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Abstract 

Background: As genomic sequencing moves closer to clinical implementation, there has been an increasing accept‑
ance of returning incidental findings to research participants and patients for mutations in highly penetrant, medi‑
cally actionable genes. A curated list of genes has been recommended by the American College of Medical Genetics 
and Genomics (ACMG) for return of incidental findings. However, the pleiotropic effects of these genes are not fully 
known. Such effects could complicate genetic counseling when returning incidental findings. In particular, there has 
been no systematic evaluation of psychiatric manifestations associated with rare variation in these genes.

Results: Here, we leveraged a targeted sequence panel and real‑world electronic health records from the eMERGE 
network to assess the burden of rare variation in the ACMG‑56 genes and two psychiatric‑associated genes (CAC-
NA1C  and TCF4) across common mental health conditions in 15,181 individuals of European descent. As a positive 
control, we showed that this approach replicated the established association between rare mutations in LDLR and 
hypercholesterolemia with no visible inflation from population stratification. However, we did not identify any genes 
significantly enriched with rare deleterious variants that confer risk for common psychiatric disorders after correc‑
tion for multiple testing. Suggestive associations were observed between depression and rare coding variation in 
PTEN (P = 1.5 ×  10–4), LDLR (P = 3.6 ×  10–4), and CACNA1S (P = 5.8 ×  10–4). We also observed nominal associations 
between rare variants in KCNQ1 and substance use disorders (P = 2.4 ×  10–4), and APOB and tobacco use disorder 
(P = 1.1 ×  10–3).

Conclusions: Our results do not support an association between psychiatric disorders and incidental findings in 
medically actionable gene mutations, but power was limited with the available sample sizes. Given the phenotypic 
and genetic complexity of psychiatric phenotypes, future work will require a much larger sequencing dataset to 
determine whether incidental findings in these genes have implications for risk of psychopathology.
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Background
Rapid advances in sequencing technologies accompa-
nied by progressive cost reductions are fueling efforts 
to incorporate genetic data into medical practice. 
Genomic medicine offers important opportunities 
to improve diagnosis and treatment of both complex 
and Mendelian diseases [1, 2]. At the same time, clini-
cal applications of exome and genome sequencing can 
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produce incidental or secondary findings that are not 
the primary target of genetic evaluation but have impli-
cations for genetic counseling and patient care. The 
American College of Medical Genetics and Genom-
ics (ACMG) has recommended return of results (RoR) 
for an expanding list of genes (56 genes in v1.0 and 59 
genes in v2.0) in which pathogenic coding variants are 
highly penetrant and medically actionable [3, 4]. Cur-
rent RoR guidelines, however, largely focus on a sin-
gle established phenotype-genotype association, while 
genetic analyses have revealed that “pleiotropy”—in 
which a variant or gene affects multiple phenotypes—is 
ubiquitous across the human genome, including some 
of the genes recommended by ACMG for incidental 
findings (referred to as “ACMG genes” in the rest of this 
paper) [5, 6].

Psychiatric disorders are common, complex pheno-
types affecting more than a billion people worldwide. 
Genome-wide association studies (GWAS) have found 
extensive pleiotropy of both common and rare vari-
ants across mental illnesses and other diseases (e.g., 
cardiovascular and immune-related disorders) [7–10]. 
Although psychiatric disorders are highly polygenic 
reflecting the influence of hundreds to thousands 
of common genetic loci [11–13], recent large-scale 
sequencing studies of these disorders based on tens of 
thousands of individuals have begun to identify indi-
vidual genes harboring an excess of de novo or rare 
disruptive variants in cases compared to unaffected 
individuals [14–16]. To date, however, there has not 
been a systematic evaluation of the spectrum of psy-
chiatric manifestations associated with rare variation in 
the ACMG genes or other genes where specific variants 
have been robustly shown to influence the risk of major 
psychiatric disorders. Studying these relationships is 
important to improve our understanding of the nature 
of pleiotropy among the ACMG genes, inform RoR 
guidelines for incidental findings regarding psychiatric 
disorders, and disentangle its heterogeneous genetic 
architecture.

Here, we leverage data from the Electronic Medi-
cal Records and Genomics (eMERGE) consortium that 
includes real-world phenome-wide medical data and 
deep sequencing of the ACMG-56 genes (v1.0; Table 
S1) [17, 18], as well as two genes previously implicated 
in major psychiatric traits (CACNA1C and TCF4) [19, 
20] to examine whether rare variants in these genes are 
associated with mental illnesses for 15,181 individuals 
of European descent. Through a phenome-wide asso-
ciation study (PheWAS) approach [21], we performed 
gene-based burden tests across 37 curated psychiatric 
disorders with adequate sample size and discuss findings 
and limitations for future research.

Results
Overview of the targeted sequence and phenotype data
To explore the nature of pleiotropy of rare variation in the 
ACMG-56 genes and two additional genes (CACNA1C 
and TCF4) on psychiatric manifestations, we used a deep, 
targeted sequence panel from the eMERGE network 
(eMERGEseq). While showing a clear multi-ancestry 
structure, the panel consisted of predominantly individu-
als of European (EUR) descent (Figure S1), to which we 
limited the subsequent rare-variant analysis for power 
considerations. After quality control procedures (Meth-
ods), the data comprised 15,181 EUR individuals with 
complete phenotype information from electronic health 
records (EHR) and ~ 13,000 variants at minor allele fre-
quency (MAF) < 1% in the 58 genes. We then mapped the 
International Classification of Disease diagnostic codes 
(ICD-9-CM and ICD-10-CM) to PheWAS codes (Phe-
Codes) [22, 23] and defined eligible cases for a specific 
PheCode as having at least two codes on two separate 
calendar dates (Table S2).

For our rare-variant PheWAS of mental disorders, we 
curated 37 psychiatric symptoms and disorders with a 
minimum in-sample prevalence of 0.5% (Ncase ≥ 75) 
(Table S3). As prevalence of these conditions largely 
reflected disease frequency in the population, many psy-
chiatric disorders were filtered out, including schizo-
phrenia (prev = 0.3%; 44 cases). Among the curated list, 
conditions with the highest prevalence included tobacco 
use disorder (prev = 18.4%; 2783 cases) and depression 
(prev = 17.1%; 2590 cases), and lowest for personal-
ity disorder (0.6–0.7%; 113 cases) and psychosis (0.6%; 
90 cases). Other major psychiatric disorders included 
autism (3.7%; 572 cases), attention-deficit/hyperactivity 
disorder (7.6%; 1164 cases), and bipolar disorder (2.6%; 
397 cases). The majority of the 37 psychiatric conditions 
were significantly, positively correlated (Spearman’s cor-
relation, range: -0.09–0.57; median: 0.05; Table S4; Fig-
ure S2). In contrast, phenotypic correlations between the 
evaluated psychiatric conditions and other phenotypes 
were much weaker (Table S5).

Replication of a known association with no visible signs 
of population stratification
Singe variant association analysis of two selected com-
plex traits (obesity [Ncase = 3,521; PheCode: 278.1] and 
essential hypertension [Ncase = 6,972; PheCode: 401.1]; 
MAF > 0.1%) suggested there was no signs of inflation 
in test statistics due to population stratification or other 
confounding factors (λGC ~ 1; Figure S3). As a positive 
control analysis, we conducted a PheWAS of 966 avail-
able PheCodes with at least 75 cases (Table S2) against 
rare variants in the LDL-receptor (LDLR) gene, in which 
more than 3,000 mutations, predominantly missense 
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variants, have been described to cause familial hypercho-
lesterolemia (FH) (ClinVar) [24–26]. Unsurprisingly, our 
results recapitulated this known association, showing a 
clear and significant enrichment of rare deleterious vari-
ation in people with hypercholesterolemia, specifically 
for damaging missense variants (p-value = 1.1 ×  10–9). As 
a negative control, synonymous variation, a presumably 
neutral class of variants, showed no association signals 
with any of the tested traits (Figure S4).

Burden of rare variation in ACMG-56 genes in psychiatric 
disorders
To assess whether individuals affected with psychiatric 
disorders carried an excess of rare variants in the ACMG-
56 genes, we considered five categories of qualifying vari-
ants to calculate an aggregate burden (all rare variants 
with MAF < 1%, all non-synonymous variants, all rare 
PTVs, all rare damaging missense variants, and all rare 
PTVs and damaging missense variants) and carried out 
the analysis using Firth’s logistic regression and Fisher’s 
Exact test (Methods).

Among the tested gene-disorder relationships, we did 
not identify any study-wide significant gene associations 
(FDR < 0.05), with only 11 pairs reaching individual-
PheWAS significance (Bonferroni-adjusted significance 
threshold of 1.35 ×  10–3; Table  1; Table S6; Fig.  1; Fig-
ure S5). Results were generally comparable between 
Firth’s logistic regression and Fisher’s Exact test, with 
slightly stronger signals in the former (Table S6). Some 
of these suggestive associations included major depres-
sive disorder and PTEN, a tumor suppressor gene (bur-
den of non-synonymous variants: OR = 9.15, Firth’s 
p-value = 1.5 ×  10–4); substance addiction and disor-
ders and KCNQ1, which encodes a potassium chan-
nel protein (burden of damaging missense variants: 
OR = 14.63, p-value = 2.4 ×  10–4), and depression and 
CACNA1S, a calcium channel gene (burden of all rare 
variants: OR = 1.50, p-value = 5.8 ×  10–4; Table 1). A few 
genes causing rare or Mendelian heart conditions were 
also implicated, such as LDLR (burden of nonsynony-
mous variants in major depressive disorder: OR = 2.10, 
p-value = 3.6 ×  10–4) and APOB (burden of PTVs in 
Tobacco use disorder: OR = 12.99, p-value = 1.1 ×  10–3), 
both linked to familial hypercholesterolemia (Table S1). 
The associated phenotypes among the suggestive associa-
tions are broader PheCode terms involving combinations 
of related disorders and symptoms.

Scanning across the associations, we noted an overall 
low count of qualifying variants, with several genes lack-
ing qualifying PTVs and damaging missense variants 
among study participants (Fig.  1; Figure S5), and many 
PheCodes with no mutation carriers among either cases 
or controls (Table S6). While Firth’s logistic regression 

applied bias correction to rare events to control for type 
I error, the possibility of inflation might not be ruled out 
due to these extremely low counts. These results indi-
cate a general lack of power for gene-based burden tests 
to detect significant genes for mental disorders given the 
current sample size.

No enrichment of rare variants in two genes previously 
associated with major mental disorders
For CACNA1C and TCF4, two genes that have been 
repeatedly linked to major psychiatric disorders from 
GWAS and a few rare variant association studies, we 
studied the role of deep-sequenced rare variation across 
a spectrum of mental illnesses. In brief, CACNA1C is a 
voltage-gated calcium channel gene that was found to 
associate with schizophrenia, bipolar disorder, Timothy 
syndrome, and autism, while TCF4, a transcription fac-
tor gene, has been implicated in schizophrenia, bipolar 
disorder, major depressive disorder, post-traumatic stress 
disorder, and Pitts Hopkins syndrome [12, 13, 19, 20, 27–
33] (Methods).

When evaluating the burden of rare variation in CAC-
NA1C and TCF4, we did not detect any suggestive or 
study-wide significant associations with the tested psy-
chiatric conditions (Tables S7-8; Fig.  2). Note that our 
study of 15,181 individuals included a limited number 
of individuals affected with major psychiatric disorders 
from EHR (e.g., bipolar disorder, 397 cases; autism, 572 
cases; Table S3), raising the possibility of Type II error.

No evidence of the rare-variant burden stratifying by age 
or sex
As the age range in our sample is broad and the pro-
portion of females differs by PheCodes (Table S3), we 
explored possible effect modifications by age and sex on 
the association results. Specifically, we performed sec-
ondary PheWAS analyses involving an interaction of 
age or sex with the count of qualifying rare variants for 
each gene. Nonetheless, similar to the primary findings, 
we did not observe any significant interaction at study-
wide significance (FDR < 0.05) across the 37 psychiatric 
PheCodes and 58 genes for all five functional groupings 
of rare variants (Tables S9-10). Thus, there was no statis-
tical evidence that the burden of rare variation on these 
psychiatric conditions varied by age or sex in the present 
study.

No significant findings from gene-set-based PheWAS 
grouped by biological domains
Considering that rare variants with the same predicted 
functional consequence or involved in the same bio-
logical mechanism may act together to influence disease 
risk, we took a more systematic approach that grouped 
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qualifying variants into gene sets and tested for enrich-
ment in patients affected with the evaluated psychiat-
ric conditions versus control individuals. Specifically, 
we looked at all 58 genes in aggregate (Table S11) and 
separately for three gene sets each associated with the 
most significant Gene Ontology (GO) term for “bio-
logical process” [34 genes, circulatory system develop-
ment (GO:0072359); Table S12], “cellular component” 
[16 genes, contractile fiber (GO:0043292); Table S13], or 
“molecular function” [25 genes, protein-containing com-
plex binding (GO:0044877); Table S14]. Nonetheless, as 

with single-gene PheWAS results, we did not identify any 
significant gene-set associations after multiple testing 
correction (Tables S11, S15,16,17).

Comparison with gene associations from the UK Biobank 
(UKB)
To seek potential validation from publicly available 
resources, we then compared our results to individual 
gene associations reported in the UK Biobank (UKB) 
involving 281,852 individuals of European ancestry 
(available on GeneBass: https:// geneb ass. org/; [34]. 

Fig. 1 PheWAS of rare variation in the selected ACMG‑56 genes with psychiatric disorders. Show here are the PheWAS results of 9 genes listed 
in Table 1 with suggested significance. For each gene, five‑panel results for all 37 tested psychiatric conditions are shown, separately for (1) all 
variants with MAF < 1%, (2) all non‑synonymous variants, (3) all PTVs and damaging missense variants combined, (4) damaging missense variants, 
and (5) PTVs (from left to right). On the x‑axis shows the ‑log10(p‑value) of the burden tests. Each triangle represents a disorder, with an upright 
triangle indicating the gene is associated with an increased risk (OR > 1) of the disorder and an inverted triangle indicating a decreased risk (OR < 1). 
Genes with no qualifying variants present among the study participants were not tested and are left vacant in the figure. The vertical dotted grey 
line for each individual PheWAS signifies the nominal significance level of 0.05, and the vertical red solid line represents the Bonferroni‑corrected 
significance (0.05/37 = 1.35 × 10–3). No association surpassed the study‑wide significance at FDR < 0.05. The full set of PheWAS results for the 
ACMG‑56 genes can be found in Table S6 & Figure S5

https://genebass.org/
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Notably, UKB is a population-based cohort that appears 
to have a healthy volunteer selection bias [35].

For the 16 psychiatric PheCodes that could be 
mapped to a UKB definition, we observed that the 
prevalence was overall much lower in UKB than in 
our eMERGE study (Table S18; e.g., anxiety disor-
ders, eMERGE: 17% vs. UKB: 5%). Despite differences 

in sample ascertainment, quality control, and analysis 
pipelines, both our eMERGE results and those reported 
in GeneBass identified no genes significantly associated 
with the tested psychiatric phenotypes at FDR < 0.05 
(Table S19). Additionally, association signals in the 
UKB-GeneBass data were weaker than in eMERGE 
(Table S20).

Fig. 2 PheWAS of rare variation in CACNA1C (A) and TCF4 (B) with 37 psychiatric disorders. Findings from burden tests that assess the enrichment 
of each variant category in psychiatric disorders are depicted; x‑axis shows the ‑log10(p‑value) across all 37 psychiatric conditions on the y‑axis. 
An upright triangle indicating a risk‑increasing effect (OR > 1) of the tested variant class and an inverted triangle indicating a risk‑decreasing 
association (OR < 1). The vertical dotted grey line represents the nominal significance level of 0.05, and the vertical red solid line represents the 
Bonferroni‑corrected significance (1.35 × 10–3). No association surpassed the study‑wide significance at FDR < 0.05
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Discussion
Incidental findings in the ACMG genes have been recom-
mended for RoR but no studies to our knowledge have 
systematically examined whether rare variation in these 
genes is associated with psychiatric manifestations in 
deeply sequenced samples. To the extent that such vari-
ants affect psychopathology, they could have relevance 
for genetic counseling when returning results for medi-
cally actionable genes. In the present study, we explored 
this issue using a targeted sequence panel and real-world 
EHR data from the eMERGE consortium through a 
PheWAS approach. In addition, we took the opportunity 
of interrogating two additional genes (CACNA1C and 
TCF4) widely implicated in major psychiatric disorders 
that were also included in the targeted panel. Despite 
deep sequencing of 15,181 individuals, our study did not 
identify any significant genes in which rare deleterious 
variants were enriched in patients with mental disor-
ders after study-wide multiple testing correction. There 
was also no statistical evidence that age or sex influenced 
the pattern of the rare-variant burden on these psychiat-
ric conditions, nor did we identify significant gene sets 
across the 58 genes in which rare variation involved in 
the same biological process collectively affected disease 
risk. When compared with publicly available gene associ-
ations reported from UKB in the GeneBass resource [34], 
we observed similar null results while association signals 
in the UKB-GeneBass database were generally weaker 
than in our study.

One major limitation is the limited statistical power 
for detecting rare variant associations given the rela-
tively small number of cases from our EHR-based study 
(Table S3). Due to the low population prevalence, mod-
est SNP-heritability, and complex genetic architecture of 
psychiatric disorders, GWAS of common genetic varia-
tion have shown that hundreds of thousands of affected 
individuals are often required to detect genetic risk fac-
tors underlying mental illnesses, such as through meta-
analysis of case-enriched cohorts [11–13]. For analysis 
of rare variation, sample size requirements may be even 
larger. Recently, two whole-exome studies of schizophre-
nia and bipolar, each with over 10,000 cases and 10,000 
controls, began to identify significant risk genes with 
rare PTVs and damaging missense variants conferring a 
strong harmful effect on the disease and shed light on the 
underlying biology of the contribution of rare disruptive 
variants relative to common variants [14, 15]. Notably, 
among findings from these large exome-based studies, 
CACNA1C and TCF4 did not emerge as top signals with 
significant enrichment.

Related to sample size, we note several caveats to our 
study. First, the limited number of available individuals 
for rare variant analysis made it challenging to exclude 

the possibility of false positives, even after multiple test-
ing correction. Some of our top results had unusually 
large effect sizes that might be artifacts (Table 1; Tables 
S6,7,8). Second, while we initially intended to retain as 
many ancestries as possible in the study, the variant count 
(per gene) by sample matrix was extremely sparse for 
each of the smaller set of non-EUR individuals to power 
a multi-ancestry analysis. Further, in the burden analysis, 
we grouped variants according to algorithm-predicted 
functional consequences and deleteriousness. Because of 
the scarcity of the aggregated variants, we did not apply 
additional filters on qualifying variants to increase the 
specificity of the predicted deleteriousness, such as prior-
itizing variants classified by ClinVar as likely pathogenic 
or pathogenic [26], using allele frequency information in 
the Genome Aggregation Database (gnomAD) [36] as the 
control population for filtering, or applying the LOFTEE 
filter [36] to separate high-confidence PTVs from annota-
tion artifacts. Future larger-scale studies could incorpo-
rate these considerations to optimize the signal-to-noise 
ratio. Relatedly, in our analyses we did not have the 
power to examine gene-disorder relationships assuming 
recessive inheritance, for which both copies of the gene 
must harbor the qualifying variant, or a compound het-
erozygous state, where two recessive alleles are at dif-
ferent locations of the gene. While current evidence of 
the genetic underpinnings of psychiatric disorders pri-
marily points to a complex and polygenic architecture 
that does not follow a simple Mendelian model, ongoing 
data collection from several large-scale sequencing stud-
ies could further elucidate the mode of inheritance and 
penetrance regarding rare deleterious variation [14–16]. 
Lastly, we could not rule out that some of the gene asso-
ciations from PheWAS (though not significant) are due to 
confounding or comorbidity with other phenotypes for a 
given psychiatric trait, which may complicate the inter-
pretation of results. To account for those, we would need 
the complete comorbidity profiles and medication use 
among study subjects for each specific psychiatric diag-
nosis, ideally in a pre-specified time window to estab-
lish a clear temporality between these variables. Future 
larger-scale PheWAS-based studies could address these 
limitations.

Although we did not detect study-wide significant 
gene signals, suggestive associations showed that some 
of the ACMG-56 genes harbor an excess of rare del-
eterious variants in people with psychiatric conditions 
compared to controls (Table  1). Most of these associa-
tions have not been reported elsewhere and should be 
interpreted with caution given the caveats described 
above. It is interesting, nonetheless, that among the sug-
gestive burden of rare variants are two channel genes, 
KCNQ1 and CACNA1S, associated with substance use 
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disorders and depression, respectively (Table  1), which 
involve in the formation and function of potassium and 
calcium channels that are broadly implicated in brain-
related disorders [19, 37]. A SNP association in KCNQ1 
with alcohol dependence was previously reported from a 
GWAS of European Americans [38], and the CACNA1S 
gene region, along with other calcium channel genes, 
was associated with major psychiatric disorders from a 
GWAS meta-analysis of schizophrenia, bipolar disorder, 
major depressive disorder, autism, and attention-deficit/
hyperactivity disorder [28]. While these suggestive asso-
ciations did not appear as strong in the UKB-GeneBass 
database, we note that UKB may not be a well-powered 
resource for studying rare genetic variation and mental 
disorders as the whole-cohort disease prevalence for psy-
chiatric-related conditions in UKB tends to be lower than 
in our real-world, EHR-based data (Table S18). Overall, 
these observations indicate the possibility of pleiotropy 
of the tested genes beyond the established link to rare 
medical conditions recommended for RoR (Table S1) but 
require further validation in independent samples ideally 
involving case-enriched cohorts.

Conclusion
Return of incidental findings from clinical sequencing 
will become an increasingly important issue as genomic 
data generation and technology development advance 
into the next decades. The current study illustrates the 
opportunities and challenges of leveraging deep sequence 
data to identify incidental findings from medically 
actionable genes associated with psychiatric disorders, 
which exhibit a high degree of phenotypic and genetic 
complexity. Nonetheless, with the increasing availability 
of large-scale genomic sequencing efforts expanding to 
diverse populations (e.g., the All of Us Research Program 
[39], the incorporation of genomic data into medical 
practice, and the expanding list of genes with actionable 
mutations, characterizing the phenotypic spectrum of 
actionable mutations will have increasing implications 
for genomic medicine and genetic counseling.

Methods
Targeted sequence data from the eMERGE network
The eMERGE network is a national network that links 
electronic health records (EHR) and DNA sequence data 
of individuals for large-scale genetic and precision medi-
cine research across 11 participating sites (Children’s 
Hospital of Philadelphia, Cincinnati Children’s Hospital 
Medical Center, Columbia University, Icahn School of 
Medicine at Mt. Sinai, Mass General Brigham [formerly 
Partners Healthcare], Mayo Clinic, Northwestern Uni-
versity, University of Alabama at Birmingham, Univer-
sity of Washington-Kaiser Permanente, and Vanderbilt 

University Medical Center) [17, 40]. Informed consent 
from adult participants and signed parental permission 
for participants under age 18 were obtained from each 
sample collection site under the respective Institutional 
Review Board (IRB)-approved protocols.

The eMERGEseq platform is a targeted sequence panel 
designed within the network including a selected set of 
genes for the purpose of returning results of pathogenic 
variants to participants as well as providing a resource 
for genetic research. The eMERGEseq panel comprised 
109 genes and 1,551 single-nucleotide variants (SNVs) for 
24,956 individuals, randomly selected from bioreposito-
ries at each eMERGE site. Details of informed consent, 
sample handling, DNA extraction, and sequencing were 
also described previously [40]. DNA from blood samples 
were extracted at individual eMERGE sites and sent to 
Baylor College of Medicine Human Genome Sequencing 
Center (HGSC) and the Broad Institute for sequencing. 
IRB approval for the two sequencing centers deferred 
consent to the participating sites (Mass General Brigham 
and Baylor College of Medicine). Specifically, genes in 
the panel included 56 genes with known pathogenic vari-
ants from the ACMG guidelines v1.0 [3] (Table S1) and 
53 additional genes nominated from each eMERGE site 
based on established associations with specific disease 
areas. Among them, 2 genes (CACNA1C and TCF4) were 
nominated for their consistent links to major psychiatric 
disorders: CACNA1C encodes a voltage-gated calcium 
channel subunit and growing evidence has suggested that 
common single variants polymorphisms (SNPs) in this 
gene increase the risk of schizophrenia, bipolar disorder, 
while rare gain-of-function mutations lead to Timothy 
syndrome that features autism; some of the implicated 
SNPs also show a pleiotropic effect across psychiatric 
traits [12, 13, 19, 27–29]. TCF4, a transcription factor 
gene, is involved in the initiation of neuronal differentia-
tion with common polymorphisms implicated in GWAS 
of schizophrenia, bipolar disorder, major depressive dis-
order, and post-traumatic stress disorder [28, 32, 33], and 
disruptive mutations known to cause Pitts-Hopkins syn-
drome characterized by intellectual disability and autistic 
behavior [20, 30, 31].

The sequenced dataset was shared with each site for 
linking with EHR for genetic analysis.

Sequence data quality control
To conduct PheWAS of genes in the targeted panel, we 
performed quality control procedures to retain a list of 
high-quality variants and samples. Raw sequence of the 
eMERGEseq dataset consisted of 59,141 SNPs and 3,358 
insertion/deletions (indels) on human genome GRCh37 
build, with an average sequence depth above 500X 
across individuals. Variants were first left-normalized 
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and multiallelic sites were split into biallelic forms. Vari-
ants that failed the GATK VQSR (Variant Quality Score 
Recalibration) metric and those lying outside of low 
complexity regions [41] were removed. Genotypes were 
set to missing for homozygous reference genotype calls 
with an allelic balance (AB) > 0.1, heterozygous calls with 
AB < 0.25 or AB > 0.75, homozygous variant genotype 
calls with AB < 0.9, and those with GQ < 20 or DP < 10. 
Samples with a low call rate (< 0.975) and outliers of 
transition/transversion ratio, heterozygous/homozygous 
ratio, or insertion/deletion ratio (> 3SD from the mean) 
were discarded. Next, we performed principal compo-
nent analyses (PCA) to identify ancestral populations 
for study participants and used Random Forest Classi-
fier with 1000 Genomes phase 3 data [42] as the training 
set to assign ancestry to each individual. With a predic-
tion probability > 0.8, 16,641 participants were classi-
fied as European (EUR), 3,612 as African (AFR), 1,455 
as Admixed/Latin American (AMR), 1,093 as East Asian 
(EAS), 271 as South Asian (SAS), and the remaining indi-
viduals with an unclassified ancestry (Figure S1). Despite 
the small number of independent markers in the targeted 
panel, PC plots showed clear separation of each ances-
tral population and results were comparable with that 
inferred by our internal genome-wide array data. Focus-
ing on the EUR subset with an adequate sample size for 
power considerations, we then removed individuals with 
mismatched reported and genetic sex, one from each pair 
of related individuals, and excluded variants that were 
monomorphic, had a call rate < 0.95, or a Hardy–Wein-
berg Equilibrium (HWE) test p-value < 1 ×  10–6. Finally, 
we removed a small proportion of common genetic vari-
ants (MAF > 0.01), yielding a QC’ed dataset of 16,512 
individuals of EUR descent and 33,565 low-frequency 
and rare variants (MAF < 0.01). QC procedures were per-
formed using bcftools [43] and PLINK (v1.90b3.32) [44].

Variant annotation
Annotation of variants was performed with SnpEff [45] 
for human genome assemble GRCh37. Based on the pre-
dicted consequences, we defined three functional classes 
of coding variants: protein-truncating variant (PTV) 
(“disruptive_inframe_insertion”, “disruptive_inframe_
deletion”, “frameshift_variant”, “splice_acceptor_variant”, 
“splice_donor_variant”, “stop_gained”, “feature_ablation”, 
or “exon_loss_variant”), missense variants (“inframe_
insertion”, “inframe_deletion”, “missense_variant”, 
“splice_region_variant”, “stop_lost”, “start_lost”, “cod-
ing_sequence_variant”), and non-synonymous variants 
(PTVs and missense variants combined). Further, to 
discriminate likely deleterious missense variants from 
benign missense variants, we applied seven in silico mis-
sense deleteriousness predictors (SIFT, PolyPhen2 with 

HDIV training set, PolyPhen2 with HVAR training set, 
LRT, MutationTaster, MutationAssessor, and PROVEAN 
[46] to identify a subset of highly damaging missense 
variants that were predicted as deleterious by all seven 
algorithms.

Phenome-wide association study (PheWAS) of psychiatric 
manifestations
EHR data for the 24,956 individuals were extracted and 
cleaned from each contributing site in the eMERGE net-
work, which contains a combination of International 
Classification of Disease version 9 and 10 (ICD-9-CM 
and ICD-10-CM) diagnostic codes. Both ICD-9 and ICD-
10 codes were mapped to PheWAS codes (PheCodes) [22, 
23] for genetic analysis. Combined with the EUR subset 
of the eMERGEseq data, this resulted in 15,181 individu-
als and 1,858 PheCodes (age range: 6–100; median age: 
62; 54.5% women). We defined eligible cases as having at 
least two instances of the same PheCode on two different 
calendar dates in the EHR (Table S2). We then curated a 
subset of 37 PheCodes that represent common psychiat-
ric phenotypes with a minimum case count of 75 (equiva-
lent to an in-sample prevalence of 0.5%; Table S3), with 
phenotypic correlations ranging from -0.09 to 0.57 (Table 
S4; Figure S2). For our PheWAS analysis of rare genetic 
variation and psychiatric manifestations, we focused on 
the ACMG-56 genes and the 2 additional genes (CAC-
NA1C and TCF4) widely implicated in mental illnesses 
and tested the association under a burden analysis frame-
work using the PheWAS R package [47]. Burden score for 
each individual was calculated as the sum of the aggre-
gated qualifying variants observed in a given gene. We 
considered five categories of qualifying variants for anal-
ysis, including all rare variants (MAF < 0.01; total ~ 13,000 
variants in the 58 genes) and four functional coding 
annotations: all rare non-synonymous variants, all rare 
PTVs, all rare damaging missense variants, and all rare 
PTVs and damaging missense variants. For each of the 37 
PheCodes, a Firth’s logistic regression was implemented 
by regressing case–control status against variant count of 
a certain category in a given gene, adjusting for age, sex, 
sites, and the first 10 principal components (PCs). Firth’s 
method uses penalized maximum likelihood estimation 
in logistic regression and has been shown to yield good 
calibration and correct bias in association tests for low 
frequency and rare variants with unbalanced care-con-
trol ratios and complete separation [48–50]. A two-sided 
Fisher’s Exact test p-value was also calculated using the 
carrier counts among the cases and controls, defined as 
the number of individuals carrying at least one qualify-
ing variant (i.e., a dominance test; Tables S5,6,7). We 
calculated a Bonferroni-corrected significance level 
(0.05/37 = 1.35 ×  10–3) for individual PheWAS to detect 
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suggestive associations and defined a study-wide signifi-
cant enrichment at a false discovery rate (FDR) < 0.05 to 
account for multiple testing of all 10,730 burden tests (37 
PheCodes, 58 genes, and 5 variant filters). Analyses were 
conducted using the R programming language (version 
3.5).

Secondary PheWAS analysis: interaction with age or sex
In addition to the primary PheWAS analysis, we per-
formed secondary analyses to examine the influence of 
age or sex on the association results for the evaluated 
psychiatric conditions. For each of the 37 PheCodes, we 
performed Firth’s logistic regression following the same 
model as described in the primary analysis but added 
an interaction term between age or sex with the variant 
count of a certain category in a given gene. This involved 
another set of 10,730 burden tests for the age- and sex-
interaction analysis separately, and we considered study-
wide significant interactions at FDR < 0.05 accounting for 
all tests.

Secondary PheWAS analysis: gene sets grouped 
by functional consequence or biological mechanism 
across all 58 genes
To evaluate whether rare variation functioning in a simi-
lar biological manner in distinct genes could collectively 
affect risk of each psychiatric condition, we analyzed the 
relationship between the 37 psychiatric PheCodes and 
the aggregate count of qualifying variants across the 58 
genes (ACMG56, CACNA1C and TCF4). Additionally, 
we performed Gene Ontology (GO) analysis to identify 
significant GO terms associated with the 58 genes using 
over-representation tests [51]. Qualifying variants in a 
subset of the genes involved in the most significant GO 
term for each of the three independent domains (“bio-
logical process”, “cellular component”, and “molecular 
function”) were aggregated and tested for enrichment in 
affected individuals versus controls. Similar to the pri-
mary analysis, the gene-set PheWAS analysis was done 
separately for the five variant annotation categories using 
Firth’s logistic regression adjusting for age, sex, sites, and 
the first 10 PCs.

Comparison with gene associations from the UK Biobank 
(UKB)
The UK Biobank (UKB) is a 500,000-person population-
based cohort that includes a wide variety of phenotypes 
with genetic data also available for each individual [52]. 
Unlike our EHR-based study, phenotypes in UKB were 
measured through primarily self-report, with linkage to 
participants’ hospitalization records (International Clas-
sification of Diseases, ICD codes), primary care data, 
etc. Based on the whole-exome data released from UKB, 

efforts have been conducted to investigate the phe-
nome-wise gene burden of deleterious variants. A large 
resource, GeneBass (Gene-Biobank Association Sum-
mary Statistics, https:// geneb ass. org/), has been built 
that made available to the public gene-burden results 
from exome-sequence analysis of 281,852 European-
descent individuals across 3,817 traits in the UKB [34]. 
To compare our results with those from UKB-GeneBass, 
we extracted association statistics of the ACMG genes, 
CACNA1C, and TCF4 in GeneBass with UKB pheno-
types that can be mapped to the 37 psychiatric PheCodes 
in eMERGE. When multiple phenotype definitions in 
UKB-GeneBass can be matched to a particular PheCode 
in eMERGE, we prioritized those measured for the whole 
cohort rather than in subsets whenever possible and 
chose the definition with the largest number of diseased 
individuals for comparison. GeneBass includes three 
sets of gene-level tests including burden test, SKAT, and 
SKAT-O implemented using the SAIGE-GENE mixed-
model framework [53]. Details of variant annotation also 
differed to some extent between GeneBass and our pipe-
line [34]. For the purpose of comparison, we focused on 
burden test results from GeneBass for “pLoF” (analogous 
to PTV) and “missense” variants separately.
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