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Abstract

Predicting the electrical behavior of the heart, from the cellular scale to the tissue level, relies

on the numerical approximation of coupled nonlinear dynamical systems. These systems

describe the cardiac action potential, that is the polarization/depolarization cycle occurring

at every heart beat that models the time evolution of the electrical potential across the cell

membrane, as well as a set of ionic variables. Multiple solutions of these systems, corre-

sponding to different model inputs, are required to evaluate outputs of clinical interest, such

as activation maps and action potential duration. More importantly, these models feature

coherent structures that propagate over time, such as wavefronts. These systems can

hardly be reduced to lower dimensional problems by conventional reduced order models

(ROMs) such as, e.g., the reduced basis method. This is primarily due to the low regularity

of the solution manifold (with respect to the problem parameters), as well as to the nonlinear

nature of the input-output maps that we intend to reconstruct numerically. To overcome this

difficulty, in this paper we propose a new, nonlinear approach relying on deep learning (DL)

algorithms—such as deep feedforward neural networks and convolutional autoencoders—

to obtain accurate and efficient ROMs, whose dimensionality matches the number of system

parameters. We show that the proposed DL-ROM framework can efficiently provide solu-

tions to parametrized electrophysiology problems, thus enabling multi-scenario analysis in

pathological cases. We investigate four challenging test cases in cardiac electrophysiology,

thus demonstrating that DL-ROM outperforms classical projection-based ROMs.

Introduction

The electrical activation of the heart, which drives its contraction, is the result of two processes:

at the microscopic scale, the generation of ionic currents through the cellular membrane pro-

ducing a local action potential; and at the macroscopic scale, the propagation of the action

potential from cell to cell in the form of a transmembrane potential [1–3]. This latter process

can be described by means of partial differential equations (PDEs), suitably coupled with sys-

tems of ordinary differential equations (ODEs) modeling the ionic currents in the cells.

Solving this system using a high-fidelity, full order model (FOM) such as, e.g., the finite ele-

ment (FE) method, is computationally demanding. Indeed, the propagation of the electrical
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signal is characterized by the fast dynamics of very steep fronts, thus requiring very fine space

and time discretizations [3–5]; see also, e.g., [6, 7] for higher-order and/or more robust numer-

ical methods, [8] for time and space adaptivity, and [9] regarding the use of GPU computing

in this context. Using a FOM may quickly become unaffordable if such a coupled system must

be solved for several values of parameters representing either functional or geometric data

such as, e.g., material properties, initial and boundary conditions, or the shape of the domain.

Multi-query analysis is relevant in a variety of situations: when analyzing multiple scenarios,

when dealing with sensitivity analysis and uncertainty quantification (UQ) problems in order

to account for inter-subject variability [10–13], for parameter estimation or data assimilation,

in which some unknown (or unaccessible) quantities characterizing the mathematical model

must be inferred from a set of measurements [14–18]. In all these cases, to achieve computa-

tional efficiency, multi-query analysis in cardiac electrophysiology must rely on suitable surro-

gate models see, e.g., [19] for a recent review on the topic. Among surrogate models, several

options are available, such as (i) emulators, obtained, e.g., via Polynomial Chaos Expansions or

Gaussian process regression [20–22], aiming at the approximation of the input-output map-

ping by fitting a set of training data; (ii) lower-fidelity models, introducing suitable modeling

simplifications—such as, for instance, the Eikonal model in this context [23]; and (iii) reduced

order models (ROMs) obtained through a projection process on the equations governing the

FOM to reduce the state-space dimensionality. Although typically more intrusive to imple-

ment, ROMs often yield more accurate approximations than data fitting and usually generate

more significant computational gains than lower-fidelity models.

Conventional projection-based ROMs built, e.g., through the reduced basis (RB) method

[24], yields inefficient ROMs when dealing with nonlinear time-dependent parametrized

PDE-ODE system as the one arising from cardiac electrophysiology. The three major compu-

tational bottlenecks shown by such kind of ROMs for cardiac electrophysiology are:

• the linear superimposition of modes, on which they are based, would cause the dimension of

the ROM to be excessively large to guarantee an acceptable accuracy;

• evaluating the ROM requires the solution of a dynamical system, which might be unstable

unless the size of time step Δt is very small;

• the ROM must also account for the dynamics of the gating variables, even when aiming at

computing just the electrical potential. This fact entails an extremely intrusive and costly

hyper-reduction stage to reduce the solution of the ODE system to a few, selected mesh

nodes [25].

To overcome the limitations of projection-based ROMs, we propose a new, non-intrusive

ROM technique based on deep learning (DL) algorithms, which we refer to as DL-ROM. Com-

bining in a suitable way a convolutional autoencoder (AE) and a deep feedforward neural net-

work (DFNN), the DL-ROM technique enables the construction of an efficient ROM, whose

dimension is as close as possible to the number of parameters upon which the solution of the

differential problem depends. A preliminary numerical assessment of our DL-ROM technique

has already been presented in [26], albeit on simpler—yet challenging—test cases.

The proposed DL-ROM technique is a combination of a data-driven with a physics based

model approach. Indeed, it exploits snapshots taken from a set of FOM solutions (for selected

parameter values and time instances) and deep neural network architectures to learn, in a

non-intrusive way, both (i) the nonlinear trial manifold where the ROM solution is sought,

and (ii) the nonlinear reduced dynamics. In a linear ROM built, e.g., through proper orthogo-

nal decomposition (POD), the former quantity is nothing but a set of basis functions, while the

latter task corresponds to the projection stage in the subspace spanned by these basis functions.
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Here, our goal is to show that DL-ROM can be effectively used to handle parametrized

problems in cardiac electrophysiology, accounting for both physiological and pathological

conditions, in order to provide fast and accurate solutions. The proposed DL-ROM is compu-

tationally efficient during the testing stage, that is for any new scenario unseen during the

training stage. This is particularly useful in view of the evaluation of patient-specific features to

enable the integration of computational methods in current clinical platforms.

DL techniques for parametrized PDEs have previously been proposed in other contexts. In

[27–30] feedforward neural networks have been employed to model the reduced dynamics in

a less intrusive way, that is, avoiding the costs entailed by projection-based ROMs, but still

relying on a linear trial manifold built, e.g., through POD. In [31–33] the construction of

ROMs for nonlinear, time-dependent problems has been replaced by the evaluation of regres-

sion models based on artificial neural networks (ANNs). In [34, 35] the reduced trial manifold

where the approximation is sought has been modeled through ANNs thus avoiding the linear

superimposition of POD modes, on a minimum residual formulation to derive the ROM [35],

or without considering an explicit parameter dependence in the differential problem that is

considered [34]. In all these works, coupled problems have never been considered. Moreover,

very often DL techniques have been exploited to address problems which require only a mod-

erate dimension of projection-based ROMs. We demonstrate that our DL-ROM provides

accurate results by constructing ROMs with extremely low-dimension in prototypical test

cases. These tests exhibit all the relevant physical features which make the numerical approxi-

mation of parametrized problems in cardiac electrophysiology a challenging task.

Materials and methods

Cardiac electrophysiology

Muscle contraction and relaxation drive the pump function of the heart. In particular, tissue

contraction is triggered by electrical signals self-generated in the heart and propagated through

the myocardium thanks to the excitability of the cardiac cells, the cardiomyocites [3, 36].

When suitably stimulated, cardiomyocites produce a variation of the potential across the cellu-

lar membrane, called transmembrane potential. Its evolution in time is usually referred to as

action potential, involving a polarization and a depolarization in the early stage of every heart

beat. The action potential is generated by several ion channels (e.g., calcium, sodium, potas-

sium) that open and close, and by the resulting ionic currents crossing the membrane. For

instance, coupling the so-called monodomain model for the transmembrane potential u = u(x,

t) with a phenomenological model for the ionic currents—involving a single gating variable w
= w(x, t)—in a domain O representing, e.g., a portion of the myocardium, results in the follow-

ing nonlinear time-dependent system

@u
@t
� divðDruÞ þ Iionðu;wÞ ¼ Iappðx; tÞ ðx; tÞ 2 O� ð0;TÞ;

@w
@t
þ gðu;wÞ ¼ 0 ðx; tÞ 2 O� ð0;TÞ;

ru � n ¼ 0 ðx; tÞ 2 @O� ð0;TÞ;

uðx; 0Þ ¼ 0; wðx; 0Þ ¼ 0 x 2 O:

8
>>>>>>>>>><

>>>>>>>>>>:

ð1Þ

Here t denotes a rescaled time Dimensional times and potential [37] are given by ~t½ms� ¼
12:9t and ~u½mV� ¼ 100u � 80. The transmembrane potential ranges from the resting state of

−80 mV to the excited state of + 20 mV., n denotes the outward directed unit vector normal to
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the boundary @O of O, whereas Iapp is an applied current representing, e.g., the initial activa-

tion of the tissue. The nonlinear diffusion-reaction equation for u is two-ways coupled with

the ODE system, which must be in principle solved at any point x 2 O; indeed, the reaction

term Iion and the function g depend on both u and w. The most common choices for the two

functions Iion and g in order to efficiently reproduce the action-potential are, e.g., the Fitz-

Hugh-Nagumo [38, 39], the Aliev-Panfilov [37, 40] or the Mitchell and Schaeffer models [41].

The diffusivity tensor D usually depends on the fibers-sheet structure of the tissue, affecting

directional conduction velocities and directions. In particular, by assuming an axisymmetric

distribution of the fibers, the conductivity tensor takes the form

DðxÞ ¼ stIþ ðsl � stÞf0 � f0; ð2Þ

where σl and σt are the conductivities in the fibers and the transversal directions.

When a simple phenomenological ionic model is considered, such as the FitzHugh-

Nagumo or the Aliev-Panfilov (A-P) model, the ionic current takes the form of a cubic nonlin-

ear function of u and a single (dimensionless) gating variable plays the role of a recovery func-

tion, allowing to model refractoriness of cells. In this paper, we focus on the Aliev-Panfilov

model, which consists in taking

Iionðu;wÞ ¼ Kuðu � aÞðu � 1Þ þ uw;

gðu;wÞ ¼ �0 þ
c1w

c2 þ u

� �

ð� w � Kuðu � b � 1ÞÞ:
ð3Þ

The parameters K, a, b, ε0, c1, c2 are related to the cell. Here a represents an oscillation thresh-

old, whereas the weighting factor ε0 þ
c1w
c2þu

was introduced in [37] to tune the restitution curve

to experimental observations by adjusting the parameters c1 and c2; see, e.g., [1–3, 42] for a

detailed review. In the remaining part of the paper, we denote by μ 2 P � Rnμ a parameter

vector listing all the nμ input parameters characterizing physical (and, possibly, geometrical)

properties we might be interested to vary; P is a subset of Rnμ , denoting the parameter space.

Relevant physical situations are those in which input parameters affect the diffusivity matrix D

(through the conduction velocities) and the applied current Iapp; previous analyses focused

instead on the gating variable dynamics (through g) and the ionic current Iion, see [25].

Projection-based ROMs

From an algebraic standpoint, the spatial discretization of system (1) through the Galerkin-

finite element (FE) approximation [43] yields the following nonlinear dynamical system for

u = u(t, μ), w = w(t, μ), representing our full order model (FOM):

MðμÞ
@u
@t
þ AðμÞuþ Iionðt; u;w;μÞ ¼ Iappðt;μÞ; t 2 ð0;TÞ;

@w
@t
ðt; μÞ ¼ gðt; u;w;μÞ; t 2 ð0;TÞ;

uð0Þ ¼ 0; wð0Þ ¼ 0:

8
>>>>>><

>>>>>>:

ð4Þ

Here AðμÞ 2 RN�N
is a matrix arising from the diffusion operator (thus including the conduc-

tivity tensor D(μ) = D(x; μ), which can vary within the myocardium due to fiber orientation

and conditions, such as the possible presence of ischemic regions); MðμÞ 2 RN�N
is the mass

matrix; Iion; g 2 R
N

are vectors arising from the nonlinear terms; finally, Iapp 2 R
N

is a vector

collecting the applied currents. The dimension N is related to the dimension of the FE space
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and, ultimately, depends on the size h> 0 of the computational mesh used to discretize the

domain O. Note that the system of ODEs arises from the collocation of the ODE in (1) at the

nodes used for the numerical integration. A detailed derivation of the FOM (4) is reported in

the S1 Appendix.

The intrinsic dimension of the solution manifold

S ¼ fuðt;μÞ j t 2 ½0;TÞ and μ 2 P � Rnmg � RN
; ð5Þ

obtained by solving (4) when (t; μ) varies in ½0;TÞ � P, is usually much smaller than N and,

under suitable conditions, is at most nμ + 1� N, where nμ is the number of parameters—in

this respect, the time independent variable plays the role of a parameter. For this reason,

ROMs attempt at approximating S by introducing a suitable trial manifold of lower dimen-

sion. The most popular approach is proper orthogonal decomposition (POD), which exploits a

linear trial manifold built through the singular value decomposition of a matrix S 2 RN�Ns col-

lecting a set of FOM snapshots

S ¼ ½uðt1;μ1Þ j . . . j uðtNt ; μ1Þ j . . . j uðt1;μNtrain
Þ j . . . j uðtNt ;μNtrain

Þ�;

this is a set of solutions obtained for Ntrain selected input parameters at (a subset, possibly, of)

the time instants ftkgNt
k¼1

in which (0, T) is partitioned for the sake of time discretization. The

most common choice is to set tk = kΔt where Δt = T/(Nt − 1).

When using a projection-based ROM, the approximation of u(t; μ) is sought as a linear

superimposition of modes, under the form

uðt;μÞ � Vunðt;μÞ; ð6Þ

thus yielding a linear ROM, in which the columns of the matrix V ¼ ½z1; . . . ; zn� 2 R
N�n

form

an orthonormal basis of a space Vn, an n-dimensional subspace of RN . In the case of POD, Vn

provides the best n-rank approximation of S in the Frobenius norm, that is, z1, . . ., zn are the

first n (left) singular vectors of S corresponding to the n largest singular values σ1, . . ., σn of S,

such that the projection error is smaller than a desired tolerance εPOD. To meet this require-

ment, it is sufficient to choose n as the smallest integer such that

PN
i¼1
s2

iPNs
i¼1
s2

i

> 1 � ε2

POD;

i.e., the energy retained by the last Ns − n POD modes is equal or smaller than ε2
POD.

The approximation of w is given instead by its restriction

wðt; μÞ � Pwmðt;μÞ;

to a (possibly, small) subset of m degrees of freedom, where m� n, at which the nonlinear

term Iion is interpolated exploiting a problem-dependent basis, spanned by the columns of a

matrix F 2 RN�m, which is built according to a suitable hyper-reduction strategy; see, e.g., [25]

for further details. Here P ¼ ½e1; . . . ; em� 2 R
N�m denotes a matrix formed by the columns of

the N × N identity matrix corresponding to the m selected degrees of freedom.

A Galerkin-POD ROM for system (1) is then obtained by (i) first, substituting (Eq 6) into

Eq 4 and projecting it onto Vn; then, (ii) solving the system of ODEs at m selected degrees of

freedom, thus yielding the following nonlinear dynamical system for un = un(t, μ) and the
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selected components PT w = PT w(t; μ) of w:

VTMðμÞV
@un

@t
þ VTAðμÞVTun

þ VTFðPTFÞ
� 1Iionðt;P

TVun;P
Tw; μÞ � VTIappðt;μÞ ¼ 0; t 2 ð0;TÞ;

PT @w
@t
þ gðt;PTVun;P

Tw;μÞ ¼ 0; t 2 ð0;TÞ;

unð0Þ ¼ 0; PTwð0Þ ¼ 0:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð7Þ

This strategy is the essence of the reduced basis (RB) method for nonlinear time-dependent

parametrized PDEs. However, using (7) as an approximation to (4) is known to suffer from

several problems. First of all, an extensive hyper-reduction stage (exploiting, e.g., the discrete

empirical interpolation method (DEIM)) must be performed in order to be able to evaluate

any μ- or u-dependent quantities appearing in (7), that is, without relying on N-dimensional

arrays. Moreover, whenever the solution of the differential problem features coherent struc-

tures that propagate over time, such as steep wavefronts, the dimension n of the projection-

based ROM (7) might easily become very large, due to the basic linearity assumption, by

which the solution is given by a linear superimposition of POD modes, thus severely degrading

the computational efficiency of the ROM. A possible way to overcome this bottleneck is to rely

on local reduced bases, built through POD after the set of snapshots has been split into Nc> 1

clusters, according to suitable clustering (or unsupervised learning) algorithms [25].

Deep learning-based reduced order modeling (DL-ROM)

To overcome the limitations of linear ROMs, we consider a new, nonlinear ROM technique

based on deep learning models. First introduced in [26] and assessed on one-dimensional

benchmark problems, the DL-ROM technique aims at learning both the nonlinear trial mani-

fold (corresponding to the matrix V in the case of a linear ROM) in which we seek the solution

to the parametrized system (1) and the nonlinear reduced dynamics (corresponding to the

projection stage in a linear ROM). This method is not intrusive; it relies on DL algorithms

trained on a set of FOM solutions obtained for different parameter values.

We denote by Ntrain and Ntest the number of training and testing parameter instances,

respectively; the ROM dimension is again denoted by n� N. In order to describe the system

dynamics on a suitable reduced nonlinear trial manifold (a task which we refer to as reduced
dynamics learning), the intrinsic coordinates of the ROM approximation are defined as

unðt;μ; θDFÞ ¼ �
DF
n ðt;μ; θDFÞ; ð8Þ

where �
DF
n ð�; �; θDFÞ : Rðnμþ1Þ ! Rn is a DFNN, consisting in the subsequent composition of a

nonlinear activation function, applied to a linear transformation of the input, multiple times

[44]. Here θDF denotes the vector of parameters of the DFNN, collecting all the corresponding

weights and biases of each layer of the DFNN.

Regarding instead the description of the reduced nonlinear trial manifold, approximating

the solution one, ~S � S (a task which we refer to as reduced trial manifold learning) we employ

the decoder function of a convolutional autoencoder The AE is a particular type of neural net-

work aiming at learning the identity function

fAE
ð�; θE; θDÞ : x7!~x with ~x ’ x: ð9Þ

It is composed by two main parts:
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• the encoder function fEnð�; θEÞ : x7!~xn ¼ fEnðx; θEÞ, where fEnð�; θEÞ : RN
! Rn

and n� N,

mapping the high-dimensional input x onto a low-dimensional code ~xn;

• the decoder function fDð�; θDÞ : ~xn 7!~x ¼ fDð~xn; θDÞ, where fDð�; θDÞ : Rn ! RN , mapping

the low-dimensional code ~xn to an approximation of the original high-dimensional input ~x.

(AE) [45, 46]. More precisely, ~S takes the form

~S ¼ ffDðunðt;μ; θDFÞ; θDÞ j unðt;μ; θDFÞ 2 R
n
; t 2 ½0;TÞ and μ 2 P � Rnμg ð10Þ

where fDð�; θDÞ : Rn
! RN

consists in the decoder function of a convolutional AE. This latter

results from the composition of several layers (some of which are convolutional), depending

upon a vector θD collecting all the corresponding weights and biases.

As a matter of fact, the approximation ~uðt;μÞ � uðt;μÞ provided by the DL-ROM tech-

nique is defined as

~uðt;μ; yDF; yDÞ ¼ fDð�DF
n ðt;μ; θDFÞ; θDÞ: ð11Þ

The encoder function of the convolutional AE can then be exploited to map the FOM solution

associated to (t, μ) onto a low-dimensional representation

~unðt;μ; θEÞ ¼ fEnðuðt;μÞ; θEÞ; ð12Þ

fEnð�; θEÞ : RN ! Rn denotes the encoder function, depending upon a vector θE of parameters.

Computing the DL-ROM approximation of u(t; μtext), for any possible t 2 (0, T) and

μtest 2 P, corresponds to the testing stage of a DFNN and of the decoder function of a convolu-

tional AE; this does not require the evaluation of the encoder function. We remark that our

DL-ROM strategy overcomes the three major computational bottlenecks implied by the use of

projection-based ROMs, since:

• the dimension of the DL-ROM can be kept extremely small;

• the time resolution required by the DL-ROM can be chosen to be larger than the one

required by the numerical solution of dynamical systems in cardiac electrophysiology;

• the DL-ROM can be queried at any desired time instant, without requiring the solution of a

dynamical system until that time;

• the DL-ROM does not require to account for the dynamics of the gating variables, thus

avoiding any hyper-reduction stage. This advantage, already visible when employing a single

gating variable as in our case, might become even more effective when dealing with more

realistic ionic models, when dozens of additional variables in the system of ODEs must be

accounted for [3].

The training stage consists in solving the following optimization problem, in the variable

θ = (θE, θDF, θD), after the snapshot matrix S has been formed:

min
θ

J ðθÞ ¼ min
θ

1

Ns

XNtrain

i¼1

XNt

k¼1

Lðtk; μi; θÞ; ð13Þ
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where Ns = Ntrain Nt and

Lðtk;μi; θÞ ¼
oh

2
kuðtk; μiÞ � ~uðtk;μi; θDF; θDÞk

2

þ
1 � oh

2
k~unðt

k; μi; θEÞ � unðt
k;μi; θDFÞk

2
;

ð14Þ

with ωh 2 [0, 1]. The per-example loss function (14) combines the reconstruction error (that is,

the error between the FOM solution and the DL-ROM approximation) and the error between

the intrinsic coordinates and the output of the encoder.

The architecture of DL-ROM is the one shown in Fig 1. The encoder function is used only

during the training and validation steps; it is instead discarded during the testing phase. See

[26] for further algorithmic details about the training and the testing algorithms required to

build and evaluate a DL-ROM.

We highlight that the DL-ROM technique does not require to solve a (reduced) nonlinear

dynamical system for the reduced degrees of freedom as in (7); rather, it evaluates a nonlinear

map for any given couple (t, μtest), for each t 2 (0, T). Numerical results are extremely accurate,

the mean relative error is indeed below 1% (see, e.g., Test 2), even if the biophysical dynamics

underlying Eq (1) Moreover, the map features an extremely low dimension, in the most

Fig 1. DL-ROM architecture. DL-ROM architecture used during the training phase. In the red box, the DL-ROM to be queried for any new selected couple (t, μ)

during the testing phase. The FOM solution u(t; μ) is provided as input to block (A) which outputs ~unðt;μÞ. The same parameter instance associated to the FOM,

i.e. (t; μ), enters block (B) which provides as output un(t; μ) and the error between the low-dimensional vectors (dashed green box) is accumulated. The intrinsic

coordinates un(t; μ) are given as input to block (C) returning the ROM approximation ~uðt;μÞ. Then the reconstruction error (dashed black box) is computed.

https://doi.org/10.1371/journal.pone.0239416.g001
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favorable scenario equal to nμ + 1. From a computational perspective, remarkable gains and

simplifications can be obtained against a linear ROM, since (i) no hyper-reduction is required

to enhance the evaluation of any μ- or u-dependent quantity, and (ii) even more interestingly,

there is no need to evaluate the dynamics of the recovery variable w if one is only interested in

the electrical potential.

Results and discussion

We now assess the computational performances of the proposed DL-ROM strategy on four

relevant test cases in cardiac electrophysiology. Our choice of the numerical tests is aimed at

highlighting the performance of our DL-ROM method in challenging electrophysiology prob-

lems, namely pathological cases in portion of cardiac tissues or physiological scenarios on real-

istic left ventricle geometries.

The architecture used to perform all the numerical tests is the one reported in the S2

Appendix. To solve the optimization problem (13) and (14) we use the ADAM algorithm [47]

with a starting learning rate equal to η = 10−4. Moreover, we perform cross-validation by split-

ting the data in training and validation and following a proportion 8:2 and we implement an

early-stopping regularization technique to reduce overfitting [44].

To evaluate the performance of the DL-ROM, we use the loss function (14) and an error

indicator defined as

�rel ¼
1

Ntest

XNtest

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt
k¼1
jjukðμtest;iÞ � ~ukðμtest;iÞjj

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt
k¼1
jjukðμtest;iÞjj

2
q

0

B
@

1

C
A: ð15Þ

Neural networks required by our DL-ROM technique have been implemented by means of

the Tensorflow deep learning framework [48]. The training phase has been carried out on

a workstation equipped with an Nvidia GeForce GTX 1070 8 GB GPU while, in addition to

this hardware, the testing phase has also been carried out on a HPC cluster.

Test 1: Two-dimensional slab with ischemic region

We consider the computation of the transmembrane potential in a square slab O = (0, 10 cm)2

of cardiac tissue in presence of an ischemic (non-conductive) region. The ischemic region may

act as anatomical driver of cardiac arrhythmias like tachycardias and fibrillations. The system

we want to solve is a slight modification of Eq (1), accounting for the presence of a non-con-

ductive region which affects both the conductivity tensor and the ionic current term. The

ischemic portion of the domain is modeled by replacing the conductivity tensor D(x), defined

in (2), with �Dðx; μÞ ¼ sðx; μÞDðxÞ, where the function σ(x, μ) is given by

sðx;μÞ ¼ rðx;μÞ þ s0ð1 � rðx; μÞÞ;

rðx;μÞ ¼ 1 � exp �
ðx1 � μ1Þ

4
þ ðx2 � μ2Þ

4

2a2

 !

:
ð16Þ

In this case, nμ = 2 parameters are considered, representing the coordinates of the center of the

scar, belong to the parameter space P ¼ ½3:5; 6:5 cm�2. Moreover, α = 7 cm2, σ0 = 10−4, the

transversal and longitudinal conductivities are σt = 12.9 � 0.1 cm2/ms and σl = 12.9 � 0.2 cm2/

ms, respectively, and f0 = (1, 0)T, meaning that the tissue fibers are parallel to the x−axis. Simi-

larly, the ionic current Iion(u, w) in (1) is replaced by �I ionðu;w; μÞ ¼ rðx;μÞIionðu;wÞ. The
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applied current takes the form

Iappðx; tÞ ¼ C exp �
jjxjj2

b

� �

1½0;�t �ð~tÞ;

where C = 100 mA, β = 0.02 cm2 and �t ¼ 2 ms, consisting in a Gaussian-shaped applied stimu-

lus with support in a circle with radius almost equal to 3 cm. The parameters appearing in (3)

are set to K = 8, a = 0.01, b = 0.15, ε0 = 0.002, c1 = 0.2, and c2 = 0.3, see [49]. The equations

have been discretized in space through linear finite elements by considering N = 64×64 = 4096

grid points. For the time discretization and the treatment of nonlinear terms, we use a one-

step, semi-implicit, first order scheme (see [25] for further details) by considering a time step

Δt = 0.1/12.9 over (0, T) with T = 400 ms.

For the training phase, we uniformly sample Nt = 1000 time instances over (0, T) and con-

sider Ntrain = 49 training-parameter instances, with μtrain = (3.5+ i0.5, 3.5 + j0.5), i, j = 0, . . ., 6.

The maximum number of epochs is set equal to Nepochs = 10000, the batch size is Nb = 40 and,

regarding the early-stopping criterion, we stop the training if the loss function does not

decrease in 500 epochs. For the testing phase, Ntest = 36 testing-parameter instances μtest =

(3.75 + i0.5, 3.75 + j0.5), i, j = 0, . . ., 5, have been considered.

In Fig 2 we show the FOM and the DL-ROM solutions, the latter obtained with n = 3 for

the testing-parameter instance μtest = (6.25, 6.25) cm at ~t ¼ 100 and 356 ms, respectively,

Fig 2. Test 1: Comparison between FOM and DL-ROM solutions for a testing-parameter instance. FOM solution (left), DL-ROM solution with n = 3 (center)

and relative error �k (right) for the testing-parameter instance μtest = (6.25, 6.25) cm at ~t ¼ 100 ms (top) and ~t ¼ 356 ms (bottom). The maximum of the relative

error �k is 10−3 and it is associated to the diseased tissue.

https://doi.org/10.1371/journal.pone.0239416.g002
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together with the relative error �k 2 R
N , for k = 1, . . ., Nt, defined as

�k ¼
jukðμtestÞ � ~ukðμtestÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Nt

XNt

k¼1
jjukðμtestÞjj

2

r :
ð17Þ

While (15) is a synthetic indicator, the quantity defined in (17) is instead a function of the

space independent variable. In Fig 2 (top) the tissue is depolarized except for the region occu-

pied by scar and surrounding it, which is clearly characterized by a slower conduction. In Fig 2

(bottom) the tissue is starting to repolarize and even if the shape of the ischemic region is not

sharply reproduced, the DL-ROM solution is able to capture the diseased (non-conductive)

nature of this portion of tissue.

In Fig 3 The DL-ROM is able to provide an accurate reconstruction of the AP at almost all

points; the maximum error is associated to the point P3, the closest one to the center of the

scar, for ~t � 200 ms. However, even in this case, the DL-ROM technique is able to capture the

difference, in terms of AP peak values, between the diseased and the healthy tissue.

The AP variability across the parameter space characterizing both the FOM and the

DL-ROM solutions is shown in Fig 4. Still with a DL-ROM dimension n = 3, we report the

APs for μtest = (μtest, μtest) cm, with μtest = 3.75, 4.25, 4.75, 5.25, 5.75, 6.25, evaluated at P =

(7.46, 6.51) cm. The DL-ROM is able to capture such variability over P; moreover, the larger

μtest, the smaller the distance between the point P and the scar, with their proximity impacting

on the shape and the values of the AP. In particular, for μtest = 6.25, the point P falls into the

grey zone.
By using the DL-ROM technique and setting the dimension of the nonlinear trial manifold

equal to the dimension of the solution manifold, i.e. n = 3, we obtain an error indicator (15) of

�rel = 2.01 � 10−2. In order to assess the computational efficiency of DL-ROM, we compare it

with the POD-Galerkin ROM relying on Nc local reduced bases; we report in Table 1 the maxi-

mum and minimum number of basis functions, among all the clusters, required by the POD-

Galerkin ROM [24, 25] to achieve the same accuracy.

In Fig 5 (left) we compare the CPU time required to solve the FOM (through linear finite

elements) over the time interval (0, T), with the one needed by DL-ROM with n = 3, and the

POD-Galerkin ROM with Nc = 6 local reduced bases, at testing time, by varying the FOM

Fig 3. Test 1: Comparison between the FOM and DL-ROM APs at six points P1, . . ., P6. Left: FOM solution evaluated for μtest = (6.25, 6.25) cm at ~t ¼ 400 ms

together with the points P1, . . ., P6. Right: APs evaluated for μtest = (6.25, 6.25) cm at points P1, . . ., P6. The DL-ROM, with n = 3, is able to to sharply reconstruct

the AP in almost all the points and the main features are captured also for the points close to the scar.

https://doi.org/10.1371/journal.pone.0239416.g003
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dimension N. Here, with testing time we refer, both for the DL-ROM and the POD-Galerkin

ROM, to the time needed to query the ROM over the whole interval (0, T), by using for each

technique the proper time resolution, for a given testing-parameter instance. Since the

DL-ROM solution can be queried at a given time without requiring any solution of a dynam-

ical system to recover the former time instances, the DL-ROM can employ larger time win-

dows compared to the time steps required by the solution of the FOM and POD-Galerkin

ROM dynamical systems for the cases at hand. This fact also has a positive impact on the data

used during the training phase Indeed, in order to build the snapshot matrix, we uniformly

sample Nt time instances of the FOM solution over T/Δt = 4000 time steps; for each training

parameter instance, only 25% of 4000 snapshots are retained from the FOM solution in the

DL-ROM case, against 4000 snapshots in the POD-Galerkin ROM case. The speed-up

obtained, for each value of N considered, is reported in Table 2 Both the DL-ROM and the

POD-Galerkin ROM allow us to decrease the computational costs associated to the computa-

tion of the FOM solution for a testing-parameter instance. However, for a desired level of

Fig 4. Test 1: Variability of the FOM and DL-ROM solutions over the parameter space. FOM (right) and DL-ROM (left) AP variability over P at P = (7.46,

6.51) cm. The DL-ROM sharply reconstructs the FOM variability over P.

https://doi.org/10.1371/journal.pone.0239416.g004

Table 1. Test 1: Dimensions of the POD-Galerkin ROM linear trial manifolds by varying the number of clusters.

Nc = 1 Nc = 2 Nc = 4 Nc = 6

250 219 200 193

107 35 26

Maximum and minimum dimensions of the local reduced bases (that is, linear trial manifolds) built by the

POD-Galerkin ROM for different numbers Nc of clusters.

https://doi.org/10.1371/journal.pone.0239416.t001
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accuracy, CPU times required by the POD-Galerkin ROM during the testing phase are

remarkably higher than the ones required by a DL-ROM with n = 3.

Both the DL-ROM and the POD-Galerkin ROM depend on the FOM dimension N. In the

case of DL-ROM, the dependency on N at testing time, for a fixed value of Δt, is due to the

presence of the decoder function; indeed, the process of learning the reduced dynamics (and

so the dimension of the nonlinear trial manifold) does not depend on the FOM dimension.

On the other hand, the dependence of the POD-Galerkin ROM on the FOM dimension also

impacts on the dimension of the local linear trial manifolds: in general, by increasing N the

dimension of each local linear subspace also increases. Referring to Fig 5 (left) and Table 2,

the CPU time required by the DL-ROM at testing time scales linearly with N, instead the one

required by the POD-Galerkin ROM scales linearly with
ffiffiffiffi
N
p

. In particular, even for the larger

FOM dimension considered (N = 16384 for this test case), our DL-ROM is 19 times faster than

the POD-Galerkin ROM. We are not able to run simulations for N> 16384, because of the

limitation of the computing resources we have at our disposal. Despite the trend in Fig 5 (left)

is apparently not favorable for the DL-ROM technique, practice indicates that the CPU time

for DL-ROM is smaller than the one for the POD-Galerkin ROM for small values of N, in

other words only with very large values of N the POD-Galerkin ROM outperforms the

DL-ROM strategy. Indeed, a linear fitting of the DL-ROM and the POD-Galerkin ROM CPU

Fig 5. Test 1: FOM, DL-ROM and POD-Galerkin ROM CPU computational times. Left: CPU time required to solve the FOM, by DL-ROM at testing time with

n = 3 and by the POD-Galerkin ROM at testing time with Nc = 6 vs. N. The DL-ROM provides the smallest testing computational time for each N considered.

Right: FOM, POD-Galerkin ROM and DL-ROM CPU computational times to compute ~uð�t ;μtestÞ vs. �t averaged over the testing set. Thanks to the fact that the

DL-ROM can be queried at any time istance it is extremely efficient in computing ~uð�t ; μtestÞ with respect to both the FOM and the POD-Galerkin ROM.

https://doi.org/10.1371/journal.pone.0239416.g005

Table 2. Test 1: DL-ROM and POD-Galerkin ROM vs. FOM speed-up.

N = 256 N = 1024 N = 4096 N = 16384

FOM vs. DL-ROM 472 536 539 412

FOM vs. POD-Galerkin ROM 3 6 12 22

DL-ROM and POD-Galerkin ROM vs. FOM speed-up by varying N. The DL-ROM speed-up is remarkably higher than the one obtained by using the POD-Galerkin

ROM.

https://doi.org/10.1371/journal.pone.0239416.t002
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times N = 65536 and N = 262144 for this test case represent FOM dimensions corresponding

to mesh sizes h needed to solve, by means of linear finite elements, the problem on a 3D slab

geometry both for physiological and pathological electrophysiology in the case a ten Tusscher-

Panfilov ionic model [50] is used. This latter would indeed require smaller values of h com-

pared to the Aliev-Panfilov model, due to the shape of the AP. See, e.g., [51, 52] for further

details. in Fig 5 (left) highlights that for N = 65536 and N = 262144, DL-ROM could be almost

10 and 5 times, respectively, faster than the POD-Galerkin ROM for the same values of N.

Note that the results of this section have been obtained by employing the DL-ROM on a single

CPU, an architecture which is not favorable to neural networks Indeed, all tests are performed

on a node (20 Intel1 Xeon1 E5-2640 v4 2.4GHz cores), using 5 cores, of our in-house HPC

cluster. Further improvements are expected when employing our DL-ROM on a GPU for a

given testing-parameter instance.

We highlight that since the DL-ROM solution can be evaluated at any desired time instance

without solving any dynamical system, the resulting computational time entailed by the

DL-ROM at testing time are drastically reduced compared to the ones required by the FOM or

the POD-Galerkin ROM to compute solutions at a particular time instance. In Fig 5 (right) we

show the DL-ROM, FOM and POD-Galerkin ROM CPU time needed to compute the approx-

imated solution at �t , for �t ¼ 1, 10, 100 and 400 ms averaged over the testing set and with

N = 4096. We perform the training phase of the POD-Galerkin ROM over the original time

interval (0, T) ms and we report the results for Nc = 6, the number of clusters for which the

smallest computational time is obtained. The DL-ROM CPU time to compute ~uð�t; μtestÞ does

not vary over �t and, by choosing �t ¼ T, the DL-ROM speed-ups are equal to 7.3 × 104 and

6.5 × 103 with respect to the FOM and the POD-Galerkin ROM, with Nc = 6, computational

times.

Regarding the training (offline) times, in the case of a FOM dimension N = 4096, training

the DL-ROM neural network on a GTX 1070 8GB GPU requires about 21 hours, whereas

training the POD-Galerkin ROM (with Nc = 6 local bases) on 5 cores of a node of the HPC

cluster at our disposal requires about 3 hours; in both the cases, the time needed to assemble

the snapshot matrix S is not included. However, the 7 times higher training time of the

DL-ROM is justified by the efficiency gained at testing time; indeed, a query to the DL-ROM

online requires 0.08 seconds on a GPU, implying a speedup of about 275 times compared to

the POD-Galerkin ROM.

Test 2: Two-dimensional slab with figure of eight re-entry

The most recognized cellular mechanisms sustaining atrial tachycardia is re-entry [53]. The

particular kind of re-entry we deal with in this test case is called figure of eight re-entry, and

can be obtained by solving Eq (1). To induce the re-entry, we apply a classical S1-S2 protocol

[3, 54]. In particular, we consider a square slab of cardiac tissue O = (0, 2 cm)2 and apply an

initial stimulus (S1) at the bottom edge of the domain, i.e.

I1
appðx; tÞ ¼ 1O1

ðxÞ1
½ti

1
;tf

1
�
ð~tÞ; ð18Þ

where O1 = {x 2 O: y� 0.1}, ti
1
¼ 0 ms and tf1 ¼ 5 ms. A second stimulus (S2) under the form

I2
appðx; t; μÞ ¼ 1O2ðμÞ

ðxÞ1
½ti

2
;tf

2
�
ð~tÞ; ð19Þ

with O2(μ) = {x 2 O: (x − 1)2 + (y − μ)2� (0.2)2}, ti
2
¼ 70 ms and tf2 ¼ 75 ms, is then applied.

Here the parameter μ is the y-coordinate of the center of the second circular stimulus. We

analyze two configurations: (i) a first case in which both re-entry and non re-entry cases are
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generated, by considering P ¼ ½0:5; 1:1� cm; (ii) a second case in which instead only re-entrant

dynamics are taken into account, and P ¼ ½0:8; 1:1� cm. These choices have been made to

obtain a re-entry elicited and sustained until T = 175 ms. Moreover, we restrict ourselves to

the time interval [95, 175] ms, without considering the time window [0, 95) ms in which the

re-entry has not arisen yet, and is common to all μ instances. The time step is Δt = 0.2/12.9.

We consider N = 256 × 256 = 65536 grid points, implying a mesh size h = 0.0784 mm; this

mesh size is recognized to correctly solve the tiny transition front developing during depolari-

zation of the tissue, see [51, 52]. The fibers are parallel to the x-axis and the conductivities in

the longitudinal and transversal directions to the fibers are σl = 2 × 10−3 cm2/ms and σt =

3.1 × 10−4 cm2/ms, respectively. The parameters appearing in (3) are set to K = 8, a = 0.1,

b = 0.1, ε0 = 0.01, c1 = 0.14, and c2 = 0.3, see [55].

The snapshot matrix is built by solving problem (1), completed with the applied currents

(18) and (19), by means of a semi-implicit scheme, over Nt = 400 time instances. Moreover, we

consider Ntrain = 13 training-parameter instances uniformly distributed in the parameter space

and Ntest = 12 testing-parameter instances, each of them corresponding to the midpoint of two

consecutive training-parameter instances. The maximum number of epochs is set equal to

Nepochs = 6000, the batch size is Nb = 3, due to the high GPU memory occupation of each sam-

ple. Regarding the early-stopping criterion, we stop the training if the loss does not decrease in

1000 epochs.

In Fig 6 we show the FOM solution and the DL-ROM one obtained by setting the reduced

dimension to n = 5, for the testing-parameter instance μtest = 0.9625 cm, at ~t ¼ 141:2 ms and

~t ¼ 157:2 ms, together with the relative error �k 2 R
N computed according to (17).

Fig 6. Test 2: Comparison between FOM and DL-ROM solutions for a testing-parameter instance. FOM solution (left), DL-ROM one (center) with n = 5, and

relative error �k (right) at ~t ¼ 141:2 ms (top) and ~t ¼ 157:2 ms (bottom), for the testing-parameter instance μtest = 0.9625 cm. The relative error �k is below 0.1% at

both time instants.

https://doi.org/10.1371/journal.pone.0239416.g006

PLOS ONE Deep learning-based reduced order models in cardiac electrophysiology

PLOS ONE | https://doi.org/10.1371/journal.pone.0239416 October 1, 2020 15 / 32

https://doi.org/10.1371/journal.pone.0239416.g006
https://doi.org/10.1371/journal.pone.0239416


We introduce the relative error �sk 2 R
N

, for k = 1, . . ., Nt, given by

�sk ¼
jukðμtestÞ � ~ukðμtestÞj

kukðμtestÞk1

� 100: ð20Þ

The trend of (20) over time, for the selected testing-parameter instance μtest = 0.9625 cm, is

depicted in Fig 7; we highlight that the error is, on average, always smaller than 0.3%. In partic-

ular, in Fig 7 we show the mean, the median, and the first and third quartile (all computed

with respect to the spatial coordinates) of the relative error, as well as its minimum. The inter-

quartile range (IQR) shows that the distribution of the error is almost uniform over time, and

Fig 7. Test 2: Trend of the relative error over time. Relative error �sk vs. ~t with n = 5 for the testing-parameter instance μtest = 0.9625 cm (the red band indicates

the IQR). The error distribution is almost uniform over time.

https://doi.org/10.1371/journal.pone.0239416.g007
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that the maximum error is associated to the first time instant—this latter being the time instant

at which the solution is most different over P.

In Fig 8 we show the FOM and the DL-ROM solutions, the latter obtained by setting n = 5,

for the last time instance, i.e. at ~t ¼ 153:2 ms, for μtest = 0.6125 cm and μtest = 0.9125 cm, in

order to point out the variability of the solution over the parameter space P ¼ ½0:5; 1:1� cm

and the ability of DL-ROM to capture it. In particular, in Fig 8 we compare the FOM and the

DL-ROM solutions for two testing-parameter instances corresponding to (i) a case in which

the re-entry does not arise (top), since S2 is too far from the front elicited with S1, i.e. the tissue

around S2 is no longer in the refractory period and is able to activate again; (ii) a case in which

the re-entry is elicited, the electrical signal follows an alternative circuit looping back upon

itself and developing a self-perpetuating rapid and abnormal activation (bottom).

In Fig 9 we show the trend of the relative error (20) at a selected time instance given by

t = 147 ms over the parameter space, reporting the mean, the median, the first and third quar-

tile, as well as its minimum (all computed with respect to the spatial coordinates). We highlight

that the error is always smaller than 1%, except for its maximum which is associated to the

value of μtest corresponding to the transition between re-entry and non re-entry dynamics.

Let us now focus on the case in which only re-entrant dynamics are generated, and P ¼
½0:8; 1:1� cm, in order to compare the FOM, the POD-Galerkin ROM and the DL-ROM

approximations. In Fig 10 we show the solutions obtained through the POD-Galerkin ROM

with Nc = 2 (top) and Nc = 4 (bottom) local reduced bases, along with the relative error defined

Fig 8. Test 2: Comparison between FOM and DL-ROM solutions for different testing-parameter instances. FOM solution (left), DL-ROM one (center) with

n = 5, and relative error �k (right) at ~t ¼ 153:2 ms, for the testing-parameter instance μtest = 0.6125 cm (top) and μtest = 0.9125 cm (bottom). In both cases the

relative error �k is below 1%.

https://doi.org/10.1371/journal.pone.0239416.g008
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in (17), for the testing-parameter instance μtest = 0.9625 cm at ~t ¼ 157:2 ms. In both cases, we

have considered the setting yielding the most efficient POD-Galerkin ROM approximation,

which require about 30 (40, respectively) seconds to be evaluated. By comparing Figs 10 and 6

(bottom), we observe that the DL-ROM outperforms the POD-Galerkin ROM in terms of

accuracy.

In Fig 11 we show the action potentials obtained through the FOM, the DL-ROM and the

POD-Galerkin ROM (with Nc = 4 local reduced bases), for the testing-parameter instance μtest
= 0.9625 cm, evaluated at P1 = (0.64, 1.11) cm and P2 = (0.69, 1.03) cm. These two points are

close to the left core of the figure of eight re-entry, where a shorter action potential duration,

and lower peak values of AP, with respect to a healthy case, due to the meandering of the

cores, are observed. The AP dynamics at those points is accurately captured by the DL-ROM,

while the POD-Galerkin ROM leads to slightly less accurate results requiring larger testing

times.

We now compare the computational times required by the FOM, the POD-Galerkin ROM

(for different values of Nc) and the DL-ROM, keeping for all the same degree of accuracy

Fig 9. Test 2: Trend of the relative error over the parameter space. Relative error �sk vs. μtest with n = 5 for the time instance ~t ¼ 147 ms (the violet band indicates

the IQR). The maximum error is associated to μtest = 0.7875 cm, the testing-parameter instance between μtrain = 0.775 cm (the last value for which re-entry does not

arise) and μtrain = 0.8 cm (the first value for which re-entry is elicited).

https://doi.org/10.1371/journal.pone.0239416.g009
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achieved by DL-ROM, i.e. �rel = 7.87 × 10−3, and running the code on the hardware each

implementation is optimized for—a CPU for the FOM and the POD-Galerkin ROM, a GPU

Indeed, at each layer of a neural network thousands of identical computations must be per-

formed. The most suitable hardware architectures to carry out this kind of operations are

GPUs because (i) they have more computational units (cores) and (ii) they have a higher band-

width to retrieve from memory. Moreover, in applications requiring image processing, as

CNNs, the graphics specific capabilities can be further exploited to speed up calculations. for

the DL-ROM. In Table 3 we report the CPU time needed to compute the FOM solution and

the POD-Galerkin ROM approximation (online, at testing phase), both on a full 64 GB node

(20 Intel1 Xeon1 E5-2640 v4 2.4GHz cores), and the GPU time required by the DL-ROM to

compute 875 time instances (the same number of time instants considered in the solution of

the dynamical systems associated to the FOM and the POD-Galerkin ROM) at testing time, by

fixing its dimension to n = 5, on an Nvidia GeForce GTX 1070 8 GB GPU. For the sake of com-

pleteness, we also report the computational time required by the DL-ROM when employing a

single CPU node. It is evident that a POD-Galerkin ROM, built employing a global reduced

basis (Nc = 1), is not amenable to a complex and challenging pathological cardiac electrophysi-

ology problem like the figure of eight re-entry. Using a nonlinear approach, for which the

solution manifold is approximated through a piecewise linear trial manifold (as in the case of

Nc = 2 or Nc = 4 local reduced bases) reduces the online computational time. However, the

Fig 10. Test 2: POD-Galerkin ROM solutions for different testing-parameter instances. POD-Galerkin ROM solution (left) and relative error �k (right) for Nc =

2 (top) and Nc = 4 (bottom) at ~t ¼ 157:2 ms, for μtest = 0.9625 cm.

https://doi.org/10.1371/journal.pone.0239416.g010
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DL-ROM still confirms to provide a more efficient ROM, almost 5 (or 2) times faster on the

CPU, and 39 (or 19) faster on the GPU, than the POD-Galerkin ROM with Nc = 2 (or Nc = 4)

local reduced bases.

In Fig 12 we show the trend of the error indicator (15) over the testing set versus the CPU

time both for the DL-ROM and the POD-Galerkin ROM at testing phase. Slight improvements

of the performance of DL-ROM, in terms of accuracy, are obtained for a small increase of the

DL-ROM dimension n, coherently with our previous findings reported in [26]. Indeed, the

DL-ROM is able, also in this case, to accurately represent the solution manifold by a reduced

nonlinear trial manifold of dimension nμ + 1 = 2; for the case at hand, we report the results for

n = 5 (very close to the intrinsic dimension nμ + 1 = 2 of the problem, and much smaller than

the POD-Galerkin ROM dimension), providing slightly smaller values of the error indicator

(15) than in the case n = 2. Regarding instead the POD-Galerkin ROM, in Fig 12 we report

results obtained for different tolerances εPOD = 10−4, 5 � 10−4, 10−3, 5 � 10−3, 10−2. In the cases

Nc = 2 and Nc = 4 we only report the results related to the smallest POD tolerances, which

indeed allow us to meet the prescribed accuracy on the approximation of the gating variable,

Fig 11. Test 2: FOM, DL-ROM and POD-Galerkin ROM APs at P1 and P2. AP obtained through the FOM, the DL-ROM and the POD-Galerkin ROM with Nc =

4, for the testing-parameter instance μtest = 0.9625 cm, at P1 = (0.64, 1.11) cm and P2 = (0.69, 1.03) cm. The POD-Galerkin ROM approximations are obtained by

imposing a POD tolerance εPOD = 10−4 and 10−3, resulting in error indicator (15) values equal to 5.5 × 10−3 and 7.6 × 10−3, respectively.

https://doi.org/10.1371/journal.pone.0239416.g011

Table 3. Test 2: FOM, POD-Galerkin ROM and DL-ROM computational times.

time [s] FOM/ROM dimensions

FOM (CPU) 382 N = 65536

DL-ROM (CPU/GPU) 15/1.2 n = 5

POD-Galerkin ROM Nc = 1 (CPU) 103 n = 1538

POD-Galerkin ROM Nc = 2 (CPU) 70 n = 1158, 751

POD-Galerkin ROM Nc = 4 (CPU) 33 n = 435, 365, 298, 45

POD-Galerkin ROM and DL-ROM computational times along with FOM and reduced trial manifold(s) dimensions.

DL-ROM provides a more efficient ROM with respect to the POD-Galerkin ROMs.

https://doi.org/10.1371/journal.pone.0239416.t003
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which would otherwise impact dramatically on the overall accuracy of the POD-Galerkin

ROM. Moreover, we do not consider more than Nc = 4 local reduced bases in order not to gen-

erate too small local linear subspaces, which would be otherwise unable to approximate the

variability of the solution over the parameter space P accurately. Indeed, by considering a

larger number of clusters, the dimension of some linear subspaces becomes so small that the

error would start to increase compared to the one obtained with fewer clusters. As shown in

Fig 12, the proposed DL-ROM outperforms the POD-Galerkin ROM in terms of both effi-

ciency and accuracy.

Regarding the training (offline) times, in the case of a FOM dimension N = 4096, training the

DL-ROM neural network on a GTX 1070 8GB GPU requires about 64 hours, whereas training

the POD-Galerkin ROM (with Nc = 4 local bases) on a full node (20 Intel1Xeon1 E5-2640 v4

Fig 12. Test 2: Trend of the error indicator versus the CPU testing computational time. Error indicator �rel vs. CPU testing computational time for different

values of Nc and εPOD. The DL-ROM outperforms the POD-Galerkin ROM in terms of both efficiency and accuracy.

https://doi.org/10.1371/journal.pone.0239416.g012
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2.4GHz cores) of a HPC cluster requires about 4 hours; in both cases, the time needed to assem-

ble the snapshot matrix S is not included. The DL-ROM training time is related to the value cho-

sen during the hyper-parameters tuning for the batch size, i.e. Nb = 3; indeed we highlight that

by choosing a slightly higher value of Nb, it is possible to decrease the GPU computational train-

ing time as long as we look for a lower accuracy. The fact that the DL-ROM training time is 16

times higher than the POD-Galerkin ROM one is again justified by the efficiency introduced at

testing time. Indeed, a query to the DL-ROM online requires 1.2 seconds on a GPU, implying a

speedup of about 28 times compared to the POD-Galerkin ROM.

Test 3: Three-dimensional ventricle geometry

We consider the solution of the coupled system (1) in a three-dimensional left ventricle (LV)

geometry, obtained from the 3D Human Heart Model provided by Zygote [56]. Here, we con-

sider a single (nμ = 1) parameter, given by the longitudinal conductivity in the fibers direction.

The conductivity tensor takes the form

Dðx; μÞ ¼ stIþ ðμ � stÞf0 � f0; ð21Þ

where σt = 12.9 � 0.02 mm2/ms; f0 is determined at each mesh point through a rule-based
approach, by solving a suitable Laplace problem [57]. The resulting fibers field is reported in

S2 File. The applied current is defined as

Iappðx; tÞ ¼
C

ð2pÞ
3=2
a
exp �

jjx � �xjj2

2b

� �

1½0;�t �ð~tÞ;

where �t ¼ 2 ms, C = 1000 mA, α = 50, β = 50 mm2, �x ¼ ½44:02; 1349:61; 63:28�
T

mm.

In order to build the snapshot matrix S, we solve problem (1) completed with the conduc-

tivity tensor (21) by means of linear finite elements, on a mesh made by N = 16365 vertices,

and a semi-implicit scheme in time over a uniform partition of (0, T) with T = 300 ms and

time step Δt = 0.1/12.9. We uniformly sample Nt = 1000 time instances in (0, T) and we zero-

padded [44] the snapshot matrix to reshape each column in a 2D square matrix. The parameter

space is provided by P ¼ 12:9 � ½0:04; 0:4�mm2/ms; here we consider Ntrain = 25 training-

parameter instances and Ntest = 24 testing-parameter instances computed as in Test 2. In this

case, the maximum number of epochs is set to Nepochs = 30000, the batch size is Nb = 40 and

the training is stopped if the loss does not decrease over 4000 epochs.

In Fig 13 we report the FOM solution for two testing-parameter instances, i.e. μ = 12.9 �

0.0739 mm2/ms and μ = 12.9 � 0.1991 mm2/ms, at ~t ¼ 276 ms, to show the variability of the

FOM solution over the parameter space. As expected, front propagation is faster for larger val-

ues of the parameter μ.

In Figs 14 and 15 we report the FOM and DL-ROM solutions, the latter with n = 10, at ~t ¼
42:1 ms and ~t ¼ 222:1 ms, for two testing-parameter instances, μtest = 12.9 � 0.1435 mm2/ms

and μtest = 12.9 � 0.3243 mm2/ms. The DL-ROM approximation is essentially as accurate as the

FOM solution.

Also for this test case, it is possible to build a reduced nonlinear trial manifold of dimension

very close to the intrinsic one—nμ + 1 = 2—as long as the maximum number of epochs Nepochs

is increased; the choice n = 10 is obtained as the best trade-off between accuracy and efficiency

of the DL-ROM approximation in this case.

In Fig 16 (left) we report the APs obtained by the FOM and the DL-ROM, this latter with

n = 10, computed at point P = [36.56; 1329.59; 28.82] mm for the testing-parameter instance

μtest = 12.9 � 0.31 mm2/ms. For the sake of comparison, we also report the POD-Galerkin
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ROM approximation, with Nc = 1, of dimension n = 10 and n = 120. Clearly, in dimension

n = 10 the DL-ROM approximation is far more accurate than the POD-Galerkin ROM

approximation; to reach the same accuracy (about �rel = 5.9 × 10−3, measured through the

error indicator (15)) achieved by the DL-ROM with n = 10, n = 120 POD modes would be

required. In Fig 16 (right) we highlight instead the improvements, in terms of efficiency,

enabled by the use of the DL-ROM technique; we report the CPU time required to solve the

FOM for a testing-parameter instance, the one required by DL-ROM (of dimension n = 10) at

testing time and by the POD-Galerkin ROM with Nc = 4 (n = 68, 81, 82, 45), by using the time

resolution each technique requires and by varying the FOM dimension N on a 6-core platform

Numerical tests have been performed on a MacBook Pro Intel Core i7 6-core with 16 GB

RAM. The FOM solution with N = 16365 degrees of freedom requires about 40 minutes to

be computed, against 57 seconds required by the DL-ROM approximation, thus implying a

speed-up almost equal to 41 times.

Regarding the training (offline) times for this test case, featuring a FOM dimension

N = 16365, training the DL-ROM neural network on a GTX 1070 8GB GPU requires about

160 hours, whereas training the POD-Galerkin ROM (with Nc = 4 local bases) on a full node

(20 Intel1Xeon1 E5-2640 v4 2.4GHz cores) of a HPC cluster requires about 28 hours; in both

cases, the time needed to assemble the snapshot matrix S is not included. We report also the

GPU testing computational time of DL-ROM which is equal to 0.35 seconds thus obtaining a

speed-up, with respect the POD-Galerkin ROM testing time with Nc = 4, equal to 172. The effi-

ciency introduced at testing time justifies the higher training time of DL-ROM.

Test 4: Two-dimensional slab with varying restitution properties

To take into account a case in which parameters also affect the ionic model, we finally focus on

the solution of problem (1) in a square slab of cardiac tissue O = (0, 10) cm, considering nμ = 3

Fig 13. Test 3: FOM solutions for different testing-parameter instances. FOM solutions for μ = 12.9 � 0.0739 mm2/ms (left) and μ = 12.9 � 0.1991 mm2/ms

(right) at ~t ¼ 276 ms. By increasing the value of μ the wavefront propagates faster.

https://doi.org/10.1371/journal.pone.0239416.g013
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parameters possibly reflecting intra- and inter- subjects variability. More precisely, the con-

ductivity tensor now takes the form

Dðx; mÞ ¼ m2Iþ ðm1 � m2Þf 0 � f 0;

where μ1 and μ2 consist of the electric conductivities in the longitudinal and the transversal

direction to the fibers f0 = (1, 0)T, respectively, and μ3 regulates the action potential duration

(APD) by defining

gðu;wÞ ¼
�
�0 þ

m3w
c2 þ u

�
ð� w � Kuðu � b � 1ÞÞ:

The parameters belong to the parameter space P ¼ 12:9 � ½0:06; 0:2�cm2=ms� 12:9 �

½0:03; 0:1�cm2=ms� ½0:15; 0:25� and the applied current is defined as in Test 1.

Fig 14. Test 3: Comparison between FOM and DL-ROM solutions for a testing-parameter instance at different time instances. FOM solution (left) and

DL-ROM one (right), with n = 10, at ~t ¼ 42:1 ms (top) and ~t ¼ 276 ms (bottom), for the testing-parameter instance μtest = 12.9 � 0.1435 mm2/ms.

https://doi.org/10.1371/journal.pone.0239416.g014
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For the training phase, we uniformly sample Nt = 1000 time instances in the interval (0, T)

and consider Ntrain = 5 × 5 × 5 = 125 training-parameters, i.e. μtrain = (12.9 � (0.06 + i0.035),

12.9 � (0.03 + j0.0175), 0.15 + s0.025) with i, j, s = 0, . . ., 4. For the testing phase, Ntest = 16 test-

ing-parameter instances have been considered, each of them given by μtest = (12.9 � (0.0775 +

i0.035), 12.9 � (0.0387 + j0.0175), 0.1625+ s0.025) with i, j, s = 0, . . ., 3. The maximum number

of epochs is Nepochs = 10000, the batch size is Nb = 40 and, regarding the early-stopping crite-

rion, we stop the training if the loss function does not decrease along 500 epochs.

In Fig 17 we show the FOM and the DL-ROM approximation, this latter with n = 4, at ~t ¼
319:7 ms for the testing-parameter innstaces μtest = (12.9 � 0.1125 cm2/ms, 12.9. 0.0563 cm2/

ms, 0.1875) and μtest = (12.9 � 0.1475 cm2/ms, 12.9 � 0.0737 cm2/ms, 0.2375), together with

the relative error defined as in (17). The DL-ROM technique is able to capture the strong

Fig 15. Test 3: Comparison between FOM and DL-ROM solutions for a testing-parameter instance at different time instances. FOM solution (left) and

DL-ROM one (right), with n = 10, at ~t ¼ 42:1 ms (top) and ~t ¼ 276 ms (bottom), for the testing-parameter instance μtest = 12.9 � 0.3243 mm2/ms.

https://doi.org/10.1371/journal.pone.0239416.g015
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Fig 16. Test 3: FOM, DL-ROM and POD-Galerkin ROM APs for a testing-parameter instance. FOM and DL-ROM CPU computational times. Left: FOM,

DL-ROM and POD-Galerkin ROM APs for the testing-parameter instance μtest = 12.9 � 0.31 mm2/ms. For the same n, the DL-ROM is able to provide more

accurate results than the POD-Galerkin ROM. Right: CPU time required to solve the FOM, by DL-ROM with n = 10 and by the POD-Galerkin ROM with Nc = 6

at testing time vs N. The DL-ROM is able to provide a speed-up equal to 41.

https://doi.org/10.1371/journal.pone.0239416.g016

Fig 17. Test 4: Comparison between FOM and DL-ROM solutions for different testing-parameter instances. FOM solution (left), DL-ROM solution with n = 4

(center) and relative error �k (right) for the testing-parameter instances μtext = (12.9 � 0.1125 cm2/ms, 12.9 � 0.0563 cm2/ms, 0.1875) (top) and μtext = (12.9 � 0.1475

cm2/ms, 12.9 � 0.0737 cm2/ms, 0.2375) (bottom) at ~t ¼ 319:7 ms. The maximum of the relative error �k is about 10−3.

https://doi.org/10.1371/journal.pone.0239416.g017
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variability of the solution over the parameter space. Indeed, in Fig 17 (top) the tissue is almost

completely depolarized whereas in Fig 17 (bottom) repolarization has already started. The

error indicator, computed as in (15) over these Ntest = 16 testing-parameter instances, is equal

to 5.4 × 10−3.

In Fig 18 we compare the FOM and the DL-ROM APs at x = (9.524, 4.762) cm, by consider-

ing the effect of the different parameters separately. More precisely, in Fig 18 (left) we let

μ3 vary, i.e. we take μ1
test ¼ ð12:9 � 0:1125 cm2=ms; 12:9 � 0:0737 cm2=ms; 0:1625Þ and

μ2
test ¼ ð12:9 � 0:1125 cm2=ms; 12:9 � 0:0737 cm2=ms; 0:2375Þ. In Fig 18 (right) instead we

only vary μ1 and μ2, i.e. we take μ1
test ¼ ð12:9 � 0:0775cm2=ms; 12:9 � 0:0387cm2=ms; 0:2125Þ

and μ2
test ¼ ð12:9 � 0:01825cm2=ms; 12:9 � 0:0912cm2=ms; 0:2125Þ. In both cases, the DL-

ROM correctly reproduces the APD variability and the different depolarization patterns.

Finally, we report in Table 4 the training and testing computational times of the DL-ROM,

on a GTX 1070 8 GB GPU, by considering either nμ = 2 or 3 parameters:

• nμ = 2, Nrain = 5 × 5 = 25, Nt = 1000, with

P ¼ 12:9 � ½0:06; 0:2�cm2=ms� 12:9 � ½0:03; 0:1�cm2=ms;

• nμ = 3, Nrain = 5 × 5 × 5 = 125, Nt = 1000, with

P ¼ 12:9 � ½0:06; 0:2�cm2=ms� 12:9 � ½0:03; 0:1�cm2=ms� ½0:15; 0:25�;

to analyze the effect of introducing an additional parameter on the training time for a pre-

scribed level of accuracy, keeping the architecture of the network fixed. The training time

Fig 18. Test 4: Comparison between FOM and DL-ROM solutions for different testing-parameter instances. APs obtained through the FOM and the

DL-ROM with n = 4. Left: μ1
test ¼ ð12:9 � 0:1125 cm2=ms; 12:9 � 0:0737 cm2=ms; 0:1625Þ and μ2

test ¼ ð12:9 � 0:1125 cm2=ms; 12:9 � 0:0737 cm2=ms; 0:2375Þ; right:

μ1
test ¼ ð12:9 � 0:0775 cm2=ms; 12:9 � 0:0387 cm2=ms; 0:2125Þ and μ2

test ¼ ð12:9 � 0:1825 cm2=ms; 12:9 � :0912 cm2=ms; 0:2125Þ. The DL-ROM approximation

accurately reproduces the APD variability and the different depolarization patterns.

https://doi.org/10.1371/journal.pone.0239416.g018

Table 4. Test 4: DL-ROM training and testing computational times.

nμ Ntrain train. time nepochs test.time

2 25 15 h 6981 0.08 s

3 125 5 h 449 0.08 s

Number of parameters, of training-parameter instances and of epochs together with training and testing

computational times in the two configurations.

https://doi.org/10.1371/journal.pone.0239416.t004
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refers to the overall training and validation time, while the testing one refers to the time needed

by the DL-ROM to compute Nt time instances of the solution for a given testing-parameter

instance. In this case, considering Ntrain = 125 training-parameter instances allows us to reduce

the training computational time of a factor 3, even if more parameters are considered, a larger

training set is provided. However, we highlight that stating general conclusions about the

training complexity and costs, as a function of the number of parameters and the training set

dimensions, is far from being trivial, and still represents an open issue in this framework.

Conclusion

In this work we have proposed a new efficient reduced order model obtained using deep learn-

ing algorithms to boost the solution of parametrized problems in cardiac electrophysiology.

Numerical results show that the resulting DL-ROM technique, formerly introduced in [26],

allows one to accurately capture complex wave propagation processes, both in physiological

and pathological scenarios.

The proposed DL-ROM technique provides ROMs that are orders of magnitude more effi-

cient than the ones provided by common linear (projection-based) ROMs, built for instance

through a POD-Galerkin reduced basis method, for a prescribed level of accuracy. Through

the use of DL-ROM, it is possible to overcome the main computational bottlenecks shown by

POD-Galerkin ROMs, when addressing parametrized problems in cardiac electrophysiology.

The most critical points related to (i) the linear superimposition of modes which linear ROMs

are based on; (ii) the need to account for the gating variables when solving the reduced dynam-

ics, even if not required; and (iii) the necessity to use (very often, expensive) hyper-reduction

techniques to deal with terms that depend nonlinearly on either the transmembrane potential

or the input parameters, are all addressed by the DL-ROM technique, which finally yields

more efficient and accurate approximation than POD-Galerkin ROMs. Moreover, larger time

resolutions can be employed when using a DL-ROM, compared to the ones required by the

numerical solution of a dynamical systems through a FOM or a POD-Galerkin ROM. Indeed,

the DL-ROM approximation can be queried at any desired time, without requiring to solve a

dynamical system until that time, thus drastically decreasing the computational time required

to compute the approximated solution at any given time.

Outputs of clinical interest, such as activation maps and action potentials, can be more effi-

ciently evaluated by the DL-ROM technique than by a FOM built through the finite element

method, while maintaining a high level of accuracy. This work is a proof-of-concept of the

DL-ROM technique ability to investigate intra- and inter- subjects variability, towards per-

forming multi-scenario analyses in real time and, ultimately, supporting decisions in clinical

practice. In this respect, the use of DL-ROM techniques can foster assimilation of clinical data

with physics-driven computational models.

So far, the training time required by the DL-ROM technique appears to be the major

computational bottleneck, even if it is completely compensated by the great computational

efficiency provided at testing time. Enhancing efficiency also during the training phase

represents the focus of our ongoing research activity, and will be the object of a forthcoming

publication.

Supporting information

S1 Appendix. Derivation of the FOM. We provide the complete derivation of the spatial (and

temporal) discretization of system (1).

(PDF)

PLOS ONE Deep learning-based reduced order models in cardiac electrophysiology

PLOS ONE | https://doi.org/10.1371/journal.pone.0239416 October 1, 2020 28 / 32

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0239416.s001
https://doi.org/10.1371/journal.pone.0239416


S2 Appendix. DL-ROM neural network architecture. Here we report the configuration of

the DL-ROM neural network used for our numerical tests.

(PDF)

S1 File. Features maps. In the notes we report the feature maps of the DL-ROM neural net-
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