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a b s t r a c t

Omicron is a new variant of SARS-CoV-2, which is currently infecting people around the world. Spike
glycoprotein, an important molecule in pathogenesis of infection has been modeled and the interaction
of its Receptor Binding Domain with human ACE-receptor has been analysed by simulation studies.
Structural analysis of Omicron spike glycoprotein shows the 30 mutations to be distributed over all
domains of the trimeric protein, wherein the mutant residues are seen to be participating in higher
number of intra-molecular interactions including two salt bridges emanating from mutant residues
thereby stabilizing their conformation, as compared to wild type. Complex of Receptor Binding Domain
(RBD) with human ACE-2 receptor shows seven mutations at interacting interface comprising of two
ionic interactions, eight hydrogen bonds and seven Van der Waals interactions. The number and quality
of these interactions along with other binding biophysical parameters suggests more potency of RBD
domain to the receptor as compared to the wild type counterpart. Results of this study explains the high
transmissibility of Omicron variant of SARS-CoV-2 that is currently observed across the world.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Covid-19 is an ongoing global pandemic caused by SARS-CoV-2
that started in early 2020. It has so far affectedmore than 26million
people and resulted in more than 5 million deaths [1]. Over the last
two years there have been a number mutations resulting in evo-
lution of the virus and thereby a number of different variants. The
severe disease-causing variants among these have been commonly
known as ‘variants of concern’ and the rest have been designated as
‘variants of interest’ [2]. The delta variant is the most contagious
and virulent strain, resulting in a high number of hospitalization
and morbidity [3]. On 24th of November a new variant of the SARS-
CoV-2 virus (B.1.1.529) was identified in South Africa which has
now been named as the Omicron variant [4]. As of 14th December
2021, there have been more than 3000 cases affected from the
omicron variant in more than 50 countries across the world [5].
me-2; RBD, Receptor Binding

iprasad).
The Omicron variant of SARS-CoV-2 has 30 mutations on its
spike protein. The stability of this spike protein and its binding to
human ACE-2 receptor is known to influence the transmissibility of
SARS-CoV-2 [6]. In this study, a detailed modeling analysis of the
Spike protein fromOmicron has been done to show the effect of the
mutations on the fold and its binding to human ACE-2 receptor.
Data presented in this report provides a rationale for the clinical
scenario currently seen due to Omicron.
2. Materials and methods

2.1. Generation of Omicron spike protein sequence

Sequence of the SARS-CoV-2 spike glycoprotein (P0DTC2) was
retrieved from the UniProt protein sequence database. The residue
changes reported by WHO for Omicron variant was manually
incorporated in this sequence to obtain a 1211 residues of mutated
spike glycoprotein with thirty mutations, six deletions and three
insertions.
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2.2. Homology modeling

The generated sequence was submitted to SWISS-MODEL, and
Geno3D servers to obtain homology models of the spike glyco-
protein of the omicron variant based on crystal structure of SARS-
CoV-2 spike glycoprotein (PDB ID 7KRQ) [7,8]. Validation of these
models was done based on Levitt-Gerstein (LG) score obtained from
ProQ server; Ramachandran plot, 3D score and ERRAT from PRO-
CHECK server [9e11]. The best validated model of the spike
glycoprotein of the omicron variant was refined by energy mini-
mization using Schrodinger and taken up for further analysis [12].

2.3. Generation of Omicron spike protein: human ACE-2 protein
complex

Crystal structure of SARS-CoV-2 spike Receptor-Binding Domain
(RBD) bound with human ACE2 (PDB ID 6M0J) was taken and,
fifteen mutations was incorporated into the RBD using allowed
rotamer configuration on Coot [13]. Model complex was then en-
ergy minimized and solvated using TIP3P water model in an
orthorhombic box extending to 10 Å from protein atoms in each
direction. The Solvated complex was neutralized by 12 Naþ ions
and energy minimized with convergence threshold of 1 kcal/mol/Å.
MD simulation was performed by Desmond simulation program
with the help of force field parameters of OPLS_2005 [14e16]. The
energy minimized solvated complex was equilibrated at 300 K and
1 atmospheric pressure for 200 ps under NTP condition with the
help of Nose-Hoover thermostat and Martyna-Tobias-Klein baro-
stat under periodic boundary condition. It was followed by
recording the production trajectory for 100 ns under similar NTP
condition and other run parameters [17]. Simulation was per-
formed with step size of 2 fs in the presence of LINCS harmonic
constrains and motion was integrated by RESPA dynamics inte-
grator [14]. Long range electrostatic interactions were calculated by
Particle Mesh Ewald (PME) algorithm. The same protocol was used
for native wild type variant for the sake of comparison.

3. Results and discussion

3.1. Modeling and structural analysis of mutated spike protein in
Omicron

A total of six homology models of the mutated Omicron glyco-
protein were generated of which the one with best validation
Fig. 1. (A) Structure complex of RBD domain of spike protein from Omicron with human A
human ACE-Receptor are shown in cyan and purple, respectively; (B-F) Details of the interact
ACE-2 receptor (purple). Red dotted lines indicate ionic interactions, and black dotted lines
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statistics was chosen for analysis (Table S1). The overall structure of
Omicron spike protein is shown in Fig. S1. The 30 mutations, 6
deletions and 3 insertion are distributed across the entire fold of
the protein. Each monomeric conformation is stabilized by an array
of intra-molecular interactions. Of particular interest are two ionic
interactions (Od1 Asp142 … NH1 Arg246 ¼ 2.6 Å and NZ Lys764 …

Od1 Asp737 ¼ 2.7 Å) arising from the mutations Gly142Asp and
Asn764Lys. In addition, there are a total of 18 hydrogen bonded
interactions. In comparison, wild type variant is stabilized only by
13 hydrogen bonded interactions, and no ionic interactions. This
clearly establishes that spike protein of Omicron variant has a more
stable conformation.

3.2. Analysis of RBD of spike protein-ACE-2 receptor complex

Molecular dynamics simulations were performed for RBD of
both mutant and native with ACE-2 receptor to understand the
dynamic behavior of the complexes. The plot of temperature,
pressure, volume and energy with respect to time during simula-
tion shows that simulation system was found to be stable during
simulation (Not shown). The r. m. s deviation of the backbone C-a
RBD of spike protein and ACE-2 receptor indicates that complex
converged after 60 ns of simulation (Fig. 2A). The r. m. s fluctuation
plot shows that flexible loop region and terminal portions of the
proteins displayed larger fluctuations while rest of the complex
were within the thermal vibration range which is about 1.5 Å
(Fig. 2B). These plots clearly indicate that Omicron complex is more
stable as compared to wild type.

Spike glycoprotein's RBD interaction with ACE-2 receptor is
the foremost and most integral event for infection of mammalian
host cell by the virus [18]. 15 out of 30 mutations reported for
Omicron spike protein are on this RBD, which is both sequentially
and structurally conserved in this variant as with its SARS-CoV-2
predecessor. RBD core comprises of five anti-parallel sheets
connected by long loops and short helices. Binding surface of RBD
presents a concave surface that is complementary to binding
surface provided by the ACE-2 receptor (Fig. 1A). The interface of
RBD that presents interacting residues with the ACE receptor
comprises mainly of long loops with a anti-parallel b-wing in the
middle. RBD that is recognized by the extracellular peptidase
domain of ACE-2, has 12 polar residues in comparison to 11 polar
residues on the wild variant. The enhanced polarity of the
binding surface is the molecular basis for corona virus recogni-
tion and infection [19].
CE-2 receptor. The secondary structural elements of RBD domain of spike protein and
ions between residues of RBD domain of spike protein from Omicron (cyan) and human
indicate hydrogen bonded interactions.



Table 1
Biophysical parameters governing the binding of spike protein RBD to human ACE-2
Receptor.

Binding parameters Wild Type Omicron

Binding Energy (kcal/mol) �116 �130
Buried Surface Area (Å2) 829 Å2 862 Å2

Number of Ionic Bonds 2 2
Number of Hydrogen Bonds 13 8
Number of Van der Waals interactions 6 7
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A total of 15 residues of RBD make an array of interactions with
14 residues of ACE-2 receptor at the interfacial binding surface. Of
these, two are ionic interactions and six are hydrogen bonded in-
teractions. (Fig. 1BeF). Interestingly, six of these interactions are
from the side chains of four mutated residues. The presence of two
ionic interactions Arg493 NH2 … Asp38 Od1 ¼ 2.8 Å and Arg493
NH2 … Glu35 Oε1 ¼ 2.9 Å at the very center of interacting surfaces
seems to be crucial to receptor binding and in turn the potency of
Omicron spike protein (Fig. 1A). Among the hydrophobic in-
teractions, Aspargine at position 501 in the wild type is mutated to
tyrosine which makes two hydrophobic interactions (Tyr501 Cz …
Lys353 Cd ¼ 3.5 Å and Tyr501 Cε2… Tyr41 Cε1 ¼ 3.7 Å). In order to
further ascertain the potency of RBD of wild and mutant variants,
relevant biophysical binding parameters were compared between
its respective complexes with human ACE-2 receptors (Table 1). It
can therefore be concluded that the mutant spike protein has a
better binding affinity to ACE-receptor than wild type. Structural
stability of Omicron spike protein and its enhanced potency to
human ACE-2 receptor could therefore be a crucial factor dictating
infectivity of this virus. Molecular modeling in this study places the
high transmissibility of Omicron in the right perspective [20,21].
4. Conclusion

Modeling analysis of spike glycoprotein from Omicron shows
the 30 mutations to be distributed over all the domains of the
trimer protein. Mutant residues are seen to be participating in
higher number of intra-molecular interactions thereby providing
more stability to individual monomeric conformations as
compared to its wild type counterpart. Also, the increased quantity
and quality of interactions between the RBD of Omicron spike
protein and human ACE-2 receptor hints at a higher potency. This
study therefore provides a biophysical basis and the reason for the
high transmissibility of Omicron virus.
Additional information

1 Coordinates for the Omicron spike protein trimer model is
available at: https://www.aiims.edu/aiims/departments_17_5_
16/biophysics/Omicron%20Spike%20protein%20trimer%
20model.pdb

2 Coordinates for theOmicron spike protein (RBD)_Human ACE-2
receptor complex model at 100ns MD is available at: https://
www.aiims.edu/aiims/departments_17_5_16/biophysics/Omicron
%20Spike%20protein%20(RBD)_Human%20ACE-2%20receptor%20
complex%20model%20at%20100ns%20MD.pdb
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