pure-noise images
(Henderson, 2013; Shatsky et al., 2009). These issues can lead to cryo-
EM maps built from aligned noise.

Therefore, methods that validate the quality of the maps and models
are fundamental for cryo-EM. Several methods use the FSC curve to
assess the quality of the reconstructions. By discarding shells from the
reference map used for the alignment, Shaikh et al. (Shaikh et al., 2003)
encountered a different behaviour of the FSC curve between re-
constructions that were made from pure-noise images or real particles.
Signatures of overfitting can be detected by randomizing the phases
beyond a certain frequency (Scheres and Chen, 2012; Chen et al.,
2013), for non-overfitted maps, the FSC should drop close to zero after
that frequency. Estimates of the map resolution, which take into ac-
count the symmetry of the molecule and the non-orthogonality of the
signal and noise, are obtained with the 1/2 bit non-fixed FSC threshold
(Van Heel and Schatz, 2005; Afanasyev et al., 2017). The local re-
solution in a map can be evaluated using the background noise of the
reconstruction (Kucukelbir et al., 2014) or by masking different regions
with the FSC (Cardone et al., 2013; Pintilie et al., 2016). For other
methods, the particle alignment provides quality indicators of the re-
construction, for example, using tilt-pair analysis (Rosenthal, 2016;
Rosenthal and Rubinstein, 2015; Rosenthal and Henderson, 2003;
Henderson et al., 2011; Penczek et al., 1994) or by assessing the re-
producibility of the orientation assignment (Vargas et al., 2017, 2016).
Moreover, several metrics that monitor cross-correlations in real or
Fourier space between the maps and models indicate the reliability of
the resolution (Afonine et al., 2018; Neumann et al., 2018; Brown et al.,
2015). Recently, deep learning algorithms have been introduced to
automatically classify maps into high, medium, and low resolution
(Avramov et al., 2019). These methods have the limitation that they do
not use the raw data, which ultimately come from the individual par-
ticles, but they only use the maps or models that are the product of
processing and averaging.

In comparison to the widely used cross-validation methods for X-ray
crystallography (Briinger, 1992) and nuclear magnetic resonance
(Briinger et al., 1993; Clore and Garrett, 1999), there are few methods
available for cryo-EM (Shaikh et al., 2003; Falkner and Schroeder,
2013). Heymann (Heymann, 2015) showed that reconstructions from
sets of real particles have higher resolutions than reconstructions from
pure-noise particles, which can be used as a consistency test of the data.
However, this test requires processing and averaging the particles for
generating the reconstructions and extracting the resolutions.

Here, we propose an unbiased strategy that validates cryo-EM re-
constructions using a small control set of particles that are omitted from
the refinement process. We do not focus on determining a specific value
for the resolution, but the main idea is to monitor how the performance
of the reconstructions evolves during the refinement procedure over
unbiased and independent data. We first calculate the Bayesian in-
ference of electron microscopy (BioEM) (Cossio and Hummer, 2013;
Cossio et al., 2017) probability of the maps, given the set of in-
dependent particles, as a function of a low-pass frequency cutoff of the
reconstructions. High-quality maps should increase in probability for
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higher frequency cutoffs and higher refinement iterations. We then
show that the similarity between the probability distributions of the
two reconstructions from the gold-standard procedure is an additional
quality indicator. Finally, we test the method on different systems and
asses its effectiveness to discriminate high quality maps, which are
reconstructed from true signal instead of noise.

Methods
Benchmark systems

We used the following benchmarks that represent diverse biomo-
lecular families and cryo-EM systems:

The human hyperpolarization-activated cyclic nucleotide-gated channel
(HCN1) is a voltage-dependent ion channel, which was resolved to high
resolution using cryo-EM (Lee and MacKinnon, 2017). The system was
resolved in two conformational states, an apo state and a cAMP-bound
state, to ~3.5 Ausing RELION 3D-refinement (Scheres, 2012). 55870
particles belonging to the apo state together with the defocus in-
formation are available in the Electron Microscopy Public Image Ar-
chive (EMPIAR) (Iudin et al., 2016) with code 10081.

The recombination-activating genes RAGI-RAG2 form a complex
(RAG1-RAG2) that plays an essential role in the generation of anti-
bodies and antigen-receptor genes in a process called V(D) J re-
combination. Two main structures of the RAG1-RAG2 complex can be
distinguished during the V(D) J recombination, a synaptic paired
complex and the signal end complex (SEC). These states were resolved
to 3.7 and 3.4 A, respectively, using cryo-EM (Ru and Others, 2015).
81946 processed picked particles from the SEC state are deposited in
the EMPIAR data bank with code 10049. The defocus information is
available for these particles.

The mammalian transient receptor potential TRPV1 ion channel
(TRPV1) is the receptor for capsaicin. Its structure was determined to
3.4 Ausing cryo-EM (Maofu et al., 2013). A set of 35645 processed
particles for this system are found in the EMPIAR data bank with code
10005. The defocus information is also available for these particles.

The human immunodeficiency virus type 1 envelope glycoprotein trimer
(HIV-ET) is a membrane-fusing machine which mediates virus entry
into host cells. The structure of the apo HIV-1 envelope glycoprotein in
the trimer-conformation was determined to 6 Ausing the 0.5 FSC
threshold with cryo-EM (Mao et al., 2013). A set of 124478 particles
used in the refinement process is available in EMPIAR with code 10008.
The defocus information is also available for these particles.

For all of the above cases, a subset of 5000 particles was randomly
selected to be used as the control set. Specifically, these particles are not
used in the refinement processes.

Pure-noise images: we generated a set of synthetic 1000 pure-noise
particles. Each particle contains random intensities following a
Gaussian distribution with zero mean and unit variance (for details see
the Supplementary Information). These images were used as a “false”
control set to assess the RAG1-RAG2 reconstructions.

3D refinement

The RELION (Scheres, 2012) software was used to reconstruct the
cryo-EM maps. For all systems, we assume that the deposited particles
correspond to the same state. Therefore, the preprocessing steps of 2D
or 3D classification are not performed. As the initial reference map for
the 3D refinement, we use the final map reported by the authors low-
pass filtered to 60 A. This was done to minimize the risk of model bias
(Scheres and Chen, 2012). The 3D-refinement procedure implements
the gold-standard approach by splitting the data into two random
halves (sets i = 1, 2) and performing two independent reconstructions.
We note that the number of particles used for these reconstructions was
slightly less than those of the original works because the particles from
the control set were taken out. In all cases, we used the RELION default
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Table 1
Summary of the results from the 3D-refinement using RELION (Scheres, 2012)
for the cryo-EM systems.

System #Particles Symmetry #iterations Final resolution
HCN1 50870 c4 17 4.2 A
RAG1-RAG2 79946 C2 21 3.8A
TRPV1 30645 c4 24 53A
HIV-ET 119478 C3 10 9.9 A

* using the 0.143 FSC threshold.

parameters, and point-group symmetries reported by the authors.
Table 1 summarizes the results obtained from the 3D refinement. The
resolutions are in accordance with the reported ones, taking into ac-
count that the post-processing steps were not performed, and that the
control set of particles was excluded from the refinement.

Low-pass filtering

Consider a map m generated from an iteration of the 3D refinement.
Let .7, (k) be its 3D-Fourier transform, where k is the reciprocal vector.
We perform a low-pass filter on the map, .#(k), up to a frequency
cutoff k.. The resulting filtered map is

«ﬁ,’ﬁl‘(k) — {ym(k) k < kc )
0 otherwise
We use the code lowpassmap_fftw available from the Rubinstein lab
webpage (Rubinstein, xxxx) to perform this calculation. We then con-
vert the map into real space by applying the inverse Fourier transform
of 7% (k). The real-space filtered map is masked and then used as input
for the BioEM computation (see below).

BioEM posterior probabilities

The BioEM method (Cossio and Hummer, 2013) uses a Bayesian
framework to quantify the consistency between an experimental image
w and a given map m (or model) by calculating a posterior probability
P,.,. BioEM takes into account the relevant physical parameters (©) for
the image formation: center displacement, normalization, offset, noise,
orientation and CTF parameters (defocus, amplitude, and B-factor). B,
is calculated by integrating-out all parameters

Buw x J L(w]®, m)p(©)do, a

where p(@) are the prior probabilities parameters and L (w|O, m) is the
likelihood function. For ensemble determinations, the posterior can be
multiplied by the prior probabilities of each model, as described in Ref.
Cossio and Hummer (2013). We considered the prior probabilities of
maps, orientations and center displacement uniform over the integra-
tion intervals. Gaussian priors for the CTF parameters were used simi-
larly as in Ref. Cossio et al. (2018). In Eq. (1), the integrals over the
offset, noise and normalization are performed analytically (Cossio and
Hummer, 2013), and that over the center displacement is described in
Ref. Cossio et al. (2017). The integral over the orientations and CTF
defocus is done using a double-round algorithm, which is described in
the following subsection.

Similarly as in Ref. Cossio and Hummer (2013), we define a noise
model Pyoise = (2772%)Nrix/2 where Ny is the number of pixels and 4 is
the image variance (by default 4 = 1). Pyoise i used as a reference to
compare the posterior probabilities to a hypothetical model composed
of Gaussian noise of zero mean and unit variance. We note that Py is
a constant for each system, and In(B,,/Pnoise) €stimates how many log-
units the map is more probable than the Gaussian noise model for
particle w.
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BioEM algorithm

To optimize the computations, we divided the BioEM posterior
calculation into two rounds. The objective of the first round is to obtain
the best orientations for each particle. In this round, an all-orientations
to all-particles algorithm is performed (Cossio et al., 2017). As the
BioEM input map, we used the final reconstruction from the refinement
with a mask and without low-pass filtering. To sample the orientations,
we used 36864 quaternions that sample uniformly orientation space
(Yershova et al., 2010). The particles were grouped into sets with si-
milar experimental defocus with 0.4um range, and an independent or-
ientation search was performed for each group. In this round, the best
10 orientations for each particle are extracted. An example of the
BioEM input for the first round is presented in the Supplementary
Information.

Starting in round 2, we calculate the BioEM posterior probability
using a fixed list of quaternions and the experimental defocus for each
particle, for all low-pass filtered reconstructions from the refinement
iterations. The list of quaternions contains 1250 orientations con-
centrated around on the 10 best orientations for each particle from
BioEM round 1. Therefore, the optimal orientations and translations are
determined at every iteration for every low-passed filtered map.
However, we note that the space of possible angles is not the entire SO3
but it is the reduced list of 1250 quaternions determined only once for
each particle in round 1. This procedure is described in detail in Ref.
Cossio et al. (2018).

In round 2, we used 8 filtering-frequencies for each reconstruction;
these were distributed uniformly from 1/(p, m ) to 1/(3p,) where p; is
the pixel size. If one wants to analyze the behavior at very low-re-
solution or very high-resolution, the frequency-cutoff range should be
modified (e.g. as in Supplementary Fig.1). All reconstructions were
masked using the same mask as for round 1. An example of the BioEM
input file for round 2 is presented in the Supplementary Information.

BioEM code

The BioEM code has been extended with several optimizations,
which drastically increase performance for the second round of calcu-
lations. Most importantly, the main code structure and algorithm were
modified to allow for a parallel comparison of multiple orientations to a
single particle image. Initial reading of the input files has been paral-
lelized, and the overall memory consumption decreased. These code
changes lead to more efficient utilization of the computing resources,
and hence to a faster calculation of posterior probabilities, especially
for the workloads specific to the second round. For more information,
we refer the reader to the BioEM user manual: https://readthedocs.org/
projects/bioem/.

Normalized Jensen-Shannon divergence

Measuring a distance among probability distributions is a common
task in statistics. Most measures include concepts from information
theory, such as the Kullback-Leibler divergence (Kullback, 1968; Lin,
1991) or the Shannon entropy (Cover and Thomas, 2006). In this work,
we measure the statistical similarity between the probability distribu-
tions from reconstructions from set 1 and set 2 calculated over the
control set. We define a metric that is the Jensen-Shannon divergence
(Cover and Thomas, 2006; Lin, 1991) normalized by the individual
Shannon entropies

Zm [ln(z) + leln(le) + PZwln(PZw)]

NISD = )
2( Zcu Plculn(le) Zw PZwln(PZw))l/z (2)

where P;, and P, are the probabilities of the reconstructions from set 1
and 2, respectively. P, and P,, are not normalized in the BioEM cal-
culation, therefore, to calculate Eq. (2), we enforce the simple
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normalization Py, + Py, = 1 for each image w, frequency cutoff and
iteration. We note that to enforce this normalization both probabilities
from set 1 and 2 are required. For simplicity of notation, we have
omitted the dependency of the probabilities on the frequency cutoff k..

In Eq. (2), the numerator measures the similarity between the
densities of probability distributions, and the Shannon entropies in the
denominator play the role of a normalization factor. Some important
properties of the NJSD metric are that it is positive, symmetric and its
lower bound is 0 if and only if P, = P, for all particles w.

Results and discussion
Validation protocol using an independent particle set

We propose a statistical framework for the validation of cryo-EM
reconstructions. The validation analysis is done over a small control set
of particles not used in the refinement process. Our main objective is to
assess how well the maps perform over unseen data, which is the core of
cross-validation. Therefore, having an independent set guarantees that
the estimate of the quality of the reconstructions is free of biases from
the optimization of the target function used in the refinement.

Fig. 1 shows the work-flow of the methodology. The refinement is
done following the gold-standard procedure (Fig. 1-left), where two
reconstructions are generated at each iteration step. These two re-
constructions are validated using the independent particle set (Fig. 1-
right). At each iteration, the two 3D maps are low-pass filtered to dif-
ferent frequency cutoffs, k., (see Methods). The BioEM (Cossio and
Hummer, 2013) probability, P, (k.), is calculated for each gold-stan-
dard reconstruction, i = 1, 2, over the control set of images (w) with N
particles. As a first validation test, we monitor the map evidence,
Zw In(P,(k.))/N, as a function of k. for each set i. This evidence should
increase or remain constant as higher frequencies are added to the
maps. Failing this test is a prime indicative that there is a problem in the
refinement process.

The second validation test consists on measuring the similarity be-
tween the probability distributions of the two reconstructions, also as a
function of the frequency cutoff. For this purpose, we calculate a nor-
malized Jensen-Shannon divergence (NJSD) (see Methods). The NJSD is
a positive, symmetric and bound metric that measures how distin-
guishable are the probability distributions from the reconstructions sets

i---» Cryo-EM refinement
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1 and 2. We expect that, as more frequencies are added to the re-
constructions, more noise is added, and the densities of probability
distributions are less similar.

In the following, we describe in detail the two validation tests.

Map evidence from the log-posterior

We tested the methodology over several cryo-EM datasets: the sy-
naptic RAG1-RAG2 complex (RAG1-RAG2) (Ru and Others, 2015), the
human HCN1 channel (HCN1) (Lee and MacKinnon, 2017), and the
TRPV1 ion channel (TRPV1) (Maofu et al., 2013). These systems re-
present a diverse set of biomolecular families, with membrane proteins
and protein-nucleic acid complexes. The reconstruction refinement was
performed using the gold-standard procedure in RELION (Scheres,
2012). The final resolution of these systems ranges from approximately
3 to 6 A(see Methods). To analyze the impact of aligning noise, we
studied two additional systems: cryo-EM reconstructions from the HIV-
1 envelop trimer (HIV-ET) (Mao et al., 2013) and a set of synthetic
pure-noise images that acts as a ‘false’ control set with the RAG1-RAG2
reconstructions (see Methods). This was motivated by the fact that
some reconstructions might have been generated from pure-noise par-
ticles, and their resolution might have been over-estimated
(Subramaniam, 2013; Henderson, 2013; Shatsky et al., 2009).

In Fig. 2, we examine the improvement of the maps by monitoring
the sum of  the log-posterior relative to noise
2 In(Po (ke))/N — In(Proise), over the control set with N = 5000, as a
function of k. for the reconstructions i = 1, 2. The results are shown for
different refinement iterations with a gradient color scheme (first
iteration: maroon; last iteration: green). These results measure how
probable each filtered map is relative to Pyise- For the RAG1-RAG2,
HCN1 and TRPV1 systems, we find an increase of the map evidence
(given by the sum of the log-posterior) as a function of the frequency
cutoff. For very high frequencies, the map evidence plateaus. We only
observe minor differences between the results obtained for re-
constructions i =1 and 2 (solid and dashed lines, respectively, in
Fig. 2). This is an indication of the similarity between the two re-
constructions. Importantly, the results highlight the ability of the
BioEM posterior to correctly rank maps of different resolutions. For
example, in Supplementary Fig. 1, we show the log-posterior for the
first five iterations of the refinement of the TRPV1 system. Even for low-

Fig. 1. Unbiased validation protocol for
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Fig. 2. The sum of the log-posterior relative to noise ), In(P,)/N — In(Pxoisc), over the control set with N particles, as a function of the frequency cutoff for
reconstructions from set i = 1 and 2 (solid and dashed lines, respectively). The results are shown for different refinement iteration steps with a gradient color code:
the first iteration is maroon and the last iteration is green. On the top row, we show the results for the cryo-EM systems where we expect refinement to work properly:
HCN1, TRPV1 and RAG1-RAG2 for N = 5000. Systems that present signs of treating noise as signal, the HIV-ET with N = 5000 and a noise particle control set with

N = 1000, are shown in the bottom row, highlighted with a red box.

resolution maps, as the iteration increases (i.e., the map resolution) so
does the map evidence. The reconstructions from the last iterations (i.e.,
the most refined with highest resolution) are the most probable. This is
in agreement with what one expects from the 3D-refinement algorithms
(Cossio and Hummer, 2018), and from previous studies that use the
posterior probability to discriminate between conformational models
(Cossio and Hummer, 2013; Cossio et al., 2018).

In contrast, for the HIV-ET and noise-particle set, we find a different
behavior of the map evidence. We find that the sum of the log-posterior
does not increase as a function of the frequency cutoff but decreases or
remains constant. For the noise-particle set, the map evidence relative
to Pyoise 1S small, and the differences between iterations are almost two
orders of magnitude smaller than for the validated sets. Moreover, for
this case, as the refinement iteration proceeds, the maps are slightly less
probable over the control set. This analysis monitors map quality in
cryo-EM: if the map evidence does not increase as a function of the
frequency cutoff and the refinement iteration, then there are signs of
spurious data in the refinement.

Similarity between the probability distributions

As a second validation test, we compare the distributions of the
posterior probabilities generated by the reconstructions from sets
i=1,2 over the control set. In the Supplementary Information, we
show an example of the probability distributions for the HCN1 system
for two frequency cutoffs at a given iteration (Supplementary Fig. 2-
top). We find that the probability distributions, over the independent
set, are quite similar for both reconstructions. However, there are small
differences between them, and the higher-frequency maps present
larger fluctuations (Supplementary Fig. 2-bottom). These differences
can be quantified using a normalized Jensen-Shannon divergence
(NJSD; see Methods).

In Fig. 3, we plot the NJSD as a function of the frequency cutoff k..
Interestingly, for the RAG1-RAG2, HCN1 and TRPV1 systems, we ob-
serve that the NJSD increases as higher frequencies are included in the
filtered maps. This implies that the probability distributions between
maps with higher frequencies are less similar, possibly because they are
more uncorrelated due to the high-frequency noise. For these standard
systems, we also find that as the iteration increases the NJSD reaches at

higher frequencies a plateau value. This behavior can be fitted with an
inverse exponential function — Ae /¥ + B (see below and solid lines in
Fig. 3). By contrast, for the HIV-ET and noise-particle sets, we find that
the NJSD remains constant or has random behavior, suggesting that
distributions do not consistently change when higher frequencies are
added to the maps. For HIV-ET, we notice further that the NJSD values
are ten times larger than for any of the other systems, indicating that
the two gold-standard refinements are highly inconsistent with each
other.

Validation tests versus resolution

We explored how the results depend on the map resolution. For the
HCN1, TRPV1 and RAG1-RAG2 systems, we find that the NJSD curves
can be fitted to an inverse exponential function, — Ae~*</¥ + B (solid
lines shown in Fig. 3). Intuitively, the frequency y indicates where the
plateau of the NJSD is reached. In Fig. 3, we can qualitatively see that y
increases with each refinement iteration. In Fig. 4, we plot the fre-
quency y as a function of the inverse of the resolution (calculated using
the FSC at the threshold 0.143). Interestingly, we find that the fre-
quency y is highly correlated to the inverse of the resolution with
correlation coefficient r? = 0.93, 0.91, and 0.85, for HCN1, TRPV1 and
RAG1-RAG2, respectively. In Supplementary Fig. 3, we compare y to
the resolution obtained using the 1/2 bit non-fixed FSC threshold (Van
Heel and Schatz, 2005), finding similar correlations. These results show
that even from a small control set it is possible to extract unbiased in-
formation of the map resolution. We note that for the HIV-ET and noise-
particle sets it is not possible to fit the NJSD data to an inverse ex-
ponential function. Therefore, we can only estimate the correlation
between y and the inverse of the resolution for the standard cryo-EM
systems.

Convergence over a small control set

We assessed how the results depend on the number of particles in
the control set. In Supplementary Fig. 4, we show an example of the
map evidence and NJSD as a function of the number of particles in the
control set. We find that after approximately 1000 particles these ob-
servables converge, suggesting that only a small set is needed to
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Fig. 3. Normalized Jensen-Shannon di-

vergence (NJSD) as a function of the
frequency cutoff. This metric calculates
the similarity between the distributions
of the BioEM probabilities computed for
the two reconstructions from sets 1 and 2.
We use a gradient color code for the re-
finement iteration steps: the first iteration
is maroon and the last iteration is green.
On the top row, we show the results for

the systems where standard cryo-EM re-

finement is expected to work: HCN1,

TRPV1 and RAGI1-RAG2. For these sys-
tems, we fit the data points to an inverse
exponential function — Ae~*</” + B (solid
lines). Systems that treat noise as signal
due to the alignment, a noise particle
control set and HIV-ET, are shown in the
bottom row with the dashed lines as a
guide, and highlighted by a red box. The

number of particles in the control sets are

to the web version of this article.)
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Fig. 4. Frequency y versus the inverse of the resolution for the standard cryo-
EM systems: HCN1, TRPV1 and RAG1-RAG2. The NJSD curves for these systems
were fitted to an inverse exponential function — Ae~*/” + B where y is the
frequency. We find large correlations between y and the inverse of the re-
solution (calculated using the 0.143 criteria). The correlation coefficients are
r? = 0.93, 0.91, and 0.85, for HCN1, TRPV1 and RAG1-RAG2, respectively. Solid
lines show the linear fits to the individual sets. Black dashed line shows the
global fit with parameters y = 0.42/R — 0.02 where R is the resolution. The
correlation coefficient for the global fit is r? = 0.86.

perform the analysis. This is confirmed in Supplementary Fig. 5, where
we plot the map evidence and NJSD as a function of the frequency
cutoff for a validation set of 1000 particles. For the same set, in
Supplementary Fig. 6, we plot the frequency y as a function of the in-
verse of the map resolution, showing high correlation between the two
for the standard cryo-EM systems. These results are very similar to
those obtained for the validation set with 5000 particles.

Conclusions

In this work, we have developed a novel methodology for validating
cryo-EM reconstructions. The procedure is performed over a small
particle set that is not used to generate the reconstructions. The in-
dependence of the particle set ensures that there are no biases due to
the refinement in the validation.
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this figure legend, the reader is referred

Two validation tests are proposed to assess the performance of the
maps over raw unbiased data. The first consists on monitoring the map
evidence as a function of a low-pass filter frequency cutoff. The pos-
terior should increase as a function of the frequency cutoff and the
refinement iteration. In the second test, we assess the similarity be-
tween the probability distributions generated from the two re-
constructions from the gold-standard procedure. The distributions
should become less similar as higher frequencies are added to the re-
constructions.

We performed the validation tests over several systems: three
standard cryo-EM reconstruction sets, and two datasets that mimic the
treatment of noise as signal. The results show substantial differences.
While for the standard cryo-EM sets the results are as expected, the
noisy datasets present almost no increment (and sometimes even de-
crease) of the map evidence or the NJSD. Thus, signatures of purious
signal can be monitored by measuring the maps’ performance over an
independent small set of particles. However, the method is still to be
tested over more challenging datasets (not just those composed of
mostly noisy particles). For example, for detecting the point at which
noise is started to be treated as signal during the refinement.

The mathematical framework is not only valid for the BioEM pos-
terior but also for any posterior probability that measures the likelihood
of a 3D density given a particle set. However, an accurate estimate of
the posterior probability is important. For example, if a large percen-
tage of particles are misaligned then both the map evidence and NJSD
will be underestimated (see Supplementary Fig. 7). With accurate
posterior estimates, we find that the tests converge over a small particle
set, typically only 1000 particles. We note that for the evaluated sys-
tems, the particle sets were selected from the EMPIAR dataset (ludin
et al., 2016) after 3D classification, which reduces the variability and
heterogeneity of the particles. Therefore, the consequences of the par-
ticle picking and classification algorithms on the validation methodol-
ogies remain to be assessed.

The proposed methodology is still to be examined over flexible and
heterogeneous biomolecules. However, preliminary tests using syn-
thetic particles, which belonged to different conformations, showed
that with the posterior probability, it is possible to determine the cor-
rect conformational ensemble (Cossio and Hummer, 2013). Moreover,
novel reconstruction methods (Moscovich et al., 2019; Lederman et al.,
2019; Zhong et al., 2019) that use machine learning techniques for
mapping conformational variability will highly benefit from cross-va-
lidation procedures because for continuous heterogeneous ensembles



S. Ortiz, et al.

the traditional FSC methods fail.

In summary, our methodology provides an unbiased basis to vali-
date cryo-EM maps. Moreover, it has the potential to be applicable for
directly validating atomic models (instead of 3D maps) using an in-
dependent set. We conclude that having a control particle set which is
not tampered to generate reconstructions is beneficial for validating
cryo-EM applications.

Data availability

The BioEM code is available at https://github.com/bio-phys/
BioEM. A tutorial to perform the cross-validation protocol is available
at: https://github.com/bio-phys/BioEM-tutorials.
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